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Abstract—This paper presents work in progress to implement
generic Julia functions for dense numerical linear algebra that
support various data types and hardware (CPU and GPU) with
a single API. This implementation transcends the traditional
type-specific and hardware-specific LAPACK/BLAS libraries, by
leveraging the Julia programming language and its LLVM-based
compilation process, without sacrificing performance. This work
aims to demonstrate the potential of the Julia language to advance
the field of high-performance computing by providing future-
proof, efficient, and generic alternatives to legacy libraries.

I. INTRODUCTION

The performance of Basic Linear Algebra Subroutines
(BLAS) is crucial for many scientific computations [4]. The
LAPACK/BLAS modules encapsulate fundamental dense lin-
ear algebra algorithms and are frequently used as benchmarks
for the performance of hardware, software engineering op-
timizations, and programming languages. Historically, LA-
PACK/BLAS subroutines have been implemented in Fortran,
optimized for vectorization, multicore machines, and GPUs
[9], [1]. These classic algorithms have been continuously re-
adapted with each new hardware evolution to maintain optimal
performance.

Recently, there has been a significant effort to provide
native implementations of linear algebra operations in C++
and Python, moving away from FORTRAN. With C++26, all
BLAS operations, including vector, matrix-vector, and matrix-
matrix operations, have become part of the language standard
[5]. In addition, NVIDIA [7] has provided comprehensive
math libraries for the Python ecosystem, further enhancing
the performance capabilities and ease of use for developers
working with advanced linear algebra operations.

This work presents a contribution to the effort to make
advanced linear algebra more accessible to the general au-
dience and providing them access to the capabilities of
High-Performance Computing. We propose implementing the
LAPACK/BLAS subroutines in Julia, providing hardware-
and data type-agnostic scalable performance. Julia language’s
multiple-dispatch and type inference enable LLVM to gen-
erate optimized machine code for performance over various
argument types.[2] The integration of advanced optimization
features such as specialization, interoperability, loop unrolling,
and vectorization enable achieving performance close to native

code [8]. These features permit the development of a single
generic API for various hardware and data types, which re-
duces development time and provides composability: new data
types can be supported by the existing BLAS implementations
without modifications, making the library future-proof. We
focus on the BLAS/LAPACK library as it is the most widely
recognized linear algebra library, but our work could equally
be applied to novel alternatives to BLAS e.g., BLIS. [10]

The original contribution of this work consists of:
• Demonstrating efficient LAPACK/BLAS performance in

Julia for medium to large problem sizes.
• Demonstrating that a single generic API supports several

hardwares and data types.
• Providing open-source implementations.

II. METHODS

To demonstrate portability and performance, we imple-
mented the larfb and unmqr functions, which are now
publicly available. unmqr applies an orthogonal matrix Q
formed by a the block-householder factorization Y of a QR-
factorization to a general rectangular matrix A:

A+AY TY T = AQ and A+ Y TY TA = QA

with T being the scalar factors of elementary reflectors. The
larfb) function utilized by unmqr performs the individual
projections.

We implement the LAPACK/BLAS functions as described
in [4] by leveraging Julia’s abstract array interface [6], which
supports arbitrary element types (including 64-bit, 32-bit,
16-bit, complex, and real) and can dispatch on both CPU
and GPU architectures with minimal changes to the API.
Our approach utilizes Julia’s metaprogramming capabilities to
generate and compile efficient code dynamically at runtime,
enabling flexibility and performance across architectures [3].

III. PERFORMANCE

In order to demonstrate the performance of Julia
BLAS/LAPACK implementations, we benchmarked the larfb
and unmqr LAPACK functions across various data types (sec-
tion A) and hardware types (section B) using Julia (v1.10.4)
and oneMKL (v2020.0.166).



(a) Performance across data types of larfb function on Intel Ice Lake
processor (Table I).

(b) Performance across hardware of unmqr function on Intel Cascade
Lake CPU and V100 GPU (Table I).

Fig. 1: Performance comparison of execution time
of LAPACK/CUSOLVER (dashed) and multithreaded
Julia/JuliaGPU implementations (solid) in function of the size
n for input matrices of size n × n. For each data type and
hardware type, the performance of the Julia function closely
matches that of the LAPACK/CUSOLVER functions.

A. Performance across data types

Figure 1a shows the running time performance of the Julia
Unified API larfb function (solid lines) for various data types,
compared to the LAPACK functions (dashed lines), as a
function of input data size. The figure indicates that for each
data type, the performance of the Julia larfb function closely
matches that of the LAPACK functions. The latter require
separate implementations for each data type.

B. Performance Across Hardware

Figure 1b presents the running time performance of the
Julia unmqr function (solid lines) in comparison to the LA-
PACK/CUSOLVER function s(dashed lines). This comparison
regards CPU (orange and blue lines) and GPU (purple and
green lines) performance for Float64 and Float32. The results

demonstrate that, for both hardware types and data types, Julia
implementations closely match the performance of LAPACK
functions on the CPU and CUSOLVER functions on the
GPU, with Julia being slightly faster. Historically, separate
implementations were required for CPU and GPU, but the
Julia implementation provides an equally performant single-
API solution.

IV. CONCLUSION

We have demonstrated the capability of the Julia language
to serve as a general-purpose numerical linear algebra li-
brary with the larfb and unmqr functions as a proof of
concept. Both provide a hardware- and data type- agnostic
implementation without sacrificing performance. This report
describes a work-in-progress to develop a Julia library aiming
to implement BLAS/LAPACK functions.
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Vendor and Family Intel Ice Lake Intel CascadeLake
Model 6330 6248
Socket(s) and cores per Socket 2 sockets with 28 cores each 2 sockets with 20 cores each
Clock Speed 2 GHz 2.5GHz
DDR4 memory size 1 TB 384GB
L3 Cache size 84 MiB 27.5MiB
GPU type NVIDIA A100 NVIDIA V100

TABLE I: Hardware specifications
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