
MESM: A Query-Agnostic and Memory-Efficient
Parallel Subgraph Matching Algorithm

Shubhashish Kar
Department of Computer Science

University of Nevada, Las Vegas
Las Vegas, USA

kars1@unlv.nevada.edu

Shaikh Arifuzzaman
Department of Computer Science

University of Nevada, Las Vegas
Las Vegas, USA

shaikh.arifuzzaman@unlv.edu

Abstract—Subgraph matching, also known as motif finding, is
a fundamental problem in graph analysis with extensive appli-
cations. However, identifying subgraphs in large-scale graphs
is challenging due to its NP-Hard complexity. In addition
to the time complexity, previous solutions often suffer from
excessive memory usage when dealing with large-scale graphs.
This issue is exacerbated in shared-memory systems, where
memory is more limited compared to distributed settings.
Therefore, achieving a balance between execution time and
memory efficiency is vital in such environments. In this paper,
we present a query-agnostic shared-memory parallel algorithm
that incorporates ordering in set intersection, resulting in an 8%
reduction in enumeration time for large graphs. Our approach
also achieves memory usage reductions ranging from 2× to
8.2× compared to state-of-the-art techniques, while maintaining
comparable runtime performance on large datasets. Extensive
experiments with various query and graph datasets demonstrate
improved scalability and effective workload balancing of our
approach compared to other methods.

Index Terms—Graph Algorithms, Subgraph Matching, High
Performance Computing, Shared-Memory System, Parallel Al-
gorithms.

I. INTRODUCTION

Graphs are a versatile framework to model the prob-
lems of different application domains and systems such
as marketing [19], bioinformatics [7], [22], social networks
[12], [24], [28], and cybersecurity [23]. Recently, the rapid
increase in data and system complexity have led to a
significant growth in the size of corresponding graphs [5],
[9], [12], [13], [24]. One effective method for extracting
insights from the vast graph data across various domains
is through subgraph matching, which involves searching a
large graph for all instances of a specified query pattern
while taking into account the labels and edges among the
vertices. For example, in Fig. 1, the four matches found in
the data graph for the query graph based on the labels are
{(u0, v0), (u1, v1), (u2, v2)}, {(u0, v3), (u1, v8), (u2, v2)}, {(u0,
v3), (u1, v4), (u2, v5)} and {(u0, v6), (u1, v4), (u2, v5)}.

Subgraph matching has numerous applications, includ-
ing identifying diamond subgraphs in social networks [15],
detecting rumor patterns in message transmission graphs
[30], performing sub-compound searches in chemical com-
pounds [18], and finding similar patterns in genomic net-
works [7], [8]. Despite its wide-ranging applications in

u0

u1 u2

v0

v1

v2

v8

v3

v7

v5

v6

v4

A

CB

A

B

C A A

B

C

B B

Fig. 1: Illustration of a query graph and a data graph.

graph mining, subgraph matching is highly computationally
complex and is classified as an NP-hard problem [16].
Consequently, there is an urgent need to identify patterns
in large-scale graphs more quickly than previous solutions
have allowed. However, the massive size of modern graphs,
combined with the sparsity of degree distribution, vast
search space, poor memory locality, and unpredictable
memory access patterns, complicates the development of
efficient solutions. These challenges are further exacerbated
by limited memory availability [3], [4], [6], [25].

Subgraph matching algorithms are classified into three
categories in [27]: direct-enumeration, indexing-based-
enumeration and preprocessing-based-enumeration. The
preprocessing-enumeration approach consists of two main
phases: preprocessing and enumeration. In the prepro-
cessing phase, unpromising candidates are filtered out,
auxiliary data structures are maintained, and an optimal
order is generated to facilitate faster computation in the
subsequent phases. Existing solutions predominantly use
vertex-extension techniques, which rely on incrementally
mapping the vertices of the query graph to the data
graph. Within vertex-extension methods, approaches such
as backtracking and query compilation are common. The
backtracking approach, in particular, is query-agnostic and
explores the data graph recursively to identify the query
pattern.

Our implementation, MESM (Memory-Efficient Subgraph
Matching), combines the preprocessing-enumeration ap-
proach with the query-agnostic method for a shared-
memory system to achieve memory efficiency, improved
runtime, and scalability. The contributions of this paper can
be summarized as follows.

• We propose a memory-efficient solution for generic

queries that achieves competitive runtime, addressing
the limitations in memory efficiency found in many
previous solutions.

• We introduce an ordering mechanism to the set-
intersection method during the enumeration phase,
demonstrating its positive impact on performance us-
ing real-world datasets.

• We perform extensive experiments on datasets from
various application domains, showcasing results that
highlight parallel efficiency, including improved load
balancing and scalability.

II. PRELIMINARIES

This section defines subgraph isomorphism and de-
scribes the backtracking algorithm to support our discus-
sion.

Problem Definition: Given a labeled query graph and
a labeled data graph, this study focuses on identifying
subgraphs within the data graph that are isomorphic to
the query graph using a shared-memory parallel approach.
Subgraph isomorphism is the core concept at the heart of
the subgraph matching problem.

To define subgraph isomorphism, a graph can be rep-
resented as G = (V ,E , l ,σ), where V is the set of vertices,
E ⊆ V ×V is the set of edges, and σ is the set of labels.
Consider two graphs, G = (V ,E) and G0 = (V0,E0). The
subgraph isomorphism between G and G0 is a bijection
between the vertex sets V and V0, i.e., f : V →V0 such that
l (vi) = l (f (vi)) and (vi , v j) ∈ E if and only if (f (vi), f (v j)) ∈
E0 for all vi , v j ∈V .

Algorithm 1: Subgraph Matching Algorithm

Input: query graph Q and data graph G ;
Output: all the matches of Q in G ;

1 C ← generate candidate vertex sets;
2 A ← build auxiliary data structure;
3 φ← generate a matching order;
4 Match (Q,G ,C , A,φ, {},1);
5 Match (Q,G ,C , A,φ, M , i) :
6 if i = |φ|+1 then
7 Output M ;
8 return;
9 end

10 u ← select i-th node in φ;
11 LC (u, M) ← ValidCandidates (Q,G ,C , A,φ, M ,u, i);
12 foreach v ∈ LC (u, M) do
13 if v ∉ M then
14 Map u to v in M ;
15 Match (Q,G ,C , A,φ, M , i +1);
16 Remove (u, v) mapping from M ;
17 end
18 end
19 end

Backtracking based Graph Pattern Matching: Firstly, Ull-
man [29] proposed the practical algorithm of subgraph iso-
morphism, which is specifically a backtracking algorithm.
Algorithm 1 shows the core structure of the preprocessing-
based-enumeration approach. The enumeration process
leverages the backtracking technique, which involves ex-
ploring all possible solutions by the generated candidates
previously and backtracking as soon as it is determined
that a solution cannot possibly be valid. After generating
candidate sets, an auxiliary data structure which catalyzes
the faster computation, stores the query graph (line 2). Then
the matching order is generated for the nodes in the query
graph (line 3). To enumerate the subgraph isomorphism,
a recursive procedure is invoked following the matching
order. The subgraph is initiated as empty and gradually it
grows until the cardinality of the query graph. It calculates
the valid candidates in G that match the i -th node of the
pattern graph for step i (line 11). Then, for each vertex v in
the computed valid local candidate set, it maps i -th query
node to v the in the embedding (line 14) and makes a
recursive call to match the following node in the matching
order (line 15). Finishing the recursive call, it removes v
from M .

III. RELATED WORK

Several prior studies have proposed efficient solutions
using parallelization to identify specific query patterns,
such as triangles, k-trusses, and squares, in input graphs,
demonstrating improved scalability for graphs with billions
of edges. In [9], an approach for counting triangles uses a
serial implementation that reduces computation through a
divide-and-conquer strategy. This method divides the large
graph into two subgraphs based on the BFS levels of the
vertices of each edge: one subgraph groups edges whose
vertices are on the same level, while the other groups edges
whose vertices are on different levels. In [14], the imple-
mentation exhibits strong scalability for counting triangles
in billion-edge graphs within distributed-memory settings.
He et al. [17] compared various filtering strategies, in-
cluding statistics-based, walking-based, and learning-based
filtering. They also utilized a graph cache to minimize
redundant communications by selecting and storing remote
vertices for subgraph matching in a distributed-memory
implementation.

Bhattarai et al. [10], in their work on CECI, proposed
a method for dividing the target graph into multiple em-
bedding clusters called compact embedding cluster indices.
These clusters are then distributed across multiple com-
puting nodes to facilitate subgraph matching. They imple-
mented a pull-based dynamic workload balancing scheme,
which provides better scalability for certain datasets. In
CFL-Match [11], the authors introduced a framework that
decomposes a query graph into a core and a forest to
aid in subgraph matching. They developed a compact
path-based auxiliary data structure aimed at reducing false
positives and redundant candidates. This framework post-

u1 u2 u3

u4

u1 u2 u3

u4

u0 u0

Fig. 2: Illustration of a query graph and its BFS tree.

pones Cartesian products and avoids generating redundant
ones, enhancing efficiency. Among parallelized approaches
focusing on the query compilation phase, both Dryadic
[21] and STMatch [31] optimized query processing using
code motion techniques to reduce the repetition of loop-
invariant computations during set intersection in subgraph
matching. Wei et al. [31] also proposed a GPU-based
subgraph matching solution. To address load imbalance
and synchronization challenges, they introduced a two-
level dynamic load balancing technique and utilized loop
unrolling to reduce thread underutilization.

Graph algorithms often struggle to fully leverage the
computational power and memory bandwidth of GPUs due
to irregular memory access patterns. A key challenge in
subgraph isomorphism for large graphs is the extensive
memory consumption. In cuTS [32], the authors tackled
this issue by building a trie-based data structure to reduce
intermediate storage needs.

IV. METHODOLOGY

This section outlines the methods used in the solution,
which are broadly divided into two main steps: preprocess-
ing and enumeration.

A. Preprocessing

Fig. 2 represents the query graph and the BFS tree created
after the BFS traversal of the query graph where the start
vertex for the traversal is u0. All the edges in the BFS tree
are the tree edges and the edges other than the tree edges
are the non-tree edges. After the BFS traversal in the query
graph, all the vertices u0,u1,u2,u3,u4 have their desig-
nated levels as 0,1,1,1,2 respectively. Some terminologies
related to different types of neighbors in the graph by BFS
traversal, applied filters in the data graph, and the sequence
of steps are as follows.

Three types of neighbors are Back Neighbor, Front
Neighbor, and Under Level Neighbor. First, if two vertices
are neighbors and they are in the two consecutive levels of
the BFS tree, then the vertex in the smaller level is the back
neighbor to the vertex of the greater level. Additionally,
in case of two vertices of the same level and they are
connected through a non-tree edge, then the vertex which
precedes the other vertex in the BFS order is the back
neighbor of the following vertex. As per the illustration
in Fig. 2, u0,u1 are the back neighbors of vertex u2, of
which u0 is in the previous level and u1 is in the same
level. Second, if the two vertices are in the same level and

connected by a non-tree edge, then the vertex which follows
the other vertex in the BFS order is a front neighbor of the
preceding vertex. As illustrated, u2 is a front neighbor of
vertex u1. Third, if two vertices are in the two consecutive
levels and connected by tree or non-tree edge, then the
vertex in the greater level is the under level neighbor of
the vertex of the previous level. As projected in Fig. 2, u4
will be counted as the under level neighbor of vertex u2.

For the filters, Label and Degree Filter (LDF) finds a
data vertex eligible depending on having greater or equal
degree than the corresponding query vertex and the same
label. For u ∈ Q and v ∈ G , l (u) = l (v) and d(u) ≤ d(v).
Whereas Neighborhood Label Frequency Filter (NLF) filters
a data vertex if the cardinality of neighbors of the specific
label is less than that of the corresponding query vertex. For
u ∈Q and v ∈G , |N (u, l)| ≤ |N (v, l)| where N (v, l) means the
neighbors with label l of vertex v .

1) Matching Order Generation: Matching order is mainly
the order of the vertices in the query graph in which the
vertices will be matched with the data graph vertices. After
filtering by two filters, the start vertex is chosen based
on the number of candidates and degree of that vertex,
argminu |C (u)|/d(u). Specifically, we applied BFS in the
query graph using the start vertex as the source of the
graph.

2) Auxiliary Data Structure: After BFS traversal of the
query graph, the tree and non-tree edges are identified.
Based on the two types of edges, the different types of
neighbors are identified for every query vertex and stored
in the auxiliary data structure.

3) Candidate Generation & Pruning: Maintaining the
matching order, the candidates of any query vertex u are
generated based on the candidates of the back neighbors of
that query vertex u. The neighbors of the candidates of the
back neighbors participate in set intersection for generating
the candidates for the query vertex u and are then filtered
by NLF and LDF. For every step, the candidates for the query
vertices are generated for one BFS level. After generating
candidates for one particular level of the query graph, the
generated candidates by the back neighbors of the query
vertex u are pruned through validating appropriate edge
connections with the candidates of the front neighbors. This
process is repeated for all the next levels.

4) Reversed BFS based Refinement: Just after completing
the level-wise combined generation and pruning of the
candidates for all the levels of the query graph, the re-
finement of candidates is started in the reverse direction
of BFS traversal. In the refinement phase, the candidates of
the under level neighbors of the query vertex u check the
validity of the candidates of u.

B. Enumeration

1) Set Intersection: For mapping a query vertex to the
corresponding vertex of the data graph, it is mandatory
to generate the valid candidates for the particular query
vertex based on the previously mapped vertices in the

particular embedding. This valid candidate generation for
the selected query vertex, specifically, the set intersection
method among the neighbors of the previously mapped
vertices for validating the connections, takes a considerable
amount of time compared to other operations. Different
optimizations for set intersection can be applied. Malithody
et al. [20] proposed a two pointer set intersection and it
can be applied when the neighbor lists are sorted. The
time complexity of two pointer set intersection method is
O (n1 +n2) where n1 and n2 are the cardinality of the two
sets participating in intersection. Hash based intersection
between two sets can be used relaxing the requirements of
the adjacency lists to be sorted. For more than two sets
in set intersection, the consecutive two sets perform set
intersection, their result with the next set and so on. The
ordering based on the cardinality of the neighbor sets plays
a vital role in reducing the number of computations. The
set with minimum cardinality is put into the first position in
the order to perform set intersection. This directly reduces
the effective size of the result sets for the subsequent
intersections and ultimately reduces computation. If there
are n numbers of sorted sets denoting n1, n2, ..., nsmal l ,
...,nn , of which nsmall is of the smallest length and the
term Ii , j ,k.. represents the resultant set by the intersection
of the sets ni ,n j ,nk , The entire intersection of the n sets
can be represented as I and |I | will be of at most |nsmal l |.

I = n1 ∩n2 ∩ ...∩nsmall ∩ ...∩nn (1)

T =O (|n1|+ |n2|+
∣∣I1,2

∣∣+|n3|+
∣∣I1,2,3

∣∣+ ...) (2)

Ior der = nsmall ∩n1 ∩n2...∩nn (3)

Tor der =O (|nsmal l |+|n1|+
∣∣Ismall ,1

∣∣+|n2|+
∣∣Ismall ,1,2

∣∣+...) (4)

According to the two pointer set intersection method,
Equations 2 and 4 show the time complexity for Equations
1 and 3, respectively. It is computationally expensive, O (n2),
to find the combinations of two sets for which the intersec-
tion length will be minimum. For Equation 4, the length of
any term Ismall ,i , j .. is at most |nsmal l |, whereas, for Equation
2, the length of any term Ii , j ,k.. is equal as the expected
value of the intersection length of the participating sets.
The empirical analysis for social network in Table III shows
the performance gain achieved by adopting the approach
of putting the set of minimum length in the first position
of the sequence.

2) Enumeration: The intermediate results are extended
by mapping the query vertices along the matching order of
query vertices and after finding a match, it backtracks and
finds the other eligible embeddings.

V. EXPERIMENTAL EVALUATION

This section provides a detailed overview of our extensive
experiments.

u0

u1

u0

u1 u3u2

u2

u1 u3

u0 u2 u0

u1 u3
QG1 QG2 QG3 QG4

u1 u3

u0

QG5

u2 u2

Fig. 3: Query Graphs

A. Dataset Description

Query Graph & Data Graph: The query graphs are
illustrated in Fig. 3 which are the representatives of the
dense and sparse structures. These query graphs are also
used by the projects such as PsgL [26] and CECI [10]. For
data graphs, we use six real world graphs and synthetic
graphs, spanning from social networks to e-commerce, hav-
ing different characteristics and hence, providing a better
ground to run the extensive experiments. For unlabeled
real-world datasets, the vertices of the query graph and the
data graph are labeled with the same label. All real graphs
are collected from the Stanford Network Analysis Project
(SNAP) repository [1].

Category Dataset |V | |E | dav g dmax

Ecomm. Amazon 0.3M 0.9M 2.03 154

Social
Youtube 1.1M 2.9M 5.21 28752

DBLP 0.3M 1.0M 4.93 264
LiveJournal 3.9M 34.6M 17.316 14762

Orkut 3M 11.7M 76.28 33313
RoadNet Road-CA 1.9M 2.7M 2.80 12

B. Experimental Environment & Implementation

The code is compiled by g++ 11.4.0. We conduct exper-
iments on a Linux machine with 13th Gen Intel Core i7-
13700 processor (16 cores) and 32GB RAM, also including
cache L1: 640 KB, L2: 24 MB, and L3: 30 MB.

Compressed Sparse Row (CSR) format is used to rep-
resent both the query graph and the data graph. Our
implementation also covers a data structure to efficiently
track the list of the nodes in the query graph whose a
particular node in the data graph is candidate. The filtering,
refinement, and enumeration phase has been parallelized
using OpenMP. The execution time results are averaged over
three runs.

C. Triangle Enumeration

Triangle pattern is one of the most frequent patterns
in most of the real-world datasets [5], [6]. We compare
our implementation with TriC [14] for Graph Challenge
Kronecker Dataset. Our tool gives correct results for count-
ing the number of triangles. Additionally, this generic sub-
graph matching can not outperform the specialized triangle
counting methods on the GraphChallenge datasets. Because
of breaking the automorphism in counting the triangles,
the techniques for specialized wedge checking for the
triangles, the specialized triangle counting algorithms take
less time compared to our implementation. We compare
the execution time of the serial implementation of different

Fig. 4: Memory Usage for QG1 Fig. 5: Memory Usage for QG3 Fig. 6: Memory Usage for QG5

techniques for QG1 in Table I. For Orkut dataset, CECI
outperforms MESM by 1.5× in terms of enumeration time
but uses 4× more memory than MESM.

TABLE I: Enumeration Time (second) Comparison

Dataset CECI CFL-Match MESM
Amazon 0.08 0.07 0.057

DBLP 0.23 0.51 0.22
Youtube 1.59 29.38 2.89

LiveJournal 30.26 186.93 36.12
Orkut 217.67 2642.77 322.61

D. Other Queries

For evaluating the adaptability of our implementation
with diverse nature of query graphs, we run experiments
using comparatively dense query structures k-truss, cliques,
and spare query structures, for example, squares. Consid-
ering all the vertices with the same label, we demonstrate
the residual data graph size in terms of remaining vertex
count for the query graph QG4 after applying the filters, for
example, NLF, LDF mentioned above and the techniques,
for example, Candidate Generation and Pruning (CGP), and
Reversed BFS based Refinement (RBR) of the candidates in
Table II. Additionally, in the triangle pattern, there is only
a set intersection operation among the neighbors of the
previous two vertices to get the valid candidates of the last
vertex in the matching order. For other query graphs with
increased number of vertices and edges, there are multiple
set intersections among two or more sets. For QG4 in Fig.
3, to generate the valid candidates for query vertex u3, the
set intersection among the neighbors of mapped vertices
for query vertices u0,u1 and u2 is computed. For the set
intersection operation among more than two sets, ordering
among the sets causes a reduction in the enumeration
time. The reduction in enumeration time for the serial
implementation of MESM involving the set intersection
ordering is shown in the Table III for the query graph QG4.

E. Memory Efficiency

We characterize the memory usage of two competitor
techniques for the entire computation portion of subgraph
matching and their comparison with our implementation
shown in Fig. 4, 5, and 6. The comparison uses logarithmic
scale with base two due to the significant memory usage

TABLE II: Residual Data Graph Size (Remaining Unique
Vertex Count) After Applying NLF, LDF, CGP, and RBR

Dataset Number of
Nodes

NLF + LDF NLF+LDF+
CGP+RBR

Amazon 334,863 151,253 144,825
DBLP 317,080 201,628 201,066

Youtube 1,134,890 527,184 519,265
LiveJournal 3,997,962 3,195,231 3,192,145

Orkut 3,072,441 3,004,605 3,004,605

TABLE III: Enumeration Time (second) Comparison of Set
intersection Operation with and without ordering

Dataset Enumeration Time
without ordering

Enumeration Time
with ordering

Amazon 0.1253 0.1238
DBLP 1.97 1.80

Youtube 52.24 46.32
LiveJournal 1256.43 1131.12

Orkut 12822.7 11844.5

gap among the implementations. We conduct experiments
using the query graphs mentioned in Fig. 3 and real-world
datasets for memory efficiency analysis. The experimental
analysis is conducted using the same graph representation
strategies and the same ground of comparison for all the
representative implementations. The space complexity of
CECI and CFL-Match are O (

∣∣Eq
∣∣× ∣∣Eg

∣∣) and O (
∣∣Vq

∣∣× ∣∣Eg
∣∣).

To accommodate NTE candidates, the space requirement is
comparatively high in CECI. Conversely, our implementa-
tion has space complexity of O (

∣∣Vq
∣∣×∣∣Vg

∣∣). We use Valgrind
[2] with the heap profiler Massif to track the amount of
heap memory the program used. As per the experiments,
MESM outperforms all other implementations irrespective
of the query graphs and the data graphs due to its low
memory usage. Through the empirical analysis, it is seen
that the difference in the memory usage grows with the size
of the data graph. For the Orkut dataset and the query graph
QG5, our implementation achieves 5.5× reduction in terms
of memory usage as compared to CECI and 8.2× against
CFL-Match. CFL-Match can not handle the Orkut dataset
for the query QG3 due to larger search space. Compared
with CECI and CFL-Match from the perspective of memory
usage, our implementation achieves 1.9−8.2× reduction in
memory usage.

Fig. 7: Scalability for QG1 Fig. 8: Scalability for QG3 Fig. 9: Scalability for QG5

F. Workload Balancing

The skewed-degree distribution for the social network
datasets is one of the responsible factors for workload
imbalance. The workload for a particular thread mostly
depends on the backtracking depth and the number of valid
candidates generated in each depth. We compare three ap-
proaches, for example, cardinality, degree and dynamic load
balancing to investigate the workload imbalance shown in
Fig. 10. First, we divide the equal number of candidates
of the start query vertex into groups and they are handed
over to the involved threads. Though the number of vertices
allocated per thread is approximately the same, the amount
of workload among the threads is not evenly distributed
and causes workload imbalance. Second, we apply degree
based division of the candidates. The candidate vertices
having approximately the same summation of degrees are
grouped together and we get a significant speedup and
reduction in the enumeration time as compared to the first
approach. But workload imbalance is clearly visible in this
approach. Third, we implement the dynamic scheduling
to distribute workload among the threads at the cost of
a thread coordination overhead. This workload distribut-
ing technique outperforms all the previous approaches
of workload distribution for all the query graphs. In Fig.
10(a) and 10(b), the comparison of three approaches is
demonstrated for the Livejournal and Orkut dataset for
triangle enumeration using 8 threads.

G. Scalability

We evaluate the strong scalability of our implementation
for different query graphs demonstrated in Fig. 7, 8, and 9.
In the case of finding the triangular pattern in the Amazon
and DBLP dataset, after involving 8 workers, the speedup
trend gets flat out because of inadequate workload for
the threads. But for the other datasets, the scalability plot
maintains approximately a linear speedup. For the Youtube
and Livejournal datasets, CECI shows poor scalability with
increased number of workers due to the communication
overhead in the distributed setting, whereas our imple-
mentation maintains a decent scaling for an increased
number of threads. The result for the Orkut dataset shows
better scalability with the increasing number of threads.
Conversely, the road-network does not show power-law

(a)

(b)

Fig. 10: Workload imbalance for (a) Livejournal (b) Orkut

characteristic and also has long diameter compared to other
datasets. The scalability for the road-network datasets is
limited due to poor locality in vertex sorting, inadequate
workload distribution, and other previously mentioned fac-
tors.

VI. CONCLUSION

We present an approach that leverages parallelization
in a shared-memory system to efficiently enumerate pat-
tern graphs within diverse real-world graph datasets. Our
method prioritizes memory efficiency, an area often over-
looked by previous solutions. The results demonstrate a
significant improvement in memory usage over state-of-
the-art methods, while maintaining comparable execution
times.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation (NSF) under Award Number
2323533.

REFERENCES

[1] Stanford network analysis project repository.
https://snap.stanford.edu/data/.

[2] Valgrind instrumentation framework. https://valgrind.org/.
[3] Sherif Abdelhamid, Md. Maksudul Alam, Richard Alo, Shaikh Arifuz-

zaman, et al. {CINET} 2.0: {A} cyberinfrastructure for network science.
In 10th {IEEE} International Conference on e-Science, eScience 2014,
Sao Paulo, Brazil, October 20-24, 2014, pages 324–331, 2014.

[4] S. Arifuzzaman, H. S. Arikan, M. Faysal, M. Bremer, J. Shalf, and
D. Popovici. Unlocking the potential: Performance portability of graph
algorithms on kokkos framework. In 2024 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages
526–529, Los Alamitos, CA, USA, May 2024. IEEE Computer Society.

[5] S. Arifuzzaman, M. Khan, and M. Marathe. Fast parallel algorithms
for counting and listing triangles in big graphs. ACM Trans. Knowl.
Discov. Data (TKDD), 14(1):5:1–5:34, 2019.

[6] S Arifuzzaman, Maleq Khan, and Madhav Marathe. A space-efficient
parallel algorithm for counting exact triangles in massive networks.
In Proceedings of the 17th IEEE International Conference on High
Performance Computing and Communications, August 2015.

[7] Shaikh Arifuzzaman and Bikesh Pandey. Scalable mining, analysis,
and visualization of protein-protein interaction networks. In Inter-
national Journal of Big Data Intelligence (IJBDI), volume 6, pages
176–187. Inderscience, 2019.

[8] A. Azad, A. Buluc, and A. Pothen. Computing maximum cardinality
matchings in parallel on bipartite graphs via tree-grafting. IEEE
Transactions on Parallel and Distributed Systems, 28(1):44–59, Jan
2017.

[9] David A Bader. Fast triangle counting. In 2023 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–6. IEEE, 2023.

[10] Bibek Bhattarai, Hang Liu, and H Howie Huang. Ceci: Compact em-
bedding cluster index for scalable subgraph matching. In Proceedings
of the 2019 International Conference on Management of Data, pages
1447–1462, 2019.

[11] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient
subgraph matching by postponing cartesian products. In Proceedings
of the 2016 International Conference on Management of Data, pages
1199–1214, 2016.

[12] Md Abdul M. Faysal, Shaikh Arifuzzaman, Cy Chan, Maximilian
Bremer, Doru Popovici, and John Shalf. Hypc-map: A hybrid
parallel community detection algorithm using information-theoretic
approach. In 2021 IEEE High Performance Extreme Computing
Conference (HPEC 2021), 2021.

[13] Md Abdul Motaleb Faysal, Maximilian Bremer, Cy Chan, John Shalf,
and Shaikh Arifuzzaman. Fast parallel index construction for efficient
k-truss-based local community detection in large graphs. In In Pro-
ceedings of the 52nd International Conference on Parallel Processing,
ICPP ’23, page 132–141, New York, NY, USA, 2023. Association for
Computing Machinery.

[14] Sayan Ghosh and Mahantesh Halappanavar. Tric: Distributed-
memory triangle counting by exploiting the graph structure. In 2020
IEEE high performance extreme computing conference (HPEC), pages
1–6. IEEE, 2020.

[15] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy,
Volodymyr Zhabiuk, Quannan Li, and Jimmy Lin. Real-time twitter
recommendation: Online motif detection in large dynamic graphs.
Proceedings of the VLDB Endowment, 7(13):1379–1380, 2014.

[16] Juris Hartmanis. Computers and intractability: a guide to the theory
of np-completeness (michael r. garey and david s. johnson). Siam
Review, 24(1):90, 1982.

[17] Jiezhong He, Zhouyang Liu, Yixin Chen, Hengyue Pan, Zhen Huang,
and Dongsheng Li. Fast: A scalable subgraph matching framework
over large graphs. In 2022 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2022.

[18] Yaohui Lei. A survey of graph and subgraph isomorphism problems.
2004.

[19] Xiao Liang, Chenxu Wang, and Guoshuai Zhao. Enhancing content
marketing article detection with graph analysis. IEEE Access, 7:94869–
94881, 2019.

[20] Vikram S Mailthody, Ketan Date, Zaid Qureshi, Carl Pearson, Rakesh
Nagi, Jinjun Xiong, and Wen-mei Hwu. Collaborative (cpu+ gpu)
algorithms for triangle counting and truss decomposition. In 2018
IEEE High Performance extreme Computing Conference (HPEC), pages
1–7. IEEE, 2018.

[21] Daniel Mawhirter, Samuel Reinehr, Wei Han, Noah Fields, Miles
Claver, Connor Holmes, Jedidiah McClurg, Tongping Liu, and Bo Wu.
Dryadic: Flexible and fast graph pattern matching at scale. In
2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 289–303. IEEE, 2021.

[22] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: simple building blocks
of complex networks. Science, 298(5594):824–827, 2002.

[23] Steven Noel. A review of graph approaches to network security
analytics. From Database to Cyber Security: Essays Dedicated to Sushil
Jajodia on the Occasion of His 70th Birthday, pages 300–323, 2018.

[24] Naw Safrin Sattar and Shaikh Arifuzzaman. Community detection
using semi-supervised learning with graph convolutional network on
gpus. In 2020 IEEE International Conference on Big Data (Big Data),
pages 5237–5246, 2020.

[25] Naw Safrin Sattar and Shaikh Arifuzzaman. Scalable distributed
louvain algorithm for community detection in large graphs. Journal
of Supercomputing, 78, 2022.

[26] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu.
Parallel subgraph listing in a large-scale graph. In Proceedings of the
2014 ACM SIGMOD international conference on Management of Data,
pages 625–636, 2014.

[27] Shixuan Sun and Qiong Luo. In-memory subgraph matching: An in-
depth study. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1083–1098, 2020.

[28] Johan Ugander, Lars Backstrom, and Jon Kleinberg. Subgraph fre-
quencies: Mapping the empirical and extremal geography of large
graph collections. In Proceedings of the 22nd international conference
on World Wide Web, pages 1307–1318, 2013.

[29] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal
of the ACM (JACM), 23(1):31–42, 1976.

[30] Shihan Wang and Takao Terano. Detecting rumor patterns in stream-
ing social media. In 2015 IEEE international conference on big data
(big data), pages 2709–2715. IEEE, 2015.

[31] Yihua Wei and Peng Jiang. Stmatch: accelerating graph pattern
matching on gpu with stack-based loop optimizations. In SC22: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–13. IEEE, 2022.

[32] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and
Aravind Sukumaran-Rajam. cuts: scaling subgraph isomorphism on
distributed multi-gpu systems using trie based data structure. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–14, 2021.

