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Abstract—GraphBLAS is a sparse matrix library for graph
algorithms. We could improve the GraphBLAS and support
a wider range of applications if we had an indexed binary
operator; i.e., a binary operator that depends on elements from
two matrices and their positions (indices). We propose a design
for these operators and illustrate their impact on performance
and expressiveness for several algorithms including breadth-first-
search, argmin/argmax, vector search, and finite-element assembly.

Index Terms—Graph Processing, Graph Algorithms, Graph
Analytics, Linear Algebra, GraphBLAS

I. INTRODUCTION

A graph can be represented by an array. For example, an
N × N adjacency matrix, A, has one row and one column
for each of the N vertices in a graph. Element Aij of the
matrix represents an edge between vertex i and vertex j. With
graphs as matrices, a wide range of graph algorithms can be
expressed with linear algebra [12]. With graph algorithms as
linear algebra over arrays (almost always sparse), it is natural
to define a set of Basic Linear Algebra Subprograms (BLAS)
to support such algorithms. We call these the GraphBLAS.

To make this work, we need a mathematically rigorous
way to change the operators used inside the linear algebra
operations. For example, in many graph algorithms, as you
work across the out-edges from a vertex (i.e., a row in the
adjacency matrix), you want to keep the edge with the “greatest”
weight as opposed to summing across weights. This means
reducing the results of operations on the elements in a row
with a max operation instead of sum. We modify operators
inside our linear algebra functions through algebraic semirings.

The detailed mathematics of semirings is well beyond the
scope of this paper. For our purposes, think of a semiring as a
domain (the types of the elements in the arrays), a monoid (a
commutative and associative binary operator with an identity,
denoted ⊕) and a second binary operator (denoted ⊗). The
prototypical semiring is defined over real numbers with the
⊕ monoid being addition (with zero as the identity) and the
⊗ operator being multiplication. Since these operators can be
swapped with others in different semirings, we use a “circle
op” notation so matrix multiplication would be written as:

C = A⊕.⊗B.

This notation impacts how we talk about semirings. When
using different semirings, the ⊕ monoid is typically referred to
as the plus operator and the ⊗ operator as the times operator,

even when addition and multiplication over real numbers has
been replaced by other operators. For example, in the famous
tropical semiring the ⊕ is the min operator and the ⊗ operator
is addition (+) resulting in the min.plus semiring.

The GraphBLAS project began in 2013 [14], the official
mathematics specification was released in 2016 [11], and the
first formal language binding (to C) was released in 2017 [6].
The GraphBLAS is a “living” specification under continuous
development by the GraphBLAS forum [1] (with the latest C
specification being version 2.1 [5]).

Recently, we have been exploring the use of operators that
have access to the indices of the array elements. These are
referred to as indexed operators. In GraphBLAS version 2.1
we added indexed unary operators; i.e., an operator that acts
on a single element of a graphBLAS array and has access
to the array indices of the single operand. In this paper, we
extend this concept to binary operators, that is, indexed binary
operators.

This paper makes three contributions. First, we describe
the indexed binary operator and how it might be incorporated
into the GraphBLAS. This is important for the GraphBLAS
algorithm community to understand so they can provide
feedback and guide development of this capability. Next, for
API designers more generally, our design of indexed binary
operators is a good example of the value of opacity in an API. In
particular, since GraphBLAS objects (including operators) are
opaque, indexed binary operators can be added to GraphBLAS
with minimal disruption to the other functions in the API.
This is a lesson in the value of opacity that we urge other
API designers to consider. Finally, we describe use-cases that
establish the need for indexed binary operators. It is well known
that the GraphBLAS can be used for graph algorithms, graph
databases [7], neural networks [9], [16], cyber security [10]
and other problems that “look like graphs”. As we will show
in this paper, with the indexed binary operator, we can address
new classes of problems including vector databases and finite
element methods.

II. GRAPHBLAS: MATH, NOTATION, AND API

Mathematics uses matrices, vectors and operations. An
API defines objects (with storage formats) and specifies
the signatures of functions that act on them. These details
are defined in the GraphBLAS API and explained in the
paper that introduced the GraphBLAS binding to C [6]. An
API is designed around its use to construct key algorithms.



GraphBLAS algorithms are the focus of the LAGraph [13],
[2] projecct which includes production-ready algorithms for
application programmers and experimental algorithms that
explore what can be done with the GraphBLAS. A core set
of algorithms and a notation for expressing them is defined
here [15]. In this section, we describe the GraphBLAS at a
high level and the notation used to express the algorithms.

In describing GraphBLAS algorithms the matrices and
vectors are sometimes defined in terms of vectors of row indices
or column indices or as tuples which contain the set of indices
and the values of a matrix or vector. Matrices are represented
as uppercase, bold letters (A), and vectors as lowercase bold
letters (u). GraphBLAS objects are opaque, meaning their
implementation is not defined in the GraphBLAS specification.
This gives implementors the freedom to choose storage formats
and other details best suited to the target system. This opacity
is a key feature of the GraphBLAS design.

The GraphBLAS operations act on objects that hold matrices,
vectors, or scalars. The fundamental GraphBLAS operations
include:

• matrix multiplication (mxm), matrix vector multiplication
(mxv) and vector matrix multiplication (vxm),

• kronecker product of two matrices using the ⊗ operator,
• element-wise operations using the ⊕ (eWiseAdd) or the
⊗ (eWiseMult) from the semiring ⊕.⊗,

• assign and extract submatrices, subvectors or individual
rows and columns of a matrix,

• apply a function to the elements of an object,
• select elements of an object using a function (predicate),
• matrix transpose.

These operations also support optional mask and accumula-
tion operations. The notation used for matrix multiplication
including these options is:

C⟨M⟩ ⊙=A⊕.⊗B

The result of this matrix product will be written into the output
object C subject to accumulation and masking.

Accumulation applies a binary operator (denoted as ⊙) in an
elementWise addition between the result of the matrix product
and the values already in the destination matrix C. The mask
(M) is selects elements of the destination matrix, C, that will
be overwritten with the results from the GraphBLAS operation.
It also defines how elements not selected by the mask are
impacted by the operation. Although it is logically a “write”
mask, a high-quality implementation will use the mask to drive
which right-hand side computations are carried out.

The mask has the same number of rows and columns as the
output object (C in our example). By default, the elements
of the mask that exist and are non-zero correspond to output
elements that are overwritten (written as ⟨M⟩). There are two
additional options for defining the elements in the mask.

1) The mask is defined by the elements of ⟨M⟩ that exist
regardless of their values. This is called a structural mask
and in our notation it is written as ⟨s(M)⟩.

2) The elements of the mask are the complement of the mask
elements defined by the default or the structural mask rules.

In other words, the mask consists of the elements that are
not indicated by the mask matrix. This is written as either
⟨¬M⟩ or ⟨¬s(M)⟩.

Once the mask is defined and we know which elements of
the output matrix will be set with the results of the operation
(with or without accumulation), we must define what happens
to the other elements of the output matrix. GraphBLAS offers
two options:

1) The elements not selected by the mask are left unchanged.
The elements from the GraphBLAS operation are therefore
merged with the existing elements of the destination
matrix, C. This is the default behavior of the mask.

2) The elements not selected by the mask are deleted. We
call this replace mode which we denote as ⟨M, r⟩.

These options compose with the previous options. For example,
operations can use replace semantics and structural masks at
the same time which is denoted as ⟨s(M), r⟩

To complete our overview of the GraphBLAS API, we need
to return to the topic of semirings and ways this mathematical
concept is relaxed in the GraphBLAS API. Mathematically, the
identity of the ⊕ operator in a semiring is the annihilator of
the ⊗ operator. In traditional sparse linear algebra, this identity
is the assumed value for elements of an array that are not
explicitly defined. GraphBLAS follows the approach from the
database community and instead treats array elements that are
not defined as nonexistent. Rather than sums over all elements
in arrays, the GraphBLAS operations are defined over sets of
defined array elements. Hence, undefined elements are never
accessed and we avoid the need to associate the ⊕ identity
with undefined elements. This means the formal mathematical
rules concerning the ⊕ and ⊗ operators can be relaxed in the
GraphBLAS. A programmer is free to pair operators, even
user-defined operators, as needed. For example, there are graph
algorithms where all you want from a binary operator is to
return the second operand (an operator denoted as second).
This operator does not have an identity or an annihilator, but it
can still be used in a GraphBLAS semiring. For example, we’ve
seen this operator combined with the min operator leading to
the min.second semiring.

III. INDEXED BINARY OPERATORS

A typical binary operator in GraphBLAS has the form z =
f(x, y). When used as the multiplicative operator in a semiring,
(A⊕.⊗B)ij = ⊕kf(aik, bkj), where ⊕k means “summation”
over k using ⊕ as the operator. The index binary operator will
provide additional parameters,

z = f(aia,ja, ia, ja, bib,jb, ib, jb, θ)

where i∗ and j∗ are row and colunm indices of the two inputs
from the A and B matrices, and θ is a scalar. All uses of the
operator in a single matrix-matrix multiply would be given the
same value of θ.

This indexed binary operator will replace the current binary
operator when used as:
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• The multiplicative operator of a semiring (the ⊗ of C =
A⊕ .⊗B) for GrB_mxm, GrB_mxv, and GrB_vxm. The op-
erator would be used as cij = ⊕kf(aik, i, k, bkj , k, j, θ).

• The primary binary operator of element-wise operations
C = A ⊗ B, for the element-wise add, multiply, and
Kronecker product. (GrB_eWiseAdd, GrB_eWiseMult,
and GrB_kronecker). For the Add and Mult methods,
the operator would be used as cij = f(aij , i, j, bij , i, j, θ).

• Methods that create, query, revise, or destroy the object.
There are other places where a binary operator is used in

GraphBLAS, but we do not anticipate allowing an indexed
binary operator in these cases:

• The monoid of a semiring, where the indices of the
operands are not well defined.

• The binary operator for reducing a matrix to a scalar. This
requires a monoid, and the indices of the operands are
not well defined.

• The accumulator operator (the ⊙ of C⊙=T where T is
the result of any GraphBLAS operation).

• The operator for combining duplicates in GrB_build,
which converts an unordered list of tuples, (aij , i, j), into
a sparse matrix A.

• The apply operation, which allows for a binary operator
with one input bound to a scalar. An indexed unary
operator is already available to use instead.

The indexed binary operator will have the following signa-
ture:

void fidxop (void *z, // output z
const void *x, // an entry in matrix A
GrB_Index ia, // row index of the entry in A
GrB_Index ja, // column index of the entry in A
const void *y, // an entry in matrix B
GrB_Index ib, // row index of the entry in B
GrB_Index jb, // column index of the entry in B
const void *theta) // a scalar

A new object, the GrB_IndexBinaryOp, is created to
contain this function pointer. The scalar theta is passed to all
uses of the operator when used in a single call to GraphBLAS.
Its value is not part of the new operator.

We need at least 5 new methods for handling this new object:
1) GrB_IndexBinaryOp_new to create the object. Only the

type of theta will be given, not its value.
2) GrB_IndexBinaryOp_free to destroy the object.
3) GrB_IndexBinaryOp_get to query the object (such as

its name, and input/output types).
4) GrB_IndexBinaryOp_set to change the object (such as

its name).
5) GrB_IndexBinaryOp_wait to finalize the object.
The question then becomes, where is the theta scalar passed

to each call to GraphBLAS? We propose the following: the
new GrB_IndexBinaryOp will not be passed directly to Graph-
BLAS operations such as GrB_mxm. Instead, we will enable
a new kind of GrB_BinaryOp, created as a pair containing a
GrB_IndexBinaryOp and a scalar with the value of theta.
This binary operator can then be directly passed to an element-
wise operation (such as GrB_eWiseAdd), or it can be incorpo-

rated into a new semiring as the multiplicative operator and the
resulting GrB_Semiring can then be passed to GrB_mxm. This
will require the creation of a GrB_BinaryOp_IndexOp_new
method to create a new GrB_BinaryOp that is based on an
underlying GrB_IndexBinaryOp and the specific value of a
GrB_Scalar theta. Additional behavior would be added to
GrB_get to query the value of theta in the binary op. The
current API for operations that use the corresponding binary
operator or semiring based on an indexed binary operator
(GrB_mxm, GrB_eWiseAdd, etc) would not change.

IV. ALGORITHMS

A. Breadth-First Search (BFS)

Breadth-first-search (BFS) is one of the most fundamental
graph algorithms. It can exploit the GrB_IndexBinaryOp,
which shows how important this operator is. BFS builds on the
observation that vector-matrix multiplication fTA expresses
navigation from the nodes selected by vector f in the graph
represented by A.

When computing the BFS tree, by constructing a parent
vector p, each new node in the latest frontier q needs to
determine its parent in the tree, where p(j) = k if the parent
of node j is node k. This can be done in the semiring if the
multiplicative operator can return the index of its operands.

SuiteSparse:GraphBLAS has a preliminary implementation
of a small set of index binary operators. In particular, the
secondi(aia,ja, bib,jb) operator returns the row index (ib) of its
second input parameter (thus the name, secondi. This operator
can be used in the min.secondi semiring to compute a single
step of the BFS, qT⟨¬s(pT), r⟩ = qTA, where q is the current
frontier, p is the parent vector, and A is the adjacency matrix.
The mask is a complimented structural mask which means the
mask corresponds to the empty elements of the mask vector.
Replace semantics are indicated (due to the r in the mask
expression) so any elements of the vector other than those
selected by the mask are deleted.

In the matrix-vector multiply, z = secondi(qk, akj) returns
the index k. If node k is in the current q, then qk is present
and the multiplicative operator will return k if there is an edge
(k, j) in the graph. Then qj will be a reduction (min, via the
monoid) of the indices of all candidate parents of node j.

Algorithm 1 illustrates the entire push-only BFS that
computes the parent vector p. Since line 5 computes the parents
of all nodes in the next frontier, the assignment to the parent
vector on line 6 updates the p vector with the parents of the
newly visited nodes.

Without this operator, an additional step is required. The
vector-matrix multiply qT⟨¬s(pT), r⟩ = qT min.secondi A
must be replaced with an apply operation with the unary
rowindex operator (q = rowindex(q)), followed by a vector-
matrix multiply using the min.first semiring instead of
min.secondi, where first(x, y) = x.

Creating a GrB_IndexBinaryOp in the GraphBLAS enables
the simpler BFS in Algorithm 1 by through the secondi operator,
making GraphBLAS more expressive. This does not, however,
improve BFS performance. Our benchmarks found essentially
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Algorithm 1: Parents BFS (push-only).
Input: A, startVertex

1 Function ParentsBFS
2 p(startVertex ) = startVertex
3 q(startVertex ) = startVertex
4 while q is not empty do
5 qT⟨¬s(pT), r⟩ = qT min.secondiA
6 p⟨s(q)⟩ = q

the same performance between the two approaches. As we will
see in Section IV-B, however, this is not the the case for the
argmax algorithm where changes in both expressiveness and
performance are high.

B. ArgMin and ArgMax

The argmax method computes the maximum element in each
row and the column index in which that element appears.

Using an IndexBinaryOp, argmax is very simple (Algo-
rithm 2); a single matrix-vector multiply x = A1 where
1 is a vector of all ones. The multiplicative operator is
z = maketuple(aik, bkj) = (aik, k) where the result (aik, k) is
a tuple containing a numerical value from A, and its column
index k. The monoid operates on this tuple domain, and returns
the tuple with the largest numerical value. The monoid itself
does not depend on an IndexBinaryOp. This gives us the
argmax.maketuple semiring. Note that the content of the 1
vector is not accessed. SuiteSparse:GraphBLAS can create
such a vector in O(1) time and space. The result is a vector
x, where xi is the tuple (max(Ai∗), argmax(Ai∗)) and Ai∗
is the ith row of A.

In both algorithms presented here, entries that do not appear
in the sparsity pattern of A do not take part in the computation.
This is unlike the typical argmax of a matrix in conventional
linear algebra where the missing entry is assumed to be zero.
The latter can be obtained with additional computations but
this is not considered here to keep things simple.

Algorithm 2: Row-wise ArgMax (using an IndexBina-
ryOp)

Input: A
1 Function ArgMax IndexBinOp
2 x = A argmax.maketuple 1

Without the argmax.maketuple semiring, computing the
argmax is rather difficult, as shown in Algorithm 3. It returns
its results as two vectors x (with the maximum value in each
row), and p, where p(i) = argmax(Ai∗) = j if aij is the
largest entry in the ith row of A (excluding entries not present,
which do not take part in the computation).

Algorithm 3 must compute a matrix G that records where
each maximum entry appears in each row, where gij = 1 if
aij is equal to the largest value of the entries in the ith row
of A. Next, it replaces the 1’s in the matrix G with their

Algorithm 3: Row-wise ArgMax (without any IndexBi-
naryOp)
Input: A

1 Function ArgMax Difficult
// compute the max entry in each row:

2 x = Amax.first 1
// find where each max entry appears in each row:

3 D = diag(x)
4 G = D eq.eqG
5 G = (G ̸= 0)

// find index of all maximum entries:

6 H = rowindex(G)
// find index of first max entry in each row:

7 p = Hmin.first 1

column index using the IndexUnaryOp, rowindex, obtaining
the H matrix. Finally, the smallest such index in each row
is computed with p = H min.first 1, obtaining the desired
argmax result p.

The secondi IndexBinaryOp can be used to remove the
requirement for computing the H matrix, and this saves a little
time. We have such an algorithm in LAGraph, but for these
experiments we consider just two cases: a future algorithm
relying on a complete implementation of the IndexBinaryOp
(Algo 2), and one without any IndexBinaryOp (Algo 3). The
latter can be implemented and its performance is considered
below.

The IndexBinaryOp supports a very simple argmax algorithm,
thus the expressiveness is far better. The performance is hard
to judge, so we consider a proxy. MATLAB can compute both
max and argmax of a sparse matrix, using single-threaded
algorithms that should have reasonable performance. The
relative performance of the two methods can be used as a
proxy for the performance we expect when Algorithm 2 can
be implemented.

Algorithms 2 and 3 compute the row-wise argmax. MATLAB
stores its matrices column-wise. SuiteSparse:GraphBLAS uses
row-wise storage by default but this is changed to column-wise
when used via its MATLAB interface, so our performance
results below consider the column-wise argmax instead. The
column-wise methods are very similar to the algorithms above.

We consider a single large test matrix, the GAP-twitter
matrix [17], [4], with 61.6 million rows and columns, and
1.47 billion entries. To ensure the MATLAB and GraphBLAS
results are identical, we add an identity matrix to the test
matrix (otherwise, rows and columns with no entries are
handled differently). The resulting matrix has 1.52 billion
entries. Results are shown in Table I. MATLAB uses a single
thread; GraphBLAS uses 1 or 40 threads. All results are for
computing the max or argmax of each column of this matrix.

The argmax in MATLAB takes only 1.08x the time as
its column-wise max. In GraphBLAS, the ratio is very high
(4.75x) because of the complexity of Algorithm 3. This
ratio would drop to 1.08x with the introduction of the
GrB_IndexBinaryOp, since computing the max in Graph-
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method time time
1 thread 40 threads

MATLAB max 3.95 -
MATLAB argmax 4.28 -
GraphBLAS max 6.65 0.52
GraphBLAS argmax (no index binary op) 22.42 2.47
GraphBLAS argmax (estimated, with index op) 7.18 0.56

TABLE I: MATLAB R2021a and GraphBLAS v9.3.0 max
and argmax on a 20-core (40 thread) Intel Xeon E5-2698v4
(2.2Ghz). Time is wallclock (sec).

BLAS is also done with a single matrix-vector multiply (just
line 2 of Algorithm 3). The extra information in the tuple
data structure should not have a great effect on the run time.
With this assumption, the estimated time for the 40-thread
argmax (Algorithm 2) would be 0.56 seconds (1.08 times the
0.52 seconds to compute the max reduction with 40-threads),
a speedup of over 4x.

C. Hierarchical Navigable Small World (HNSW)

The Hierarchical Navigable Small World algorithm is a
graph-based approximate nearest neighbor search technique
for searching for the nearest vector embeddings in a corpus of
embeddings to a given query vector. These vector embeddings
are commonly produced by tools such as word2vec and AI/ML
models. They encode and compress the meaning of text
or features of images into smaller, uniformly sized vector
representations that can be processed and searched quickly.

Vector databases store millions to billions of embeddings
in their databases, and users search for the nearest vectors
stored in the database to a given query. The proximity metric
is typically a vector distance function such as Euclidean L2
distance or Cosine distance. Given the very high dimensionality
of the data, traditional database indexing tools such as trees
and hash tables provide no useful benefit for searching along
so many possible dimensions.

Without getting too deep into the details of this relatively
complex algorithm, the nodes of an HNSW graph are the
corpus of vectors themselves. The graph is constructed by
incrementally creating several edges to existing nodes in the
graph that are close to newly inserted vectors. The algorithm
uses multiple graph layers of increasing edge density, using
sparser granularity layers to quickly approach approximate
nearest neighbors and then using denser layers to refine nearest
candidates.

At search time, a multi-frontal BFS starting from random
nodes is compared to the query vector to see if traversing any
outgoing edges gets the search to a candidate neighbor vector
that is closer to the query vector. This is done for each graph
layer in turn until there are no edges that get any closer to the
query. The resulting set of vector embeddings represent the
approximate nearest neighbors to the query. Since these vectors
can have thousands of dimensions, the distance computation
to determine if an edge gets closer to a query can be quite
expensive.

A commonly applied optimization to HNSW is called
Locality Sensitive Hashing (LSH). It compresses the relatively

large vector embedding into a small hash that can be compared
to other hashes using a Hamming distance metric, where hashes
with more dissimilar bits are more distant from each other.
Computing the Hamming distance between two small hashes
is very fast, requiring only an ‘xor‘ and ‘popc‘ instruction and
is much more efficient than computing the distance between
two large vectors. Accuracy of the hash distance can be tuned
depending on hash size.

Given the large bit size for indices in the GraphBLAS
and support for hypersparse index ID spaces, this makes
GraphBLAS indices an ideal way to store these hashes. Support
for IndexBinaryOp provides an efficient way to compute
Hamming distance between source and destination nodes at
edge traversal time without having to involve any other data
structures to lookup vectors for each node while traversing the
graph.

The User Defined Operator code for this computation is quite
simple. The row identifier of the left side of the multiplication
is the node identifier of the edges source, the column identifier
of the right side is the node identifier of the edges destination.

(*z) = __builtin_popcountll(aiˆ(*theta))
- __builtin_popcountll(bjˆ(*theta));

By xoring those identifiers with the theta query hash, the
results contain only the different bits between them. The
compiler intrinsic __builtin_popcountll is then used to
count the number of differing bits which is the Hamming
distance between the nodes and the query vectors hashes. These
values are then subtracted to get a relative distance. If the result
is positive, the distance to the destination from the query vector
is greater than the distance from the source, and that edge will
get the search closer to the goal and should be traversed. If
the result is negative the edge will not get closer and should
be discarded.

D. Finite-Element Assembly

Creating the sparsity pattern of an assembled finite-element
matrix is simple and fast using GraphBLAS. A finite-element
analysis creates a sparse n-by-n matrix A that is the sum
of m individual finite-elements, A =

∑m
k=1 Ak. The matrix

Ak is a very sparse n-by-n matrix that can be thought of as
the adjacency matrix of a single small clique in a graph of n
nodes. In terms of a matrix, Ak has nonzero entries only in
the positions defined by the Cartesian product of two small
lists of integers, typically of length 9 to 30. If the sparsity
pattern of Ak is symmetric then only one such list is needed.
The size of this list depends on the kind of discretization (2D
or 3D, polynomial degree of finite element ansatz, continuous
or discontinuous) and the kind of differential equations being
modeled by the finite-element method.

Let F be an m-by-n boolean matrix that represents m finite
elements. The structure of the kth finite-element is represented
by the kth row, Fk∗, and the list of column indices of entries
present in this row gives the list of integer indices that define
the sparsity pattern of Ak. The outer product of the two vectors
FT

k∗∨.∧Fk∗ gives the sparsity pattern of the kth finite-element,

5



and thus the sparsity pattern of A is FT ∨ . ∧ F, via a single
call to GrB_mxm. Applying this technique in the deal-II finite-
element package [3] yields a speedup of about 4x for the
overall strategy, and 15x when comparing only the portion
handled by GraphBLAS, on an 18-core shared-memory system,
since the existing assembly of the sparsity pattern is handled
with a single-threaded algorithm in deal-II version 9.5. For
matrices with unsymmetric sparsity pattern and rectangular
finite-elements, we can replace FT with a different matrix G
and compute A = G ∨ . ∧ F instead.

We propose using the GrB_IndexBinaryOp to create the
numerical values of A as well, with a semiring that constructs
each entry of Ak inside its multiplicative operator. Suppose the
entries fki and fkj of F contain a user-defined data type with
enough information, along with the scalar θ, so that an index
binary operator can compute (Ak)ij = ⊗(fki, fkj , i, k, j, θ).
This operator would have access to all three indices i, j, and
k, as well as the user-defined scalar θ. The data type of θ
could be simply a pointer to a complex user-provided data
structure, and could be dereferenced with k and perhaps the
global indices i and j to find any information need for the kth
finite-element.

It may also be useful for this ⊗ operator to have access
to the local indices, ilocal and jlocal of the (Ak)ij entry. The
local index ilocal is an index into a small dense finite-element;
that is, if fki is the third entry present in the kth row of Fk∗,
then ilocal = 3 (or 2 if zero-based indexing is used). This local
index is not part of the proposed GrB_IndexBinaryOp, so if
needed it would be added to the user-defined data type and
encoded in the value of fki. We anticipate other uses for this
local index in LAGraph such as in the Connected Components
algorithm which requires the selection of the leftmost 4 entries
in each row. This suggests future work on an indexed binary
operator that includes such local indices.

V. DISCUSSION

We have shown how an indexed binary operator can simplify
the expression of algorithms in the GraphBLAS. Indexed binary
operators allow for a particularly simple and elegant BFS
but with no change in performance. For argmin/argmax the
algorithms were both simpler and much faster.

More significantly, the indexed binary operators open up new
classes of applications for the GraphBLAS. For example, the
deal-II finite element package currently uses the SuiteSparse
implementation of the GraphBLAS for symbolic finite-element
assembly. This speeds up their package considerably (4x). As
shown in this paper, with indexed binary operators, we would
be able to carry out the numerical assembly of the finite element
matrices as well.

It is well established that we can use the GraphBLAS
to build graph database systems [7]. In this paper, we’ve
shown that by reinterpreting the meaning of the indices in
a GraphBLAS matrix, we can support vector search using
the HNSW algorithm. This innovative algorithm opens up
wide areas of exploration for the use of GraphBLAS in
data management applications. Research on these sorts of

applications, however, is only possible if we have indexed
binary operators in GraphBLAS.

This paper is largely speculative. We have not implemented
the indexed binary operator described in this paper and have
not decided how they will appear in a future version of the
GraphBLAS. In this paper, we have described one approach,
one that exploits the fact that GraphBLAS operators (and more
generally, GraphBLAS objects) are opaque. Opacity is a key
design philosophy in the GraphBLAS. Opaque objects let us
use modified versions of objects seamlessly across the API.
We must define new methods to create and manage the objects
that reference indexed binary operators, but then we can use
them almost anywhere a binary operator can be used in the
GraphBLAS.

As we’ve suggested in this paper, however, there are
limitations to the indexed binary operator that follow from
this design choice. Our design is at odds with how the existing
indexed unary operator is defined. The appearance of the scalar
θ inside the operator may not work well with algorithms that
need to change the scalar from one invocation of a method to
the next. Alternative designs for the operator are possible and
will be actively discussed within the GraphBLAS community
as we decide how these operators will appear in a future version
of the GraphBLAS C API.

VI. CONCLUSION

In this paper we laid out the case for a new indexed binary
operator in the GraphBLAS. Our goal is to tell the GraphBLAS
community about this new operator and to give them some
ideas about how it might be defined. To complete the design,
however, we need use-cases and feedback on the proposed
semantics. The results in this paper are mostly speculative,
but not purely so. LAGraph [13] using the SuiteSparse [8]
implementation of the GraphBLAS has implemented a small
number of indexed binary operators. This has shown that the
concept works and can deliver both simplicity and improved
performance.

Our results show that in terms of expressiveness, an operator
in a semiring that has access to the indices of matrix elements
is powerful. What is particularly interesting is how this opens
up new types of applications for the GraphBLAS. In particular,
with indexed binary operators, we are moving closer to our goal
of supporting data management (such as HNSW), differential
equation solvers, and graph analytics all from within a single
framework. GraphBLAS ... one algebra to rule them all!
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