
Solving Hard Combinatorial Problems in Parallel
Using Lift-and-Project Preconditioning

1st Bogdan Zavalnij
Department of Combinatorics and its Applications

HUN-REN Alfréd Rényi Institute of Mathematics
Budapest, Hungary

bogdan@renyi.hu

Abstract—The original Lift and Project method was a useful
tool for solving some ILP problems. Encouraged by this idea we
propose a new method for preconditioning graphs for the k-clique
problem. After a blow-up phase some standard preconditioning
applied, then the results projected back to the original graph.
Because the blow-up may produce a graph too big we deal
with a series of smaller blown-up graphs that can be processed
independently and thus parallelly. Numerical experiments back
up the usefulness of this approach.

I. INTRODUCTION

In the present paper we would like to introduce a novel
approach for preconditioning hard combinatorial problems. As
an example we will use the NP-hard maximum clique and NP-
complete k-clique problem [5], [8], [13], the later asking if in
a given graph a clique of size k is present. Equivalent to the
first problem are the maximum independent set problem (MIS)
or the maximum vertex cover problem (MVC).

The approach for solving these problems is twofold. First,
one can use extended preconditioning methods, called also
kernelization, to make the problem easier. Second, there
are specialized solvers for these problems. For some time
it seemed that kernelization is effective for huge but easy
problems, while specialized solvers are better for the small
hard instances [1]. In 2019 The MVC problem was the
problem chosen for the PACE2019 competition, and the results
clearly showed, that the above two approaches need to be used
together, combined [15].

Although the usual kernelization methods proved useful for
such problems [14], these are still preconditioning methods
tailored for huge and easy graphs, and specially designed
approach of preconditioning is scarce for hard instances. In
our previous work we took some steps into this direction [16]
that proved crucial for solving some hard problems modeled
by graph and solved by finding a k-clique in that graph [17].
The main idea behind this approach, if one would believe in
P 6= NP , that the exact solution of the NP problem is ex-
tremely slow, probably taking exponential on near exponential
time compared to input. While preconditioning, even the most
sophisticated and time consuming, would take polynomial time
transforming the original problem into a faster solvable one
for the exact solver gaining on the exponential time of the

This project was supported by the National Research, Development and
Innovation Office – NKFIH Fund No. SNN–135643

solver. Indeed, the proposed preconditioning methods are time
consuming but still able to reduce most of the problems so
the added running time of the preconditioner and the solver is
reduced compared to the original solution time.

The present work aims to extend such method and make use
of even more computational resources for preconditioning. As
the original preconditioning in some cases runs for hours or
even days, this calls for using an HPC environment.

One would raise the question, how is this approach com-
pared to parallelization of the underlying solver for the clique
problem. There are very few of such approach, for example
[3], [12], and those use shared memory approach, have spe-
cific problems of scaling, and show problematic behavior as
superlinear speedup, see [4], [9]. Programs using distributed
parallelization even more rare [18]. One one hand, compared
to the complex parallelization methods for clique solvers
the parallelization of the preconditioning program is mostly
straightforward. On the other hand one would wonder if the
two approaches even comparable, as the algorithms differ
radically.

The structure of the present paper as follows. First, we
breefly introduce the Lift and Project method. Second, we
describe the way we would like to use it in our case. Third,
we will show some limited numerical examples and draw the
conclusions.

II. LIFT AND PROJECT

A. The original lift-and-project method

The original Lift and Project Method [2], [7], [11] is
about integer programming formulation of some combinatorial
problem. It advises us to write the problem in quadratic form,
and then replace products with novel linear variables, thus
lifting the dimensionality. After adding novel constrains (like
symmetry breaking), one solves the problem and projects back
to the original lower dimensional space.

In essence, this method tells us to increase the size of the
problem (lift), where some structure can be exploited. Add new
constrains or symmetries, and finally reduce it back (project)

This approach also proved useful is different areas outside
combinatorial optimization, such as studying and optimizing
nonlinear control and decision system [10].



B. A Lift and Project method for preconditioning clique prob-
lems

Our goal is to apply the abovementioned approach for
preconditioning. In our case we will use graph transformations
that preserve the clique number property, but instead of reduc-
ing the graph we will blow it up. It was already shown, that
a blow-up can be useful as following reductions may be more
effective in the end [6]. But in our case we are not interested
to reduce the blown-up problem below the original graph, we
are only interested in the fact, that in this new dimension more
effective preconditioning may take place.

The crucial step is, that after performing the preconditioning
on the blown-up graph, we project back the results into the
original graph, thus weakening it for the solver or further
preconditioning steps.

C. Preconditioning

To keep the present paper more understandable we limit our
preconditioning methods to some more simple graph transfor-
mations. These are those preconditioning steps that will be
used in our discussion. For more detailed preconditioning see
[16] where we take our following preconditioning methods
from. We omit proofs as well, the reader may find them in the
abovementioned citation, although these are simple enough
that can be seen in straightforward manner. Basically we are
aiming at deleting nodes or edges from the graph, such that
no k-clique is deleted at the same time. So the if we search
for a k-clique in the original or in the transformed graph, we
will get the same “present” or “not present” answer for both.

For the sake of simplicity and because of the later following
numerical examples we consider the graph be k-partite, and the
problem is to decide if a k-clique present in this graph. More
on this problem class see [16]. (For general graphs Property
1 and 3 can be applied the same way, and Property 2 and 4
needs a slight modification to be applicable.)

Definition 1: The color index of a node v of G (with respect
to a legal coloring of the nodes of G) is the number of color
classes Ci that contain at least one node adjacent to v.

Property 1: If the colors index of v is at most k − 2, then
v can be deleted from G without losing any k-clique.

Property 2: If there are two color classes of neighbors of
v, C ′

r and C ′
q , such as there is no edge between them, that is,

∀x ∈ C ′
r,∀y ∈ C ′

q, {x, y} /∈ E, then node v can be deleted
from G without losing any k-clique.

Definition 2: The color index of an edge {u, v} of G (with
respect to a legal coloring of the nodes of G) is the number
of color classes Ci that contain at least one node adjacent to
u and v simultaneously.

Property 3: If the color index of an edge {u, v} is less than
k − 2, then the edge {u, v} can be deleted from G when one
is looking for a k-clique in G. (We do not delete the nodes u
or v.)

Property 4: If there are two color classes of neighbors of
{u, v}, C ′

r and C ′
q , such as there is no edge between them,

that is, ∀x ∈ C ′
r,∀y ∈ C ′

q, {x, y} /∈ E, then edge {u, v} can

be deleted from G without losing any k-clique. (We do not
delete the nodes u or v.)

D. The Blow-up Transformation

Our goal is to lift the problem, that is blow up the graph
up for subject to more effective preconditioning. Possibly this
can be performed by different methods, here we propose a
simple one, also from [16]. This rule takes two color classes
and contracts the edges running between them into new nodes.
The original two color class deleted afterwards.

Let G = (V,E) be a finite simple graph. We assume that
the nodes of G are legally colored using k colors and we are
looking for a k-clique in G. We construct a new graph G′

from G. Let C1, C2 be two distinct color classes of the nodes
of G. Let e1, . . . , es be all the edges of G such that the end
nodes of the edges are all in C1∪C2. We delete each element
of the set C1 ∪C2 from G and we add new nodes u1, . . . , us

to G to get G′. If ei = {xi, yi}, then we connect the node ui

to each element in N(xi)∩N(yi) with an edge. We color the
nodes of G′. The nodes in the set V \ (C1 ∪ C2) will inherit
the colors from the coloring of the nodes of G. We assign a
new color c to the new nodes u1, . . . , us. In this way we get a
legal coloring of the nodes of the graph G′ using k−1 colors.

Lemma 1: Using the notations above the equation ω(G) = k
is equivalent to the equation ω(G′) = k − 1.

One can choose different color classes to contract them. In
our original work we aimed for the one that reduced the graph
in the end, or if it increased the size, the growth was small.
For a blow-up we aim at we shall use all possible

(
k
2

)
pairs of

color classes, that is transform all edges of the original graph
G into nodes of G′

E. Parallelization

Clearly, this graph would be too big, possibly even not
fitting into the memory, and also the clique size to search
for will be increased to

(
k
2

)
which is also problematic. So one

would divide this problem into smaller ones and use a parallel
approach to tackle this problem. Our solution is to make not
one, but a series of blown-up graphs, each transforming edges
between different pairs of color classes. A Round Robbin
Tournament scheduling was used, that is k − 1 graphs were
build each using k/2 pairs of color classes, to transform the
edges inside a pair into nodes of a blown-up graph where the
clique size to search for is also k/2. By this transformation
each edge of the original graph will appear as a node in one
graph out of the series of the blown-up graphs.

Note, that a node in this blown-up graph is represents an
edge in the original graph. The edges in the blown-up graph
are K4 sub-graphs of the original graph. In our view this is the
higher dimension we lifted the problem, and this is the reason
the proposed simple reduction rules can reduce the problem
more aggressively in these blown-up instances.

So next we performed the above preconditionings (see
Property 1–4) to delete edges and nodes in the blown-up
graphs, which nodes represent edges of the original graph,
and edges represent K4 sub-graphs in the original graph. The



reason behind that we used a limited rules for preconditioning,
that other preconditioning methods – such as dominance –
may lead to loss of k-cliques, and in parallel work such may
lead to circular deletion, and thus to wrong answer. Obviously,
with more careful and complex program one can avoid such
circular deletion, but for our present work we chose to make
the algorithm as simple as possible. After preconditioning as
the nodes of a blown-up graph represent edges in the original
graph in the project phase we use the information of such
deleted nodes to delete edges in the original graph. (As the
edges in the blown-up graph are K4 sub-graphs of the original
graph a “deletion” of such cannot be easily applied to the
original graph, so we just discarded this information in the
end. Again, with a more complex approach the information of
such a deletion of a K4 sub-graph can be routed to another
worker where by this information an edge can be deleted, but
again we left this for future work.)

The main goal of such parallel work is not exactly gaining
speed, but to achieve preconditioning for extremely hard
problem that cannot be attacked otherwise.

III. NUMERICAL EXPERIMENTS

In the present preliminary work for our basic experiments
we choose small but notoriously hard problems from [17]
based on being hard for the serial solver. This obviously won’t
show the full potential, as in our opinion this method is more
useful for even larger and harder instances. But we keep our
examples simple for clear presentation. The original problem
is graph coloring, namely if a given graph can be colored with
c colors. This problem is translated to a special k-partite graph,
where the goal is to find a k-clique. If such a clique is found,
then the graph in question can be colored with c colors. If
there is no k-clique present, then the graph cannot be colored
by c colors.

We choose 4 graphs, that were already reduced by our
preconditioner which uses all possible preconditioning rules
in serial manner not just the ones we presented in this paper.
The auxiliary graphs for 1) if the myciel6 graph can be colored
with 6 colors (G1); 2) if the 1-FullIns 5 graph can be colored
with 5 colors (G2); 3) if the myciel7 graph can be colored with
6 colors (G3); and 4) if the myciel7 graph can be colored with
7 colors (G4). We used a computer with two AMD EPYC
7643 48-core processors and 1 TB memory. We turned off
processor boosting, so all cores run on fixed 2.3GHz speed.
All programs were written in C++ using gcc v12.1 with the
switch settings -O3 -arch=znver3.

The workflow was built up as follows. First, we started k−1
independent programs each constructing a blown-up graph ac-
cording the Round-Robin Tournament scheduling contracting
k/2 pairs of color classes. Second, these programs perform the
minimal preconditioning on these graphs and save the list of
deleted nodes, that is the edges to be deleted from the original
graph. As the number of blown-up graphs were less then the
number of cores these programs could run independently in
parallel manner. Third, the full preconditioner read the list of
edges to be deleted, deleted them from the original graph, and

performed preconditioning on this graph. Fourth, the reduced
graph is solved by the clique solver.

The auxiliary graph G1 for myciel6 and color number
6 had 598 nodes, and could be solved in 1346 sec. The
preconditioning of the blown-up graphs could delete 7% of
the edges, and the 51 instances were solved in 50–238 seconds
each. After deleting these edges from the original graph a new
full preconditioner reduced the graph even more deleting 55
nodes and many edges, and the resulting graph could be solved
in 992 second.

The auxiliary graph G2 for 1-FullIns 5 and color number
5 had 747 nodes, and could be solved in 12180 seconds. The
preconditioning of the blown-up graphs could delete 11% of
the edges, and the 63 instances were solved in 228–1520
seconds each. After deleting these edges from the original
graph a new full preconditioner reduced the graph so much,
that the problem was solved by only using preconditioning.

The auxiliary graph G3 for myciel7 and color number 6
had 1222 nodes, and could be solved in 19354 seconds. The
preconditioning of the blown-up graphs could delete 9% of
the edges, and the 99 instances were solved in 2000–17000
seconds each. After deleting these edges from the original
graph a new full preconditioner reduced the graph even more
deleting 158 nodes and many edges, and the resulting graph
could be solved in 17829 second.

The auxiliary graph G4 for myciel7 and color number 7 had
1576 nodes, and could not be solved in the given time limit.
The preconditioning of the blown-up graphs could delete 5%
of the edges, and the 103 instances were solved in 5050–25100
seconds each. After deleting these edges from the original
graph a new full preconditioner reduced the graph even more
deleting 140 nodes and many edges, but the solver still could
not solve this instance.

We summarized the above information in Table I.

TABLE I
SIZE AND SOLUTION TIME FOR THE EXAMPLE GRAPHS

G1 G2 G3 G4

description myciel6 1-FullIns 5 myciel7 myciel7
6 colors 5 colors 6 colors 7 colors

original size (nodes) 598 747 1222 1576
original solution 1346 12180 19354 nd
time to (sec)
number of 51 63 99 103
parallel workers
preconditioning 49– 228– 2164– 5064–
time tp (sec) 283 1520 16994 25111
new size after 543 0 1064 1436
full preconditioning
new solution 992 0 17829 nd
time tn(sec)
to/(tp + tn) 1.1 8 0.55 nd

A. Discussion of the Results

Although chosen without any consideration apart from orig-
inal solving time, the four examples proved to be interesting
and show different behavior of the proposed method.



All examples but the unsolvable one showed reduction
of the solution time, although in different magnitudes. One
was reduced by less than 10%, one by almost 30%, and
one was reduced to zero time. But of course the parallel
preconditioning of the blown-up graphs also took its time. For
one the parallel time was comparable to the solution itself, so
we can consider it as not really useful. For the other two the
parallel running time was considerably smaller than solution
time.

The question of speedup can be raised at this point, and
one would argue, that the number given by to/(tp+ tn) is just
the speedup we achieved. But the author would disagree, as
the algorithms, in this case the preconditioning method, differs
substantially and as such they can be compared but cannot be
named speedup. As for the results we can observe that for the
three examples that could be solved there is one considerable
faster (8 times), one runs the same time (1.1 times), and one
runs slower (0.55 times).

The results are clearly show that the proposed method can
be useful and can reduce the running time of the solver. We
would like to emphasize that this method is designed for
solving especially hard problems and for those any parallel
method that can help may be useful, especially because the
parallelization of the original problem is problematic. It is
upon more detailed experiments to show in detail the use-
fulness of the proposed method, at this point we consider it
promising.

IV. CONCLUSIONS AND FUTURE WORK

We applied the idea of the Lift and Project method for
preconditioning graphs for the k-clique problem. We used a
series of blown-up graphs and used the resulting information
for deleting edges in the original graph. We could use 50–100
independent workers for parallelization of such precondition-
ing and the reduced original graph could always be solved
in shorter time. Comparing the overall running time – the
time for the longest preconditioning of all workers plus the
time for final solution – we got mixed results. We could
observe considerable decrease in overall time, no change, and
also some increase as well. Our presumption is, given the
polynomial time for preconditioning and possibly exponential
time for clique search, that there should be a clear advantage
for the proposed method after some point if we increase the
size and thus the complexity of the problem. Note, that with
more complex problems the number of workers we use can
be even higher.

To extend our preliminary test we would like to imple-
ment this approach in MPI environment, so that information
of deleting edges can reach the master process, which can
perform extended preconditioning using this edge deletion
information, and the information of the new reduction can be
transferred back to the worker. So the blown-up precondition-
ing would be even more effective.

Also, the present results were achieved using the most
simple reduction rules. With proper considerations other pre-
conditioning transformations could be used and we hope

for even better reduction of the graph and thus more clear
advantage in solution time. In truth, it is more surprising that
such results could be achieved with those simple rules we
used.

REFERENCES

[1] Akiba T., Iwata, Y. Branch-and-reduce exponential/fpt algorithms in
practice: A case study of vertex cover. Theoretical Computer Science.
609 pp. 211–225, 2016.

[2] Balas, E., Perregaard, M. Lift-and-project for Mixed 0–1 programming:
recent progress. Discrete Applied Mathematics. Volume 123, Issues 1–3,
2002, pp. 129–154

[3] Depolli, M., Konc, J., Rozman, K., Trobec, R., Janezic, D. Exact Parallel
Maximum Clique Algorithm for General and Protein Graphs. Journal
of Chemical Information and Modeling. 53, 9 2217–2228. 2013.

[4] Faber, V., Lubeck, O.M., White, A.B. Jr. Superlinear speedup of an effi-
cient sequential algorithm is not possible. Parallel Computing. Volume
3, Issue 3, pp. 259–260. 1986.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-completeness, Freeman, New York, 2003.

[6] Gellner, A., Lamm, S., Schulz, Ch., Strash, D., Zaválnij, B. “Boosting
Data Reduction for the Maximum Weight Independent Set Problem
Using Increasing Transformations.” In: 2021 Proceedings of the Work-
shop on Algorithm Engineering and Experiments (ALENEX) Society
for Industrial and Applied Mathematics (SIAM) pp. 128–142. 2021.

[7] Grötschel, M., Padberg, M.W. On the symmetric travelling salesman
problem II: Lifting theorems and facets. Mathematical Programming.
16, 281–302. 1979.

[8] Karp, Richard M. (1972). “Reducibility Among Combinatorial Prob-
lems.” In: Complexity of Computer Computations. New York: Plenum.
pp. 85–103. 1972.

[9] Lai, T.-H., Sahni, S. Anomalies in parallel branch-and-bound algorithms.
Communications of the ACM. 27, 6, 594–602. 1984.

[10] Lasserre, J.B., Prieur, Ch., Henrion, D., Trélat, E. Nonlinear optimal
control via occupation measures and LMI-relaxations.’ SIAM Journal
on Control and Optimization. 47(4):1643–1666, 2008.

[11] Lovasz, L., Scrijver, A. Cones of matrices and set-functions, and 0-1
optimization. SIAM Journal on Optimization. 1:166–190, 1991.

[12] McCreesh, C. and Prosser, P. The shape of the search tree for the
maximum clique problem, and the implications for parallel branch and
bound. ACM Transactions on Parallel Computing. 2(1), 8. 2015.

[13] C. H. Papadimitriou, Computational Complexity, Addison-Wesley Pub-
lishing Company, Inc., Reading, MA 1994.

[14] Strash, D. On the power of simple reductions for the maximum inde-
pendent set problem. In: Computing and Combinatorics (COCOON’16),
volume 9797 of LNCS, pages 345–356. 2016.

[15] Szabó, S., Zavalnij, B. “Combining algorithms for vertex cover and
clique search.” In: Proceedings of the 22nd International Multicon-
ference INFORMATION SOCIETY – IS 2019, Volume I : Middle-
European Conference on Applied Theoretical Computer Science Ljubl-
jana, Slovenia pp. 71–74. 2019.

[16] Szabó S., and B. Zaválnij, Clique search in graphs of special class and
job shop scheduling. Mathematics. 10(5), 697. 2022.

[17] Szabo, S. and Zavalnij, B. Graph Coloring via Clique Search with
Symmetry Breaking. Symmetry. 14 : 8 Paper: 1574 , 16 p. 2022.

[18] Zavalnij, B. “Speeding up Parallel Combinatorial Optimization Algo-
rithms with Las Vegas Method.” In: Large-Scale Scientific Computing.
LSSC 2015. Lecture Notes in Computer Science, vol 9374. 2015.


