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Abstract—This work explores accelerating spectral library
searches, a key mass spectrometry (MS) workload, using
processing-in-memory (PIM) architectures through an end-to-
end, co-designed approach. We apply signal processing and
approximate computing techniques for pre-filtering MS data and
implement a sum of absolute differences (SAD) algorithm opti-
mized for PIM to compare spectral similarity. Our methodology
is evaluated using a DRAM-based PIM simulator and compared
against traditional CPU implementations. While initial results
with small datasets favor CPUs, our analysis indicates potential
benefits for PIM with larger, more realistic proteomics datasets.
This work represents an initial step towards investigating PIM
acceleration for MS applications.

Index Terms—processing-in-memory, near-data processing,
application-specific acceleration, bioinformatics, mass spectrom-
etry, spectral library search

I. INTRODUCTION

MS-based proteomics generates vast amounts of data, with
modern instruments producing millions of spectra per experi-
ment. Spectral library search is a crucial workload in protein
identification. Traditional compute-centric architectures strug-
gle with data movement between memory and processors, a
challenge that grows with increasing dataset sizes. PIM archi-
tectures offer a potential solution by performing computations
directly within or near memory, reducing data movement. This
work is a first look at exploring PIM’s potential to accelerate
spectral library searches by integrating hardware and algorithm
co-design across the MS data analysis pipeline.

We make the following contributions:
• Adaptation of an approximate sum of absolute differences

algorithm for PIM-based spectral matching.
• A preliminary approach to integrate PIM into mass spec-

trometry workflows.
• Early performance assessments via PIM simulation.

II. BACKGROUND

DRAM and Processing-in-memory (PIM). Modern ap-
plications, particularly in fields such as bioinformatics, data
analytics, and machine learning, are handling increasingly
large amounts of data. This trend has exposed limitations in
compute-centric architectures. In order to perform computa-
tions on the data stored in memory, data must be transferred
between the memory and processor over a narrow memory
channel, e.g. 64-bit wide channel for conventional double data
rate (DDR) DRAM. For workloads with large data volumes,
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frequent data movement bottlenecks performance and incurs
large energy and latency costs [1].

One potential solution to the data movement problem is
processing-in-memory (PIM) (Fig. 1). The two main ap-
proaches to PIM are processing-near-memory (PNM) and
processing-using-memory (PUM). PNM architecture employs
3D-stacked memory with a logic layer, which takes advantage
of the high bandwidth communication over vertical intercon-
nects between layers to enable PIM. PUM uses the inherent
circuit-level properties of memory cells for computation within
memory arrays.
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Fig. 1: Processor and DRAM+PIM architecture alleviates data
movement bottleneck by adding compute units to DRAM.

Computer systems today commonly use DRAM for main
memory. Multi-bank (i.e. multiple sets of independent memory
array) DRAM architecture offers high internal bandwidth and
parallelism. DRAM-based PIM can benefit from simultaneous
access to multiple DRAM arrays for parallel data processing.
In this work, we explore how massive parallelism offered by
DRAM-based PIM architectures can help the performance of
bioinformatic applications.

Mass Spectrometry (MS) and Spectral Library Search.
Mass spectrometry (MS) is a method to analyze the pro-
teome of protein and peptide samples. A mass spectrum is
represented by a plot of mass-to-charge ratio (m/z) on the
y-axis to ion signal intensity on the x-axis. The data for a
spectrum consist of a series of peaks, each represented by a
pair of values: the m/z and its corresponding intensity. These
peaks represent the fragment ions derived from the peptide.
Additionally, each spectrum includes metadata such as the
precursor m/z, which is the m/z of the intact peptide ion
before fragmentation.
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Fig. 2: Spectral library search identifies experimental spectrum
by querying it against library spectra.

Spectral library search (Fig. 2) is used to interpret MS/MS
data. The search process involves calculating similarity scores



between an experimental spectrum and each library spectrum.
With modern MS experiments generating massive data—
millions of mass spectra—which must then be matched against
libraries of known spectra to identify molecules [2], this
comparison becomes expensive. Parallel comparisons of query
spectra with many library spectra make it a suitable candidate
workload for DRAM-based PIM architectures.

III. METHODOLOGY AND IMPLEMENTATION
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Fig. 3: Pre-filtered spectral matching decreases search space.

Pre-processing and Prefiltering. In the data pre-processing
and pre-filtering step (Fig. 3), we begin by discretizing the data
similarly to previous work [2], by dividing the m/z range
of spectra into bins and summing intensity values of m/z
values in the same bin. The data can then be represented
by sequences of bin index and intensity pairs. We extend
this preprocessing further by exploring approximate computing
techniques such as reducing the bit-precision of floating point
values and using fixed-point representation for those values.
Fixed-point representation simplifies the hardware necessary
to process the data and allows for the application to be run on
PIM hardware. The low-precision approach aligns well with
multiple ppm error tolerance for MS experiments [3], [4].

This strategy enables effective pre-filtering to decrease the
search space, not only accelerating standard searches but also
facilitating open modification searches where slight mass shifts
are allowed. The optimal distribution of these preprocessing
steps between the CPU and PIM accelerator is an ongoing
area of investigation in our work.

Minimum Sum of Absolute Differences (SAD). We use an
adapted minimum SAD algorithm optimized for execution on
PIM architectures. Variations of this algorithm are commonly
used in the signal processing domain to measure similarity
between images. We use SAD to calculate a similarity score
between the experimental spectrum S = (s1, s2, . . . , sn)
with each library spectrum Li = (ℓi1, ℓi2, . . . , ℓin) for i =
1, 2, . . . ,m. Assuming m library spectra and n elements in
each spectrum, the basic algorithm seeks Lk such that:

k = argmin
i

∑n
j=1 |sj − ℓij |

We implement SAD using PIM API instructions from the
PIMeval, a performance and energy simulator for diverse PIM
architectures [5]. To increase noise tolerance, we also enable
SAD with shifted indices for inexact matching, implemented
using the rightward rotation (pimRotateElementsRight)
instruction:

for (int idx=0; idx < subvecLen; idx++) {
pimSub(obj1, obj2, obj3);
pimAbs(obj3, obj3);
for (int i=idx; i+subvecLen-1 < vecLen; i+=subvecLen) {

pimRedSumRangedInt(obj3, i, i+subvecLen-1, &sumAbsDiff);
...

}
pimRotateElementsRight(obj2);

}

IV. EVALUATION

We model subarray-level bit serial PIM for the application
on the simulator and conducted initial experiments comparing
our PIM-based approach with a traditional CPU implementa-
tion for SAD, using our pre-processed data. The parameters
used for the PIM device were a single rank DIMM with
8 chips, 16 banks per rank, and 32 subarrays per rank of
8192×8192 cells.

For the current small-scale problem of 11 MB, the CPU
implementation completed execution in 175 ms, while the PIM
implementation took 1368 ms for the core computation tasks.
Our experiments with a 2-rank DIMM configuration for the
same problem size revealed that, at this scale, the workload
underutilized the available parallelism of the additional hard-
ware resources. These preliminary results highlight an impor-
tant aspect of PIM architectures: their performance benefits
are expected to scale with problem size. While the current
small dataset favors the CPU, we anticipate that for larger,
more realistic proteomics problem sizes, PIM acceleration
will demonstrate advantages in scalability, memory bandwidth
utilization, and energy efficiency, being able to benefit from
parallel processing and decreases in data movement.

CONCLUSION AND FUTURE WORK

We have demonstrated a proof of concept for an end-to-end,
hardware-algorithm co-designed pipeline for DRAM-based
PIM architecture acceleration of spectral library search, a key
workload for mass spectrometry. The next step is to observe
the performance from taking better advantage of the massive
parallelism in DRAM for more reasonable comparisons and
to connect larger volumes of data from real-world workloads
to the hardware for a full-system view of PIM accelerated
bioinformatics applications.
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