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Abstract—Partitioned Global Address Space (PGAS) models

exhibit tremendous promise in developing efficient and

productive distributed-memory parallel applications. They

have been used extensively in scientific computations due to

conveniently offering a “shared-memory”-like programming

model and interfaces that separate communication with

synchronization. Traditionally, PGAS communication models

have been applied to dense/contiguously distributed data,

but most modern applications contain varied levels of

sparsity. Existing PGAS models require certain adaptations

to support distributed sparse computations, since associated

computations often require matrix arithmetic, in addition to

data movement.

The Global Arrays toolkit from Pacific Northwest National

Laboratory (PNNL) is one of the earliest PGAS models to

combine one-sided data communication and distributed matrix

operations, and is still used in the popular NWChem quantum

chemistry suite. Recently, we have expanded the Global Arrays

toolkit to support common sparse operations, like sparse

matrix-dense matrix multiplies (SpMM) and sparse matrix-

sparse matrix multiplication (SpGEMM). As it turns out, these

operations are the backbone of sparse Deep Learning (DL);

sparse deep neural networks have gained increasing attention

recently in achieving speedups on inference with reduced

memory footprints. Unlike scientific applications in High

Performance Computing (HPC), modern (distributed-memory

capable) DL toolkits often rely on non-standardized and closed-

source vendor software optimizations, creating challenges in

software-hardware co-design at scale.

Our goal is to support a variety of sparse matrix operations

and helper functions in the newly created Sparse Global

Arrays (SGA), such that it is possible to build portable

and productive Machine Learning scenarios for algorithm/

software and hardware codesign purposes. We demonstrate the

usefulness of SGA by building Sparse Deep Neural Network

(SpDNN) challenge scenarios as a case study. The current SGA

implementation is built on top of MPI and uses CPUs to

maximize the portability across platforms.

Index Terms—Sparse Deep Neural Network, Sparse Matrix

Computations, Deep Learning, Machine Learning, Inference,

Global Arrays, Distributed-Memory

I. Introduction

PGAS (Partitioned Global Address Space) models such as
SHMEM [6], UPC [4] and Global Arrays [26] predate the
popular Message Passing Interface (MPI), and influenced the
design of contemporary one-sided programming models and
compiler extensions [3], such as Chapel [5], Coarray For-
tran [27], X10 [7] and XScalableMP [21]. Although these PGAS
interfaces provide rich local and global view data abstractions
for efficient data movement, extreme-scale modern science
and machine learning applications often need features such as

distributed-memory sparse matrix operations, Sparse-Dense
Matrix Multiplication (SpMM), Sparse Matrix-Vector Multipli-
cation (SpMV), Sparse-Sparse Matrix Multiplication (SpGEMM)
and their derivatives. Traditionally, PGAS approaches were
prevalent in computational scenarios such as asynchronous
update of fix-sized large distributed matrices with structured
sparsity (e.g. the Density Functional Theory Hartree-Fock
update in the NWChem computational chemistry suite [34]).
As modern Deep Neural Network (DNN) workloads exhibit
increasingly computationally demanding patterns, sparsifying
neural networks might offer respite from higher memory con-
sumption and data movement volumes [17]. Unlike sparsity
in many existing science codes, which demonstrate structured
data-blocks distributed uniformly (allowing locality-based
optimizations), sparsity in neural networks can demonstrate
variable patterns of structuredness [22] and accuracy/costs
trade-offs [12], making it challenging for the underlying
numerical libraries to devise standard solutions with sus-
tainable performance. This leads to an even severe problem in
developing distributed-memory solutions for ML workloads
(i.e., data/pipeline parallelism), using traditional PGAS models
which were primarily designed for scientific computation.
On one hand, using existing (standardized and community
adopted) PGAS models can lead to enhanced portability
and augment software/hardware codesign efforts, but on
the other hand, contemporary PGAS models must identify
areas of improvement as we navigate novel DNN workloads.
Standardization efforts such as GraphBLAS [19] to formally
define the functions that could be used as building blocks for
a wide range of distributed-memory sparse and combinatorial
methods is a step in the right direction.
Originally, the Global Arrays library (GA) [25] provided

“shared-memory”-like global view data abstractions, support-
ing dense array data structures, a set of one-sided commu-
nication primitives that facilitates arbitrary subarray access
patterns using global arithmetic coordinates, dynamic load-
balancing, and an interface to parallel dense linear algebra
capability from ScaLAPACK [8]. The NWChem quantum
chemistry package [33] is one of the widely used applications
that relies heavily upon one-sided communication, having
employed GA from the outset. Global Arrays has gone
through a number of revisions, especially in its low-level
communication substrate, from variants of ARMCI [13], [24] to
the intermediate ComEx [10] runtime, which is, in turn, based
on different MPI implementations. The current MPI-PR [15]
(over MPI point-to-point communication) with progress ranks/
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Fig. 1: Pattern of SpDNN weights for 1024 neurons on 120 layers (each 1024×1024 matrix has 32768 nonzeroes, 97% sparsity).

PEs on each node to evokes asynchronous communication.
Process-based progress [31] can alleviate the drawbacks of
thread-based or hardware interrupt-based communication
progress, promoting scalability in MPI applications [30]. Most
recently, the Global Arrays library has been overhauled to
support sparse matrices (considering a two-level distribution,
blocks of Compressed Sparse Row to hold the nonzero
elements), and has native implementations of a number of
sparse matrix operations. Recent efforts on MIT/IEEE/Amazon
Sparse DNN Challenge has improved the state-of-the-art of
SpDNN kernels [16], [32], [35] through various low-level
optimizations, showing significant speedups on latest GPU
accelerators. However, existing works on distributed-memory
adaptations of SpDNN are relatively rare, a previous year’s
paper [23] alludes to the high synchronization costs of data
and model parallelism. Instead of replicating the weights,
we adopt Tensor Parallelism, which is a variant of Model
Parallelism that distributes the weights and features across the
PEs (each PE processes a different subset of features), invoking
compulsory synchronizations at the end of a layer [29]. It
is apparent that distributed-memory parallelism is necessary
to cater to the largest models. Existing performant SpDNN
implementations have either developed optimized low-level
sparse-matrix operations [16], [32], or extensively relied on
third-party vendor BLAS [14] libraries such as LAPACK [1]
and NVIDIA’s cuBLAS [28] to reach peak system efficiency
(compiler-based solutions can also compete with vendor-
optimized implementations [2], [9]). In contrast, we investigate
the general effects of distributed-memory data movement

and synchronization considering SpMM and SpGEMM based
SpDNN variants. Our SGA based implementations are yet
to be fully optimized for arbitrary hardware platforms, but
reveals key design considerations and trade-offs that existing
distributed-memory programming models must contend with
while building the core functionality of machine learning
applications at scale. Our study is geared towards facilitating
codesign between sparse-matrix algorithms, programming
models and runtime, and, hardware architecture (network in-
terconnect topology and processors), in driving the efficiency
of distributed-memory machine learning workloads.

II. SpDNN implementation using SGA

We followed the structure of the baseline implementation of
the Sparse DNN Challenge [20], which performs the following
sparse DNN computation on L layers: Yl+1 = ReLu(Wl×Yl+bl),
where l is the current layer, Y is the feature matrix (M features
of length N equal to the #neurons, N × M), W is the matrix
of activation weights (N × N), b is the bias of size N × M
and ReLu is the activation function with a maximum cutoff.
We use the Compressed Sparse Row format (CSR) to store
a block of nonzero elements. We perform the sparse layer
computations SpDNN based on sparse-matrix-dense- matrix
multiplication (SpMM) and also sparse-matrix-sparse-matrix
multiplication (SpGEMM), considering the feature matrix Y
as sparse or dense accordingly (applying bias activations
separately), with distributed-memory support based on the
recently SGA variant of GA.
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A. Sparsity pattern

The sparsity pattern of neural networks is distinct from
the structured sparsity observed in scientific computations, as
evident from Fig. 1, which shows the nonzero patterns of the
N × N weight matrices per layer, Wl. In contrast, the output
feature matrices per layer l (i.e., neurons× features, Yl{N, M}),
after application of bias activation demonstrates significant
reductions in the sparsity across the layers, as shown in
Table I. Therefore, although SpMM is the standard option

TABLE I: Sparsity patterns on output (N × M) feature matrix Y
after activation for the first ten layers.

N M nnz sparsity (%)

1024 54687 17406000 68.92
1024 40498 8562176 79.35
1024 23042 5503360 76.68
1024 12010 4215712 65.72
1024 6537 3774752 43.61
1024 4087 2618048 37.44
1024 2774 2425600 14.61
1024 2128 2118688 2.77
1024 1939 1975216 0.52
1024 1874 1917600 0.07

for constructing SpDNN, SpGEMM could be applied instead,
keeping the bias values and the layer under consideration.
Distributed-memory SpGEMM is also harder to optimize, and
incurs higher synchronization costs.

B. Data distribution

Data distribution impacts the granularity of computation,
affecting the overall load balance and scalability. The high-
level cartoon in Fig. 2 depicts the distribution of the row-
blocks across the PEs for matrix computations in Sparse
Global Arrays (SGA). A Sparse Global Array is comprised

X =
P0
P1
P2
P3
P4
P5

Each PE holds a single 
row-block, constituent 
column-blocks
are sparse matrices 
(stored as CSR)

Weights, A i,k Features, B k,j Output, C i,j

Every PE:
1. Scan through the column A-blocks and figure out the corresponding B-block
2. Initiate get operation to fetch identified block data
3. Perform local multiplication (e.g., SpGEMM/SpMM)
4. Store intermediate results (i.e., C-block) in hash table or directly in target buffer
5. Serialize hash table into CSR (for SpGEMM)
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Fig. 2: Simplified high-level depiction of distributed sparse matrix
operations per layer in Sparse Global Arrays (SGA). Broken horizon-
tal lines indicate the nonzero row-blocks owned by a particular PE.

of blocks of nonzero elements, represented via Compressed
Sparse Row (CSR) format, spread across a 1-D process/PE
grid, 1 × npes, where npes is the number of PEs. Although
multidimensional process grids are common for (partially)
dense data, for sparse data, currently there is no consensus
on whether multidimensional PE grids can lead to sustainable
performance improvements for diverse sparse inputs and
algorithms. Considering M(rows)×N(columns) sparse matrix,
SGA arranges the sparse blocks such that each process owns
M/npes block of rows (a.k.a. row-block), and each row-block

is further subdivided into N/npes column-blocks, leading to a
local block size of M/npes × N/npes. Fig. 2 presents a simple
scenario where the local block dimensions are same for the
three SGAs; this is true for SpGEMM which guarantees that
the the column dimension of A is partitioned exactly the same
as the row dimension of B. This is sufficient to guarantee
that the individual blocks of B that are needed by the blocks
of A for local matrix multiplication in SpGEMM is located on
a single process. However, for SpMM, since A is sparse and
B is dense, the row/column partitioning into blocks might
lead to dissimilar block dimensions. Consequently, fetching
a remote block of B might involve more than one PE, since
the underlying data might be distributed across several PEs.
Each block for SpGEMM is a represented via CSR (for SpMM
B-blocks are dense), and associated bounding indices, block
pointers, strides, process IDs, etc. are held as metadata in a
distributed npes × npes array, to optimize the memory usage.
Each PE knows the range of the blocks pertaining to a specific
SGA held by the other PEs, and must inquire parameters
(such as physical pointer offsets across PEs corresponding
to a particular “block”) before initiating data communication.
Specific progress ranks/PEs (initialized at execution time)

0 (0)

Local 
Buffer
Pointer

SGA 
Memory

1 (1)

Local 
Buffer
Pointer

SGA 
Memory

2 3 (2)

Local 
Buffer
Pointer

SGA 
Memory

4 (3)

Local 
Buffer
Pointer

SGA 
Memory

5

Node 0 Node 1

Actual 
rank

World 
Rank (used within applications)

Progress 
Rank (PR), hidden from the applications

Async Send
Recv

POSIX
shared memory
segments

Pointer/MemCpy Communication operation

Fig. 3: Demonstrating an asynchronous “Put” operation invoked
by process #0 in Node #0 to process #2 on Node #1 via Progress
Rank (PR) #5. Each node has two user PEs and one hidden PR. Users
must invoke sync operation for remote completion, SGA is implicitly
locally complete (i.e., after Put returns, local buffers can be reused).

for each SMP node handle communication in SGA. Thus,
progress ranks/PEs must be able to access the memory of
another process on the node to facilitate direct access to the
underlying pointers, to avoid unnecessary communication
from one process’s memory to another. As such, SGA uses
POSIX Shared Memory Segments; every PE creates a shared-
memory segment (i.e., a region of memory), allowing other
PEs to attach to the memory segment such that it becomes
a part of its userspace memory. This allows the progress
PEs to manage communication on behalf of the other PEs
(i.e., asynchronous background progress), leaving them free
to spend the time on local computations. The number of
shared memory segments increases significantly with the
number of SGAs (i.e., number of shared-memory segments is
equivalent to the #SGAs × processes-per-node, the #SGAs is
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proportional to the #layers). Fig. 3 demonstrates a typical one-
sided communication scenario (i.e., Put) in SGA. Internally, the
origin process asynchronously sends a header message to the
target process’s progress rank with the payload information,
which then posts a subsequent receive to handle the incoming
payload. For small data transfers, the payload can fit into
the outgoing header, and after receiving the header, a target
progress rank can perform memcpy to transfer the data directly
to the specific process. Users must invoke Sync for remote
communication completion, however, local buffers can be
updated after a communication call returns.

C. Distributed pseudocode

Pseudocode 1 presents the high-level steps in distributed-
memory sparse matrix multiplication in SGA, depicting the
operations underlying SpMM and SpGEMM, invoked by every
PE (refer to Fig. 2). Since the size of the destination sparse
matrix cannot be known in advance for SpGEMM (without
performing a “symbolic” multiplication to track the nonzeroes),
there is an extra step of maintaining an extensible hash
table to store the intermediate values (as seen in Line 14),
before the final SGA can be constructed. Initially, each PE
reads its row-block and fetches the A-block from the local
memory (Line 6), and issues a get operation to retrieve the
associated B-block from remote PE(s), as shown in Line 19.
Prior to communicating the data, the get operation must
retrieve the block parameters from the distributed metadata
(as discussed in §II-B), as shown in Line 20 of Pseudocode 1.
The local matrix computations are relatively similar for SpMM
and SpGEMM, except SpGEMM allocates a temporary buffer
(which is subsequently reused) for storing the intermediate
values (Line 13), which must be inserted into a hash table,
as seen in Line 14. The hash table is automatically expanded
when it grows beyond a threshold, which can be expensive due
to subsequent reallocations and memory copies. Additionally,
towards the end, the hash table must be serialized and
organized into the distributed sparse global array after global
synchronization, as shown in Line 18. In contrast, for SpMM,
the dimensions of the output (dense) global array is known
in advance, so the results of the local matrix computations
can be directly updated in the local view of the global array
(in Line 10). The progress PEs runs continuously probing the
network and returning data to the requesting PEs, as shown
in Line 25. When the requesting process is local to the node,
the progress PE uses direct memory copy instead of MPI.

III. Evaluations and Analysis
a) Testbed: We have used two evaluation platforms to

evaluate SGA at different scales. PNNL Junction cluster is
comprised of AMD EPYC® “Milan” 7543 processors. Each
compute node has two sockets with a 2.8 GHz 32-core AMD
® Milan processor per socket (256MB L3 cache), and 256GB
DDR4 3200 MHz memory per node with 8 memory channels
per processor. Each node has a Mellanox HDR-100 ConnectX-6
InfinBand HCA, providing about 1µs communication latency
between nodes. We use OpenMPI 4.1.2 and GNU C++ compiler

Algorithm 1 Sparse-matrix computations in Sparse Global Arrays.
Input: Sparse Global Arrays (SGA): A(M × K) and B(K × N),
distributed over npes PEs. The nonzero column block dimensions
are calculated by dividing the original row/column dimensions by
npes, for e.g., Mb ← M/npes, Nb ← N/npes and Kb ← K/npes, npes
excludes the #progress PEs involved in asynchronous progress;
Specific progress PEs handle communication progress, progress(p)
returns the progress PE corresponding to a regular PE, p.
Op specifies SpMM or SpGEMM.
SpGEMM requires an expandable hash table HTc initially set to a
size of 4096 entries for storing intermediate data.
Output: Sparse/Dense Global Array (result): C(M × N).
1: for i ∈ npes do ▷Row block owned by PE

2: for j ∈ npes do ▷Column blocks on PE

3: for k ∈ npes do

4: Load block aik from local memory
5: Get block bkj from remote PE(s)
6: for ii ∈ Mb do ▷Scan rows in block aik
7: for kk ∈ Kb do ▷Scan non-zeroes in row ii
8: for jj ∈ Nb do ▷Scan non-zeroes in row kk of bkj
9: if Op is SpMM then

10: C(global(ii, jj)) ← aik(ii, kk) ∗ bkj(kk, jj)
▷Directly update local portions of global array

11: else

12: Allocate intermediate block cij(ii, jj)
13: cij(ii, jj)← aik(ii, kk) ∗ bkj(kk, jj) ▷Local
14: HTc[ii, jj].insert(cij(ii, jj)) ▷Hash table insert

15: Progress() ▷Invoke communication progress

16: Sync() ▷Synchronize across PEs

17: if Op is SpGEMM then

18: C← HTc.serialize() ▷Organize C into blocks for SpGEMM

19: function Get (bkj): ▷Get the

20: params← get_params(bkj) ▷Parameters describing bkj
21: bkj.allocate(params.dims) ▷Allocate memory for bkj
22: for p ∈ (params.npes) holding data of bkj do
23: Send(params.header, progress(p)) ▷To progress rank

24: bkj ←Recv (data, progress(p)) ▷post receive for data

25: function Progress(): ▷Progress PEs invokes this loop

26: if progress(my_pe()) = my_pe() then
27: while true do

28: request← Probe ▷Probe incoming requests

29: if request is true then ▷Message available to PE

30: request.header ← Recv(request.params)
31: response.data← fetch_local_data(request.header)
32: Send(response.data) ▷Send back requested data

v10.3 to build the code, and pass “-O3” as compilation options.
We have also used the NERSC Perlmutter supercomputer
consisting of 3,072 CPU-only compute nodes. Each Perlmutter
node uses 64-core 2.4GHz AMD EPYC 7763 CPUs with
256GB of DDR4 memory, 256MB L3 cache and 8 memory
channels with HPE Slingshot 11 interconnect, providing up to
200Gbps (25GB/s) bandwidth [36]. We use Cray/MPICH 8.1.28,
craype/2.7.30 and GNU C++ compiler v12.3 on Perlmutter.

b) SGA implementation: The DNN datasets includes
weights for each layer and true labels. MNIST dataset [11]
contains the initial feature matrix (Y0). Currently, the im-
plementation utilizes binary variants of the input (weight)
matrices and features, to minimize I/O. Each PE reads
portions of the inputs and assembles the local part of
the distributed sparse array (like the GraphBLAS API [19],
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SGA has a NGA_Sprs_array_add_element64(<SGA_handle>,
<ii>, <jj>, <value>) function to add an element cor-
responding to a coordinate). An SGA is created for every
weight and bias matrices (like legacy Global Arrays, an
SGA is uniquely identified by an opaque integer handle),
equivalent to the #layers. Therefore, total number of SGAs
created are equivalent to #layers + 2, considering two input/
output feature matrices (which are reused) in addition to per-
layer weight. Consequently, the number of shared segments
are also proportional to the #layers, and the administrator had
to increase the maximum allowable shared memory segments
on Junction for SpDNN with SGA to work for large #layers.

1#include <ga.h>
2int currfeat_s;
3int nextfeat_s;
4int* weights;
5...
6void kernel_gspmm(int l) {
7#ifdef USE_SPMM
8nextfeat_s = NGA_Sprs_array_sprsdns_multiply(weights[

l],currfeat_s);
9#else
10nextfeat_s = NGA_Sprs_array_matmat_multiply(weights[l

],currfeat_s);
11#endif
12void *tbias = static_cast <void*>(&bias);
13#ifdef USE_SPMM
14Dense_ReLU(nextfeat_s , tbias);
15#else
16NGA_Sprs_array_activate_ReLU64(nextfeat_s , tbias);
17#endif
18#ifdef USE_SPMM
19GA_Destroy(currfeat_s);
20#else
21NGA_Sprs_array_destroy(currfeat_s);
22#endif
23currfeat_s = nextfeat_s;
24}
25
26int main(int argc , char* argv []) {
27MPI_Init (&argc , &argv);
28GA_Initialize ();
29
30weights = new int[layer]; // SGA integer handles
31// process inputs and create SGAs
32read_weights_features(layer , weights , currfeat_s);
33
34// perform layer computations
35for(int i = 0; i < layer; ++i) {
36kernel_gspmm(i);
37}
38
39// cleanup and destroy SGAs before termination
40for (int l=0; l<layer; l++) {
41NGA_Sprs_array_destroy(weight_matrices[l]);
42}
43#ifdef USE_SPMM
44GA_Destroy(currfeat_s);
45#else
46NGA_Sprs_array_destroy(currfeat_s);
47#endif
48delete [] weights;
49GA_Terminate ();
50MPI_Finalize ();
51return 0;
52}

Listing III-0b lists the abridged SGA code for SpDNN includ-
ing the necessary initializations, with macro USE_SPMM to
distinguish SpMM-related code paths with SpGEMM. The
output positions above the threshold after application of bias
are maintained on a separate array, which is excluded from
the code snippet in Listing III-0b for brevity. Since existing
SGAs are identified using integer handles, the sparse matrix

multiplication functions can conveniently refer to the feature
and per-layer weight SGAs. Since SGA is built on top of
MPI, it is interoperable with MPI, such that MPI and SGA
functions can be mixed freely without performing any coarse-
grain synchronization. SGA and the SpDNN kernels will be
made available on https://github.com/pnnl/aiams-sparse.

A. Baseline performance of SpDNN using SpMM-based SGA

We discuss the baseline performance of SpDNN on Junction
and Perlmutter platforms, on 16 (256 PEs) and 32 nodes
(1024 PEs), respectively. Each node uses an extra “ghost”/
progress PE, therefore we actually use 272 PEs on Junction
and 1056 PEs on Perlmutter. For all the input configurations,
the bias activation times are at most half a second per layer
(observed for 65536 neurons), and often in the milliseconds
range. Per-layer SGA creation overheads are also excluded
because, > 95% of the total time is spent in the distributed
SpMM operation. Since Tensor Parallelism also increases
the communication and synchronization times, for larger
neurons and layers, we estimate the total time from a sample
of runs. Our implementation is entirely process/PE based,
each PE computes the matrix operations without engaging
threads or explicit vectorization. Table II lists the baseline

TABLE II: Baseline performance of SpMM-based SpDNN on PNNL
Junction and NERSC Perlmutter platforms.

Neurons Layers

PNNL Junction

(n=16:ppn=17)

NERSC Perlmutter

(n=32:ppn=33)

1024
120 221 (0.06 hrs) 1275 (0.35 hrs)
480 883 (0.24 hrs) 5101 (1.41 hrs)
1920 3532 (0.98 hrs) 20404 (5.66 hrs)

4096
120 414 (0.11 hrs) 1056 (0.29 hrs)
480 1654 (0.45 hrs) 4223 (1.17 hrs)
1920 6616 (1.83 hrs) 16890 (4.69 hrs)

16384
120 2216 (0.61 hrs) 6039 (1.67 hrs)
480 8863 (2.46 hrs) 24154 (6.7 hrs)
1920 35450 (9.84 hrs) 96617 (26.83 hrs)

65536
120 17981 (4.99 hrs) 14248 (3.95 hrs)
480 71925 (19.97 hrs) 56992 (15.83 hrs)
1920 287700 (79.91 hrs) 227967 (63.32 hrs)

performances (estimated for the largest layers of 4096, 16384
and 65356 neurons) across the layers based on distributed
SpMM implementation of SGA. We observe the negative
impact of increasing the #PEs by 4× on 1024/4096/16384
neurons between PNNL Junction (256 PEs) and NERSC
Perlmutter (1024 PEs), resulting in about 3× performance
degradation in latter. However, larger #PEs pays off for
65536 neurons, where we observe end-to-end performance
improvements up to 20%. Observed results are still orders
of magnitude worse than the best results reported in past
Graph Challenges on a single-node (and reducing the #nodes
will bring down our communication/synchronization costs,
affecting the bottom-line), but with larger neurons (models)
and deeper layers, distributed-memory implementations will
become more viable and cost effective.

B. Layer-wise performance of SpDNN using SpMM-based SGA

Due to the sparsity pattern of the inputs, we observed non-
trivial variation in the SpMM performances across the layers.
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TABLE III: Major performance disparities in SpGEMM between small and large layers due to large number of shared memory segments,
as demonstrated by comparing the timings for an arbitrary layer for the same #neurons.

Layers
Total time (s) Time for Get operations (s) Misc.

Init Mult find offset copy send recv wait sync

Segments

searched
#gets

#bytes

(in gets)

120 0.0045 7.31 0.0375 0.0002 0.0004 0.0025 0.0016 4.0428 3.1903 3298485 65478 73033624
1920 0.0049 140.82 1.1030 0.0002 0.0007 0.0040 0.0019 81.5682 58.0978 52265685 65478 73033624

Fig. 4 captures the variation across both the experimental
platforms. On smaller #PEs (i.e., Junction), the lower layers
are about 4–10× faster than Perlmutter; whereas, on higher
#PEs at Perlmutter, the differences are apparent beyond ten
layers. This indicates that for Tensor Parallelism, gradually
increasing the resources with #neurons (as in weak scalability)
can lead to a better outcome.
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Fig. 4: Performance variations of SpMM across 20 layers on PNNL
Junction and NERSC Perlmutter platforms.

C. SpGEMM vs. SpMM performance

We perform evaluations between SpMM and SpGEMM on
four nodes (n=4:ppn=24) of PNNL Junction for 1024 neurons
on 120 and 1920 layers. On 120 layers, we observe about 1.6×
better performance of SpGEMM vs. SpMM; however, bias
activations on the dense feature matrices are about 6× faster
than the sparse counterpart in the SpGEMM variant of SpDNN,
as shown in Fig. 5. However, the trend observed in Fig. 5
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Fig. 5: SpMM vs. SpGEMM variants of SpDNN (multiplication and
activation times) on four nodes of PNNL Junction.

falls apart with larger #layers, specifically due to about 20×
performance degradation in the SpGEMM version of SpDNN.
We have profiled the SpGEMM versions on 120 and 1920 layers,
and the per-layer timing break-down points to significant
disparity in the numbers of shared memory segments (refer to
§II-B, the number of shared memory segments is proportional
to the #PEs and the SGAs, which depends on the #layers),
as shown in Table III. By studying an arbitrary layer of the
SpGEMM version of SpDNN between 120 and 1920 layers on

same #PEs (as Fig. 5), we observe that on 1920 layers there
are about 16× higher shared-memory segments, leading to
significant overheads in synchronization for the progress PE
(both wait and sync in Table III, which is typically > 95%
of the total time), despite exactly similar volumes of data
movement (indicated by the #gets and #bytes transferred).
Upon doubling the number of progress ranks, we observed
about 2× improvement in finding the shared segments, but
the overall synchronization time remained unchanged.

Interestingly, the same progress rank based mechanism in
(Sparse) Global Arrays is used to effectively scale quantum
chemistry computations in the popular NWChem software
package [33]. Therefore, this is an opportune moment to re-
evaluate the established optimization techniques in contem-
porary HPC programming models and runtimes for modern
AI/ML workloads.

IV. Concluding remarks
In this paper we introduce Sparse Global Arrays (SGA)

as a convenient PGAS model for building applications based
on distributed sparse matrix operations, and develop SpMM
and SpGEMM versions of SpDNN sparse inference workload
on distributed-memory platforms. Initial design of SGA
considered distributed-memory structured grid based science
applications, where it is more likely that the number of
nonzero blocks per row is smaller than the number of
available PEs (predicated on using optimal partitioners like
Metis [18]). But, this is not the case for neural networks;
there can be irregularly (sparse) nonzero blocks unevenly
spread throughout. This requires revisiting the original data
distribution of SGA, and perform reordering to arrange the
nonzeroes in fixed-size groups by introducing another level of
indices. Currently we considered fully distributed weights and
features, but with the steady increase in the memory capacity
(and access to node-local persistent memory), replicating
the weights can reduce the communication overheads for
relatively small-medium inputs.
Another possible optimization criteria is to use the MPI

Remote Memory Access (RMA) or one-sided interface for
communication instead of present two-sided progress PE
based implementation (i.e., MPI-PR), since it can conveniently
express the one-sided semantics (i.e., get) of SGA. Using
progress ranks/PEs can lead to sustainable scalability, and
contemporary MPI implementations natively support such
options. Other relatively recent communication alternatives,
such as MPI Neighborhood Collectives are also promising,
however, it is yet to reach its full potential in terms of
performance.
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