
Enhancing Code Translation in Language Models
with Few-Shot Learning via Retrieval-Augmented

Generation
Manish Bhattarai

Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM
ceodspspectrum@lanl.gov

Javier E. Santos
Earth & Environmental Science Division

Los Alamos National Laboratory
Los Alamos, NM
jesantos@lanl.gov

Shawn Jones
Computer, Computational & Statistical Sciences

Los Alamos National Laboratory
Los Alamos, NM
smjones@lanl.gov

Ayan Biswas
Computer, Computational & Statistical Sciences

Los Alamos National Laboratory
Los Alamos, NM

ayan@lanl.gov

Boian Alexandrov
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM

boian@lanl.gov

Daniel O’Malley
Earth & Environmental Science Division

Los Alamos National Laboratory
Los Alamos, NM
omalled@lanl.gov

Abstract—The advent of large language models (LLMs) has
revolutionized the field of code translation, enabling automated
translation between programming languages. Despite these ad-
vancements, the accuracy and reliability of these models often fal-
ter in complex translation tasks due to a lack of contextual under-
standing. This paper introduces a novel approach to enhance code
translation through Few-Shot Learning augmented with retrieval-
based techniques. By leveraging a repository of existing code
translations, we dynamically retrieve the most relevant examples
to guide the model in translating new code segments. Our method,
based on Retrieval-Augmented Generation (RAG), significantly
improves translation quality by providing contextual examples
that the model can learn from in real-time. We chose RAG
over traditional fine-tuning methods due to its ability to leverage
existing codebases or a locally stored corpus of code, allowing
it to dynamically adapt to diverse translation tasks without the
need for extensive retraining. Extensive experiments on diverse
datasets, using open LLM models such as Starcoder, Llama3-70B
Instruct, CodeLlama-34B Instruct, Granite-34B Code Instruct,
and Mixtral-8x22B, and commercial LLM models such as GPT-
3.5 turbo, and GPT-4o demonstrate the superiority of our
approach over traditional zero-shot, particularly in translating
between Fortran and C++.We also explored different numbers
of shots (examples provided to the model during inference) —
specifically 1, 2, and 3 shots — and various embedding models
for RAG, including Nomic-Embed, Starencoder, and CodeBERT,
to evaluate the robustness and effectiveness of our approach.

Index Terms—code translation, large language models, re-
trieval augmented generation, few shot learning, fortran, C++

I. INTRODUCTION

The rapid evolution of programming languages and the
need to maintain legacy codebases have created a substantial
demand for automated code translation tools. Traditional ap-
proaches to code translation involve extensive manual effort
and expertise in both the source and target languages. With

the rise of large language models (LLMs), such as GPT-3 [1],
Codex [2], and CodeBERT [3], automated code translation
has become increasingly feasible. These models leverage vast
amounts of training data to generate code snippets in various
languages, demonstrating impressive capabilities in general
language understanding and generation tasks.

However, despite these advancements, the performance of
language models in code translation tasks remains inconsistent,
particularly when dealing with complex or less common
programming constructs. A significant challenge lies in the
model’s ability to comprehend and generate code that adheres
to the syntactic and semantic rules of both the source and
target languages. Zero-shot and few-shot learning techniques
(where ”shots” refer to the number of examples provided to
the model during inference) have shown promise [4], but they
often lack the depth of contextual understanding required for
high-fidelity translations.

Fine-tuning language models for specific code translation
tasks is a common approach to improve performance [5].
However, fine-tuning requires substantial computational re-
sources and time, and it may not generalize well to new
or unseen tasks. In contrast, Retrieval-Augmented Generation
(RAG) offers a dynamic alternative by leveraging a repository
of existing code translations to provide contextual examples
during the translation process [6]. This method allows the
model to adapt to various tasks without extensive retraining,
making it a more flexible and efficient solution.

In this paper, we propose a RAG framework that enhances
Few-Shot Learning for code translation tasks. Our approach
involves maintaining a repository of code translation examples
and dynamically retrieving the most relevant examples based
on the input code segment. By providing the model with
multiple contextual examples, RAG facilitates a deeper under-



standing of the translation task, leading to more accurate and
reliable code generation. For this, an embedding model, which
converts code snippets into numerical vectors that capture their
semantic meaning, is used.

We conducted extensive experiments using various open
language models, including Starcoder [7], Llama3-70B In-
struct [8], CodeLlama-34B Instruct [9], Granite-34B Code
Instruct [10], Mistral 8x22B [11] and Codestral [12] and
commercial models such as GPT-3.5 [1] and GPT-4o on
publicly available Fortran-C++ translation datasets. We evalu-
ated the performance of our approach with different numbers
of shots (1, 2, 3) and various embedding models, such as
Nomic-Embed [13], Starencoder [7], and CodeBERT [3]. For
datasets that did not have direct translation pairs, we performed
pairwise comparisons to assess the translation consistency
across different LLMs.

The remainder of this paper is structured as follows: Section
2 reviews related work in code translation and few-shot
learning. Section 3 outlines our RAG methodology, including
the retrieval mechanism and integration with language models.
Section 4 presents our experimental setup and results, followed
by a discussion in Section 5. Finally, Section 6 concludes the
paper and highlights future research directions.

II. RELATED WORKS

The field of code translation, particularly from Fortran to
C++, has seen various innovative approaches and method-
ologies aimed at improving translation accuracy and effi-
ciency. One notable contribution is the development of a high-
performance computing (HPC) code translation dataset [5].
This dataset pairs OpenMP Fortran with C++ code snippets,
facilitating the training and evaluation of machine learning
models for effective code translation. The dataset’s quality was
ensured through human-level evaluations by expert program-
mers, which significantly refined the translations by assessing
correctness, readability, and semantic retention of the original
Fortran code.

In addition to dataset creation, efforts have been made to
re-engineer legacy Fortran code into maintainable C++ code.
A study explored the maintainability of translated Fortran
code by evaluating various software quality metrics [14]. The
research concluded that re-engineered Fortran to C++ code
exhibited high maintainability standards, making it a viable
solution for modernizing legacy systems while ensuring the
translated code remains efficient and easy to maintain.

Automated tools have also played a crucial role in facil-
itating Fortran to C++ translation. The CFortranTranslator,
an open-source tool, converts Fortran90/Fortran77 code to
C++14 while maintaining the abstraction level of the original
code [15]. This tool effectively handles mixed fixed-form
and free-form Fortran code, providing a practical solution
for developers needing to translate Fortran code to leverage
modern C++ features and frameworks; however, the resulting
code may not always be easy to read or maintain, posing long-
term challenges.

The advent of LLMs has further revolutionized code trans-
lation. A study titled “Lost in Translation” emphasized the
importance of providing contextual information, such as stack
traces and error messages, to improve LLM-based code
translation accuracy [16]. This iterative prompting approach
demonstrated significant improvements in translation success
rates by incorporating additional informative context into the
prompts. The study also provided a comprehensive taxonomy
of bugs introduced by LLMs during code translation, offering
valuable insights into common error modalities and mitigation
strategies.

Fine-tuning LLMs for domain-specific tasks has been an-
other area of active research [17]. Prompt-oriented fine-tuning
using Low-Rank Adaptation (LoRA) [18] has been proposed
to adapt LLMs to specific programming languages and do-
mains. This method leverages domain-specific vocabulary and
demonstrates improved translation quality by efficiently fine-
tuning pre-trained models for specific tasks [5]. In the paper,
the authors demonstrated that finetuning the LLM improved
the translation performance by 9 folds.

III. METHODS

Fig. 1: Pipeline for creating a few shot prompt through RAG
for code translation.

Our study presents a RAG based pipeline designed to en-
hance the accuracy and contextual understanding of automated
code translations from Fortran to C++, as illustrated in Figure
1. This method integrates LLMs with retrieval mechanisms,
enabling the generation of high-quality translations through
dynamically provided contextual examples. The pipeline is



highly adaptive, allowing users to plug in different LLMs, em-
bedding models, datasets, and adjust the number of shots for
evaluating translation performance. Models can be seamlessly
loaded directly from Hugging Face [19], specific directories
tailored to each model type, or via API calls as specified by
user input. For retrieval with RAG, either l2 distance or cosine
similarity metric can be used.

Dataset Preparation

We leveraged three datasets to evaluate our models:
1) Numerical Recipes Dataset:: This dataset comprises

pairs of Fortran and C++ code snippets, ensuring a robust set
of examples [20]. Each code pair is meticulously curated to
maintain high standards of quality and relevance. To ensure
quality, we standardized code style, removed comments, han-
dled whitespace and special characters, and mapped Fortran
subroutines to their C++ equivalents. One downside of this
dataset is that it relies on a specific library of functions, which
may limit its general applicability. This dataset comprises 298
Fortran-C++ pairs.

2) HPC Fortran2CPP Dataset:: This dataset was derived
from [5].The dataset comprises comprehensive Fortran to C++
translation pairs and was meticulously curated from the NAS
Parallel Benchmarks (NPB), Polyhedral Benchmark (Poly-
Bench), and DataRaceBench (DRB) repositories. The NPB
dataset evaluates supercomputer performance with computa-
tional fluid dynamics benchmarks, PolyBench provides pro-
grams for polyhedral compilation research, and DRB includes
OpenMP programs for data race detection tool evaluation.
The authors performed standardized code style as we did for
Numerical Recipe dataset and additional calibration was done
using similarity tests ensured semantic fidelity, while expert
programmers conducted human-level evaluations to assess
correctness, readability, and semantic retention. This dataset
comprises 315 Fortran-C++ pairs.

3) Stack-V2 Dataset:: The Stack V2 dataset is a compre-
hensive collection of code samples sourced from a wide range
of repositories on GitHub, focusing on high-performance com-
puting and various computational problems [21]. This dataset
includes approximately half a million Fortran code snippets,
providing a diverse set of examples for robust evaluation. For
our study, we sampled 500 Fortran examples from this dataset
by selecting files with lengths between 1000 and 10,000 bytes
from unique repositories, prioritizing those with the highest
combined star and fork event counts to ensure high-quality
and diverse samples. Since Stack-V2 doesn’t have Fortran-
C++ pairs, we extracted the files containing metadata, codes,
and comments. We then leveraged Llama3-70B Instruct model
to extract the executable Fortran code, discarding other meta-
data. This cleaned dataset was subsequently used to compare
translation performance across various LLMs in a zero-shot
setting.

Embedding Generation and Example Retrieval

A crucial component of our RAG pipeline is the gen-
eration of embeddings for each Fortran code snippet. We

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

31
2

0
13
26
39
52
65
78
91

104
117
130
143
156
169
182
195
208
221
234
247
260
273
286
299
312

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

0 11 22 33 44 55 66 77 88 99 11
0

12
1

13
2

14
3

15
4

16
5

17
6

18
7

19
8

20
9

22
0

23
1

24
2

25
3

26
4

27
5

28
6

29
7

0
12
24
36
48
60
72
84
96

108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Fig. 2: Similarity of dataset embeddings for a)HPC For-
tran2CPP dataset and b) Numerical Receipe dataset based on
Nomic Embed model

employ various embedding models such as Nomic-Embed
[13], Starencoder [7], and CodeBERT [3] to produce these
embeddings, which are essential for assessing translation per-
formance. These embeddings capture the semantic essence
of the code snippets, enabling efficient retrieval of the most
contextually relevant examples from the dataset. For efficient
vector storage and retrieval, we leverage ChromaDB, which
stores embeddings along with the corresponding source and
target codes. We evaluated the retrieval performances with l2
and cosine similarity metrics.

Once the embeddings are generated, the system dynam-
ically retrieves the most similar examples based on cosine
similarity or Euclidean distance. This process ensures that the
model receives the most relevant examples tailored to each
specific translation task, thereby enhancing the accuracy and
efficiency of the code translation. The retreived translation
pairs are then augmented with the original query and directed
to LLM for translation. Figure 2 displays the cosine similarity
between the Fortran source code embeddings corresponding
to the Numerical Recipes and HPC Fortran2CPP datasets. The
similarity matrices provide valuable insights into the structural
and functional relationships within and between the datasets.

In the HPC Fortran2CPP dataset (Figure 2a), we observe
distinct clusters of high similarity, indicating that certain
groups of Fortran code snippets share significant semantic
and syntactic features. These clusters likely correspond to
common computational patterns or routines that are frequently
reused within the dataset. The clear block-diagonal structure
suggests that the HPC Fortran2CPP dataset contains several
distinct modules or subcomponents that exhibit high internal
coherence. In contrast, the Numerical Recipes dataset (Figure
2b) presents a more uniformly distributed similarity matrix
with fewer pronounced clusters. This distribution implies a
more diverse set of code snippets with varying functional-
ities and less repetition of specific patterns. The relatively
consistent similarity across the matrix suggests that while
individual snippets may not be as closely related, there is
a broad underlying similarity in the type of computational
problems addressed by the Numerical Recipes dataset.

Comparing the two datasets, we can infer that the HPC
Fortran2CPP dataset might be more modular and specialized,



System: You are adept at translating Fortran code
into CPP with high accuracy, ensuring that all
syntax, semantics, and specific language
features are correctly and efficiently converted

User: Translate the following code from Fortran to
CPP:

{Fortran code snippet}

Fig. 3: Zero-Shot Translation Prompt Template

with specific sections of code dedicated to particular tasks.
In contrast, the Numerical Recipes dataset appears to be
more general-purpose, covering a wide range of computational
routines without strong modular separation. These insights are
crucial for understanding the nature of the datasets and for
accessing the RAG performance for code translation, as they
highlight the varying degrees of internal consistency and the
potential challenges in translating diverse code structures.

Few-Shot Learning with Retrieval-Augmented Generation

In-context learning for source code translation leverages
the power of few-shot examples to improve the performance
of language models in generating accurate translations. In a
typical zero-shot setting, a language model M generates a
target translation T for a given query Q (source code) directly,
which can be mathematically represented as T = M(Q).
However, the performance of M can be significantly enhanced
by conditioning it on a set of k example pairs of source and
target code, {(Si, Ti)}ki=1, before generating the translation for
Q. This few-shot learning process can be expressed as:

T = M({(Si, Ti)}ki=1, Q).

In a RAG setup, this process is further optimized by
incorporating a retrieval mechanism R that selects the most
relevant k example pairs from a large corpus C based on the
query Q. The retrieval step can be mathematically formulated
as:

{(Si, Ti)}ki=1 = R(Q, C).

Subsequently, the model M generates the translation T
using the retrieved example pairs and the query, expressed
as:

T = M(R(Q, C), Q).

The translation process begins with a zero-shot approach,
where the model translates the Fortran code to C++ without
any additional context. We then generate embeddings for
the Fortran code snippets using models like Nomic-Embed,
Starencoder, and CodeBERT. These embeddings capture the
semantic essence of the code, facilitating efficient retrieval of
the top-k most relevant examples from ChromaDB, our vector
storage and retrieval system.

For Zero-shot comparisons, we apply the zero-shot transla-
tion prompt template (Figure 3) with the Fortran code to be
translated. For few-shot prompts, we use the prompt template

System: You are adept at translating Fortran code
into CPP with high accuracy, ensuring that all
syntax, semantics, and specific language
features are correctly and efficiently converted

User: Here’s an example of a code translated from
Fortran to CPP:

Here’s the Fortran code:
{Similar Fortran code example}
Here’s the CPP translation:
{Corresponding CPP translation}
[Repeat for k examples]
Now translate the following code from Fortran to CPP

:
{Fortran code snippet}

Fig. 4: Few Shot Translation Prompt Template

shown in Figure 4 with the rest of the pipeline. The model
processes the input Fortran code along with the retrieved
examples. The tokenized input is fed into the model, which
generates the corresponding C++ code. This approach ensures
that the model receives the most relevant examples tailored
to each specific translation task, thereby enhancing translation
accuracy and efficiency.

Evaluation and Experimental Setup

The generated translations are evaluated using the Code-
BLEU metric [22], which assesses the quality of code transla-
tions by considering both syntactic and semantic correctness.
CodeBLEU extends the traditional BLEU metric by incorpo-
rating four key components: N-gram Match Score, which mea-
sures the precision of n-grams in the translated code compared
to the reference code, ensuring the retention of original token
sequences; Weighted N-gram Match Score, which enhances the
n-gram match score by weighting different n-grams based on
their importance, thus focusing on critical code patterns and
structures; Syntax Match Score, which evaluates the syntactic
correctness of the translated code, ensuring adherence to the
grammatical rules of the programming language; and Dataflow
Match Score, which assesses the semantic correctness by
analyzing the data flow within the program, ensuring the
preservation of logical flow and functional equivalence.

Our experiments involved extensive testing with various
combinations of models, shot numbers, RAG retrieval metrics,
and embedding models. We utilized Nomic-Embed, Staren-
coder, and CodeBERT as embedding models. For code trans-
lation, we leveraged open LLMs such as Starcoder, Llama3-
70B Instruct, Code LLaMA-34B, Granite-34B Code Instruct,
and Mistral 8x22B, as well as commercial LLM models such
as GPT-3.5 turbo and GPT-4o/GPT-4 turbo. We evaluated
the performance of the models for zero, one, two, and three
shots. Each experiment aimed to measure the improvements
in translation quality facilitated by the RAG approach using
CodeBLEU as the primary evaluation metric.

IV. RESULTS AND DISCUSSIONS

1) Performance Across Models and Embeddings: The re-
sults highlight significant variability in performance across



0.0 0.2 0.4 0.6 0.8 1.0
Zero-shot CodeBLEU

0.0

0.2

0.4

0.6

0.8

1.0
On

e-
sh

ot
 C

od
eB

LE
U

0.65

0.70

0.75

0.80

0.85

0.90

0.95

RA
G 

Si
m

ila
rit

y 
Sc

or
e

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Zero-shot CodeBLEU

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U

0.80

0.85

0.90

0.95

1.00

RA
G 

Si
m

ila
rit

y 
Sc

or
e

(b)

0.0 0.1 0.2 0.3 0.4 0.5
Zero-shot CodeBLEU

0.0

0.1

0.2

0.3

0.4

0.5

On
e-

sh
ot

 C
od

eB
LE

U

3

2

1

0

1

2

RA
G 

Si
m

ila
rit

y 
Sc

or
e

1e 7+1

(c)

Fig. 5: Performance Comparison of One-shot vs. Zero-shot in the RAG Pipeline Using the Nomic-embed Embedding Model
across Various Models and Datasets: (a) Granite-34B Code Instruct on the Numerical Recipes Dataset, (b) Granite-34B Code
Instruct on the HPC Fortran2CPP Dataset, and (c) Granite-34B Code Instruct on the HPC Fortran2CPP Dataset with bad RAG
setup (utilize largest distance metric as retreival) . The color of each data point represents the similarity of the retrieved one-shot
example pair to the query Fortran code, with the legend indicating the intensity range of the similarity metric. Generally, a
higher similarity score correlates with a higher CodeBLEU score.

codellama34b
codestral

gpt-4-turbo
gpt3.5-turbo

granite-34b

llama3b70-instruct
mixtral-8x22b phi3

starcoder
0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

HPC Fortran2Cpp Dataset
Number of Shots

0 Shot
1 Shot
2 Shots
3 Shots

(a) HPC Fortran2CPP dataset with cosine similarity

codellama34b
codestral

granite-34b

llama3b70-instruct
mixtral-8x22b phi3

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

Numerical Recipes Dataset
Number of Shots

0 Shot
1 Shot
2 Shots
3 Shots

(b) Numerical Recipes dataset with cosine similarity

codellama34b
codestral

gpt3.5-turbo gpt4o
granite-34b

llama3b70-instruct
mixtral-8x22b phi3

starcoder
0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

HPC Fortran2Cpp Dataset
Number of Shots

0 Shot
1 Shot
2 Shots
3 Shots

(c) HPC Fortran2CPP dataset with l2 distance

codellama34b
codestral

granite-34b

llama3b70-instruct
mixtral-8x22b phi3

starcoder
0.0

0.2

0.4

0.6

0.8

1.0

Co
de

BL
EU

 S
co

re

Numerical Recipes Dataset
Number of Shots

0 Shot
1 Shot
2 Shots
3 Shots

(d) Numerical Recipes dataset with l2 distance

Fig. 6: Overview of CodeBLEU metrics for code translation with different LLMs using cosine similarity and l2 distance for
RAG retrieval on (a) and (c) HPC Fortran2CPP dataset and (b) and (d) Numerical Recipes dataset.

different models and embedding strategies. The breakdown of
Codebleu metric for different models in Zero-shot setting is
shown in Table I. The table provides key insights into the
performance of different models on zero-shot tasks using the
Nomic-embed embedding model with l2 distance. Notably,
GPT-4 Turbo and GPT-3.5 Turbo achieved the highest zero-
shot CodeBLEU scores of 0.371 and 0.367, respectively,
indicating their strong initial performance without additional
context. These models also scored highly on Syntax Tree
and Dataflow metrics, which measure syntactic correctness
and dataflow consistency, respectively, highlighting their abil-
ity to generate structurally sound and semantically accurate
code. In contrast, Granite-34B and Llama3-70B Instruct, while

having slightly lower CodeBLEU scores (0.237 and 0.309,
respectively), showed balanced performance across all metrics,
signifying their robust handling of various translation aspects.
Metrics like Ngram and Weighted Ngram, which assess exact
token matches and weighted token matches, respectively, were
particularly low for StarCoder, reflecting its struggles with
precise code generation in zero-shot tasks. Mixtral-8x22B
exhibited high variance in the Numerical Recipes dataset,
especially in CodeBLEU and Ngram scores, suggesting in-
consistency in its translation quality.

However in the Few-shot task, the Granite-34B Code In-
struct, Llama3-70B Instruct and Mixtral-8x22B model con-
sistently outperformed others across all embedding types and



TABLE I: Mean with standard deviation scores for CodeBLEU metrics of Zero Shot prompts for different LLMs, ordered by
CodeBLEU performance

Dataset Model CodeBLEU Ngram Weighted Ngram Syntax Tree Dataflow
HPC Fortran2CPP GPT-4o 0.371± 0.002 0.188± 0.001 0.290± 0.001 0.495± 0.003 0.504± 0.005

GPT-3.5 Turbo 0.367± 0.001 0.199± 0.003 0.301± 0.004 0.483± 0.002 0.474± 0.004
Llama3-70B Instruct 0.309± 0.001 0.135± 0.002 0.225± 0.002 0.325± 0.005 0.512± 0.003
Codestral-22B 0.245± 0.000 0.090± 0.001 0.155± 0.001 0.158± 0.002 0.520± 0.002
CodeLlama-34B Instruct 0.243± 0.000 0.090± 0.001 0.166± 0.001 0.169± 0.002 0.490± 0.001
Mixtral-8x22B (176B) 0.241± 0.001 0.059± 0.001 0.104± 0.001 0.140± 0.001 0.331± 0.001
Granite-34B Code Instruct 0.237± 0.001 0.084± 0.001 0.145± 0.001 0.171± 0.000 0.500± 0.002
Phi-3 3.8B 0.228± 0.000 0.063± 0.004 0.119± 0.006 0.165± 0.001 0.501± 0.002
StarCoder 15.5B 0.206± 0.000 0.009± 0.000 0.014± 0.000 0.127± 0.000 0.636± 0.001

Numerical Recipes Codestral-22B 0.288± 0.000 0.042± 0.000 0.101± 0.000 0.512± 0.000 0.497± 0.000
Llama3-70B Instruct 0.283± 0.001 0.036± 0.000 0.103± 0.001 0.508± 0.003 0.484± 0.002
CodeLlama-34B Instruct 0.281± 0.002 0.035± 0.001 0.108± 0.003 0.482± 0.007 0.493± 0.003
Granite-34B Code Instruct 0.272± 0.002 0.063± 0.001 0.109± 0.001 0.462± 0.003 0.443± 0.003
Mixtral-8x22B (176B) 0.264± 0.021 0.077± 0.015 0.140± 0.013 0.340± 0.070 0.385± 0.052
Phi-3 3.8B 0.249± 0.002 0.036± 0.001 0.085± 0.002 0.432± 0.002 0.438± 0.004
StarCoder 15.5B 0.133± 0.001 0.007± 0.000 0.010± 0.000 0.269± 0.000 0.244± 0.002

TABLE II: Delta in Mean CodeBLEU scores between Zero- and Few-Shot prompts using the Nomic-embed Embedding Model
with l2 Distance for HPC Fortran2CPP dataset. Our RAG method for choosing examples improves CodeBLEU scores for most
of the LLMs listed.

∆ in CodeBLEU scores

Dataset Model Zero-shot 1-shot 2-shot 3-shot
HPC Fortran2CPP CodeLlama-34B Instruct 0.243 +0.078 +0.084 +0.069

Codestral-22B 0.245 +0.074 +0.105 +0.158
GPT-3.5 Turbo 0.367 +0.157 +0.176 +0.188
GPT-4o 0.371 +0.132 +0.153 +0.153
Granite-34B Code Instruct 0.237 +0.363 +0.278 +0.302
Llama3-70B Instruct 0.309 +0.117 +0.137 +0.151
Mixtral-8x22B (176B) 0.241 +0.288 +0.355 +0.367
Phi-3 3.8B 0.228 +0.058 +0.070 +0.050
StarCoder 15.5B 0.206 0.000 0.000 0.000

Numerical Recipes CodeLlama-34B Instruct 0.281 +0.145 +0.157 +0.147
Codestral-22B 0.288 +0.148 +0.207 +0.250
Granite-34B 0.272 +0.229 +0.240 +0.254
Llama3-70B Instruct 0.283 +0.149 +0.163 +0.168
Mixtral-8x22B (176B) 0.264 +0.227 +0.264 +0.291
Phi-3 3.8B 0.249 +0.068 +0.051 +0.044
StarCoder 15.5B 0.133 0.000 0.000 0.000

learning configurations, achieving the highest CodeBLEU
scores. For instance, under the nomic-embed model embed-
ding, Granite-34B Code Instruct achieved a zero-shot Code-
BLEU of 0.237 and improved to 0.6 in the one-shot setting
for HPC Fortran2CPP dataset with l2 norm as shown in
Table II. This demonstrates the model’s strong capability in
understanding and translating Fortran code into C++ with
minimal context.

While we conducted experiments using various embedding
models, our findings indicate that Nomic-embed and Staren-
coder exhibited equivalent performance in few-shot settings.
However, CodeBERT consistently underperformed compared
to the other two models. For instance, CodeLlama-34B Instruct
achieved a zero-shot CodeBLEU of 0.243 with Nomic-embed,
which improved to 0.321 in the two-shot configuration. In
contrast, CodeBERT’s performance did not show comparable
improvement. This discrepancy can be attributed to the max-
imum token limit of each embedding model; CodeBERT has
a token limit of 512, whereas both Starencoder and Nomic-

embed support up to 8192 tokens. Given the longer length of
Fortran codes to be translated, the limited token capacity of
CodeBERT likely hindered its performance. To ensure clarity
and focus, we present results using Nomic-embed throughout
the text, as they are consistent with those obtained using
Starencoder.

2) Impact of Few-Shot Learning: Few-shot learning consis-
tently enhanced translation performance across all models and
embeddings. The progressive improvement from one-shot to
three-shot learning configurations was evident, with models
like Granite-34B Code Instruct, Llama3-70B Instruct, and
Mixtral-8x22B showing substantial gains as shown in Table II.
For instance, Granite-34B Code Instruct with nomic embed
improved from a zero-shot CodeBLEU of 0.24 ± 0.09 to
0.60 ± 0.27 in the one-shot setting, further improving to
0.540.27 and 0.54 ± 0.21 in the two-shot and three-shot
settings, respectively. Thus, the RAG setup played a significant
role in enhancing code translation quality. By leveraging a
retrieval mechanism to provide relevant context from similar



code snippets or documentation, RAG setups help models to
better understand the structure and semantics of the source
code. This additional context is especially beneficial in few-
shot learning scenarios, where providing relevant examples can
significantly improve the translation quality.

Figure 5 illustrates the performance comparison of one-
shot versus zero-shot scenarios in the RAG pipeline using the
Nomic-embed embedding model across various models and
datasets. Specifically, the comparisons are made for Figure 5a
Granite-34B Code Instruct on the Numerical Recipes Dataset,
Figure 5b Granite-34B Code Instruct on the HPC Fortran2CPP
Dataset, and Figure 5c Granite-34B Code Instruct on the HPC
Fortran2CPP Dataset with a poorly configured RAG setup
(utilizing the largest distance metric as retrieval). The color
of each data point represents the similarity of the retrieved
one-shot example pair to the query Fortran code, with the
legend indicating the intensity range of the similarity metric.
Generally, the plots demonstrate that a higher similarity score
between the retrieved example and the query correlates with
a higher CodeBLEU score. When the utilized retrieval metric
is altered, this brings a significant change in performances. To
further validate this, we have leveraged l2 distance and cosine
similarity as retrieval metric. Figure 6c and 6d showcases
model performances leveraging l2 metric whereas Figure 6a
and 6b showcases performance with cosine similarity. This
relationship underscores the effectiveness of leveraging similar
examples in enhancing the performance of the RAG pipeline,
particularly in one-shot scenarios.

cod
ella

ma3
4b

cod
est

ral

gp
t-4

-tu
rbo

gp
t3.

5-t
urb

o

gra
nit

e-3
4b

llam
a3

b7
0-i

nst
ruc

t

mixt
ral

-8x
22

b
ph

i3

Models

codellama34b

codestral

gpt-4-turbo

gpt3.5-turbo

granite-34b

llama3b70-instruct

mixtral-8x22b

phi3

M
od

el
s

1.000 0.395 0.371 0.383 0.359 0.406 0.352 0.346

0.395 1.000 0.473 0.471 0.394 0.522 0.351 0.363

0.371 0.473 1.000 0.466 0.360 0.474 0.340 0.372

0.383 0.471 0.466 1.000 0.388 0.496 0.356 0.379

0.359 0.394 0.360 0.388 1.000 0.421 0.426 0.370

0.406 0.522 0.474 0.496 0.421 1.000 0.331 0.352

0.352 0.351 0.340 0.356 0.426 0.331 1.000 0.342

0.346 0.363 0.372 0.379 0.370 0.352 0.342 1.000

CodeBLEU Mean Scores Heatmap

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
de

BL
EU

 S
co

re

Fig. 7: Pairwise zeroshot performance comparison between
models for translated Stack-V2 dataset

3) Dataset-Specific Performance: HPC Fortran2CPP vs.
Numerical Recipes in Few-Shot setting: The datasets used in
this study, namely HPC Fortran2CPP and Numerical Recipes,
exhibited different performance characteristics across the mod-
els. The HPC Fortran2CPP dataset generally yielded higher

CodeBLEU scores compared to the Numerical Recipes dataset.
For instance, Granite-34B Code Instruct with CodeBERT
embedding achieved a one-shot CodeBLEU of 0.6 on the HPC
Fortran2CPP dataset, whereas it scored 0.49 ± 0.20 on the
Numerical Recipes dataset. This discrepancy can be attributed
to the inherent differences in the complexity and structure
of the code in these datasets. The HPC Fortran2CPP dataset,
which may contain more standardized and less complex code,
allowed models to perform better. In contrast, the Numerical
Recipes dataset, with potentially more intricate and varied
code structures, posed greater challenges for the models.

4) Impact of LLM models: When comparing different mod-
els, Mixtral-8x22B, Llama3-70B, and Granite-34B stood out
as the top performers in few-shot settings, whereas GPT-3.5
Turbo and GPT-4 Turbo excelled in zero-shot settings. Star-
coder, on the other hand, showed relatively lower performance,
particularly in the Zero-shot setting, with a CodeBLEU of
0.21. Additionally, Starcoder did not show significant improve-
ment in one-shot settings, likely due to its smaller context
length.

Models such as llama3, Codestral, Mixtral, Granite, and
CodeLlama consistently outperformed others across multiple
metrics, particularly in terms of CodeBLEU scores. This
superior performance can be attributed to their explicit pre-
training or fine-tuning for code-related tasks. These mod-
els have likely been trained on extensive code-specific data
and tasks, enabling them to better understand and generate
programming languages. Conversely, models like Phi-3 did
not perform as well in comparison, likely because they were
not specifically optimized for code-related tasks. While Phi-
3 may have been trained on a diverse set of texts, including
some programming language data, their training was not as
focused on code-specific tasks as Granite and CodeLlama.
Consequently, their ability to handle Fortran to C++ translation
is less robust.

While GPT models such as GPT-4 Turbo excel in zero-shot
settings with high initial CodeBLEU scores, their performance
does not increase substantially with additional shots. This
plateau in performance can be attributed to GPT models pri-
oritizing the generation of executable and semantically correct
code over strict alignment with ground truth translations. As
a result, their incremental benefit from additional examples is
limited compared to other models.

Starcoder’s notably poor performance can be explained by
a couple of factors. First, Starcoder is a smaller model with a
smaller token limit, which restricts its capacity to understand
and generate complex code structures compared to larger
models. Additionally, it appears that Starcoder’s training may
not have been as focused on code-specific data, leading to
lower performance even with multiple shots. This suggests
that for tasks requiring a deep understanding and generation
of code, model size and the specificity of training data play
crucial roles in determining performance.

5) Results on Unlabelled Dataset in zero-shot settings:
We first translated the StackV2 Fortran dataset using differ-
ent LLMs and computed the pairwise CodeBLEU similarity



between the model translations. The results are presented
in Figure 7. In this experiment, we aimed to evaluate the
consistency and similarity of translations produced by various
models. The heatmap in Figure 7 illustrates the pairwise
CodeBLEU scores, where each cell represents the similarity
between translations generated by a pair of models. From the
heatmap, we can observe the following key points: The highest
pairwise similarity scores are observed between Codestral
and Llama3-70B Instruct models, with a score of 0.522.
The Granite-34B Code Instruct model shows relatively high
similarity with several models, including Llama3-70B Instruct
and Mixtral-8x22B. Models CodeLlama-34B Instruct, GPT 4
Turbo, and GPT 3.5 Turbo also demonstrate a moderate degree
of consistency in their translations. These results indicate
that while there is a degree of variability in the translations
generated by different models, certain models produce more
consistent and similar translations compared to others. The
main takeaway from this experiment is that identifying models
with reliable and consistent translations guides researchers in
model selection for future tasks, thereby enhancing translation
accuracy, reliability, and advancing automated code translation
methodologies.

V. CONCLUSION AND FUTURE WORK

In conclusion, the results of this study underscore the
importance of model architecture, training data specificity,
and the effective use of few-shot learning in enhancing code
translation tasks. Models explicitly pre-trained or fine-tuned
for code-related tasks, such as GPT-3.5/4 and Llama3-70B-
Instruct, demonstrate superior performance, while models with
more general training, like Phi-3 3.8B fall short. The findings
also highlight the potential limitations of smaller models like
Starcoder in handling complex code translation tasks, empha-
sizing the need for adequate model size and training data to
achieve optimal performance. The use of RAG setups further
enhances the translation quality by providing relevant context,
proving to be a valuable strategy in few-shot learning sce-
narios. The current limitation in Fortran-C++ pairs challenges
fine-tuning LLMs and establishing benchmarks. Our Stack-v2
dataset experiments should guide expert translation collections
paired with RAG setups, enhancing model performance and
applicability across code translation tasks. Future research will
expand the dataset and refine the RAG framework to improve
translation quality and reliability.

VI. ACKNOWLEDGEMENT

This research was funded by the LANL ASC grant
AI4Coding and the LANL Institutional Computing Program,
supported by the U.S. DOE NNSA under Contract No.
89233218CNA000001.

REFERENCES

[1] K. I. Roumeliotis and N. D. Tselikas, “ChatGPT and Open-AI models:
A preliminary review,” Future Internet, vol. 15, no. 6, p. 192, 2023.

[2] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating Large
Language Models Trained on Code,” arXiv preprint arXiv:2107.03374,
2021.

[3] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al., “CodeBERT: A Pre-Trained Model for Program-
ming and Natural Languages,” arXiv preprint arXiv:2002.08155, 2020.

[4] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Lan-
guage Models are Zero-Shot Reasoners,” Advances in neural information
processing systems, vol. 35, pp. 22199–22213, 2022.

[5] B. Lei, C. Ding, L. Chen, P.-H. Lin, and C. Liao, “Creating a Dataset for
High-Performance Computing Code Translation using LLMs: A Bridge
Between OpenMP Fortran and C++,” in 2023 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7, IEEE, 2023.

[6] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al., “Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks,” Advances
in Neural Information Processing Systems, vol. 33, pp. 9459–9474,
2020.

[7] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, et al., “StarCoder: may the source
be with you!,” Transactions on Machine Learning Research, 2023.

[8] AI@Meta, “Llama 3 Model Card,” 2024.
[9] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,

J. Liu, T. Remez, J. Rapin, et al., “Code Llama: Open Foundation
Models for Code,” arXiv preprint arXiv:2308.12950, 2023.

[10] M. Mishra, M. Stallone, G. Zhang, Y. Shen, A. Prasad, A. M. Soria,
M. Merler, P. Selvam, S. Surendran, S. Singh, et al., “Granite Code
Models: A Family of Open Foundation Models for Code Intelligence,”
arXiv preprint arXiv:2405.04324, 2024.

[11] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford, D. S. Chaplot, D. de las Casas, E. B. Hanna, F. Bressand,
G. Lengyel, G. Bour, G. Lample, L. R. Lavaud, L. Saulnier, M.-A.
Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. L. Scao,
T. Gervet, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed, “Mixtral of
Experts,” arXiv preprint arXiv:2401.04088, 2024.

[12] M. AI, “Codestral Model Card,” 2024.
[13] Z. Nussbaum, J. X. Morris, B. Duderstadt, and A. Mulyar, “Nomic

Embed: Training a Reproducible Long Context Text Embedder,” arXiv
preprint arXiv:2402.01613, 2024.

[14] Z. G. T. Jr., “Quantifying software maintainability on re-engineered
translation of FORTRAN to C++ code,” 2004.

[15] C. Neo, “CFortranTranslator,” 2016. https://github.com/CalvinNeo/
CFortranTranslator.

[16] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi,
M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand,
“Lost in Translation: A Study of Bugs Introduced by Large Language
Models while Translating Code,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2023.

[17] J. Zheng, H. Hong, X. Wang, J. Su, Y. Liang, and S. Wu, “Fine-tuning
Large Language Models for Domain-specific Machine Translation,”
arXiv preprint arXiv:2402.15061, 2023.

[18] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
in International Conference on Learning Representations, 2021.

[19] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von
Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, “Huggingface’s transformers: State-of-
the-art natural language processing,” arXiv preprint arXiv:1910.03771,
2020.

[20] W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery,
Numerical Recipes. Cambridge University Press, 1988.

[21] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi,
A. Tang, D. Pykhtar, J. Liu, Y. Wei, T. Liu, M. Tian, D. Kocetkov,
A. Zucker, Y. Belkada, Z. Wang, Q. Liu, D. Abulkhanov, I. Paul, Z. Li,
W.-D. Li, M. Risdal, J. Li, J. Zhu, T. Y. Zhuo, E. Zheltonozhskii,
N. O. O. Dade, W. Yu, L. Krauß, N. Jain, Y. Su, X. He, M. Dey, E. Abati,
Y. Chai, N. Muennighoff, X. Tang, M. Oblokulov, C. Akiki, M. Marone,
C. Mou, M. Mishra, A. Gu, B. Hui, T. Dao, A. Zebaze, O. Dehaene,
N. Patry, C. Xu, J. McAuley, H. Hu, T. Scholak, S. Paquet, J. Robinson,
C. J. Anderson, N. Chapados, M. Patwary, N. Tajbakhsh, Y. Jernite,
C. M. Ferrandis, L. Zhang, S. Hughes, T. Wolf, A. Guha, L. von Werra,
and H. de Vries, “StarCoder 2 and The Stack v2: The Next Generation,”
arXiv preprint arXiv:2402.19173, 2024.

[22] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “CodeBLEU: a Method for Automatic
Evaluation of Code Synthesis,” arXiv preprint arXiv:2009.10297, 2020.


