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Abstract—In this paper we expand upon a spectral algorithm
for the stochastic block model first presented by Chin et. al.
with additional variations of construction. Our algorithm works
with graphs that contain unequal sized blocks and non-uniform
densities which was not considered by the original algorithm.
It builds upon the spectral algorithm and remains robust and
simple while capable of solving additional cases.

Index Terms—stochastic block model, spectral theory, machine
learning

I. INTRODUCTION

The Stochastic Block Model (SBM) is a widely studied
model for community detection in graphs. Its appeal stems
from its ability to represent latent community structures within
networks, where vertices exhibit higher likelihoods of con-
nection within their respective blocks than between blocks. It
provides a probabilistic framework that models the uncertainty
inherent in real-world block networks. Through the specifica-
tion of block parameters governing intra- and inter-community
connectivity probabilities, the SBM enables inference about a
variety of tasks, including underlying community structures,
facilitating tasks such as community detection, link prediction,
and network generation.

More formally, in the classic stochastic block model, there
are k blocks each of size n where edges are generated
randomly based on the following distribution: Pairwise, there
will be an edge between nodes (u,v) with probability & if
u and v belong to the same block, and with probability %
otherwise. Our paper will consider the general case of this
scenario, with some variations in construction. For simplicity
we will focus on the £ = 2 case to start.

If we denote the true blocks (sets of users within the same
community) to be V; and V5 in the k = 2 case, we want to find
a partition of the vertex set V{ and V4 such that V; and V] are
close to each other, and as are V5 and V3. The metric that is
commonly used in literature to evaluate these reconstructions
of blocks V{ and V4 is ~y-correctness.

Definition 1. Given a set of k true blocks V; for i € [1,k], a
reconstruction V/ is y-correct if [V;NV;| > (1 —v)n Vi
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In [1], Chin et.al. showed that a simple spectral algorithm
can find a ~-correct partition with high probability under
certain constraints on a and b, namely that they have to
have a large enough gap to guarantee high fidelity community
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detection. This work was an improvement on previous work
proved by [2].

Theorem 1. There are constants Cy and Cy such that the
following holdsé For any constantsa > b > Cy and v > 0
satisfying % > C1log2, we can find a y-correct partition
with probability 1-o(1) using a simple spectral algorithm.

Abbe [3] provided an extensive survey of recent results
for SBMs and other block models, including an overview of
algorithms for community detection, including spectral and
probabilistic MAP techniques and precisely scope the limits
of these approaches. Variations of the SBM are also studied
in works such as [4] which considers community detection
in a sparse hypergraph stochastic block model. [5] proposes a
modeling system of dynamic social networks that is a temporal
extension of the SBM.

In this paper, we will focus on variations of the simple spec-
tral algorithm described by [1] for alternative constructions of
the SBM. We consider three main cases:

« Blocks of unequal size, where n is not uniform between

blocks

o Blocks of unequal density, where a is not uniform be-

tween blocks

o A combination, where blocks have both different sizes

and densities

These proposed variations represent a more realistic varia-
tion of the SBM with the goal of enhancing the community
detection algorithm’s fidelity to alternate cases that are more
aligned with real-world networks. Traditional SBM assumes
homogeneous block sizes and densities, which may oversim-
plify the structure of many real networks which are char-
acterized by heterogeneous communities. By accommodating
such variability, a modified SBM can better capture the or-
ganization of communities within networks, thereby enabling
more accurate modeling and inference. Thus, adapting the
spectral algorithm to this more realistic variation of SBM
promises to enrich both theoretical understanding and practical
applications in graph theory.

II. BACKGROUND

The spectral algorithm of [1] is motivated by the fact that
the second eigenvector of the expectation of the adjacency
matrix E(Ag) of the standard SBM separates the blocks. It is
a rank 2 matrix with eigenvalues and eigenvectors
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They observed that if they can find an approximation of the
second eigenvector of E(Ag) then they can determine which
nodes belong to which block based on its entry in the eigen-
vector. Therefore, the goal of the algorithm is to approximate
this second eigenvector uy of the expectation of the adjacency
matrix E(Ap). The spectral algorithm consists of first finding
the vector space spanned by the top two eigenvectors of the
adjacency matrix Ag. Since the first eigenvector of E(Ay) is
the all ones vector, they take the projection of the all ones
vector onto this space and approximate the second eigenvector
by taking the vector that is orthogonal to this projection. Then,
they sort the top k values and assign the corresponding nodes
to V{ and the bottom k to V5. Finally, there is a local correction
step where nodes are reassigned to the block designated by the
majority of their neighbors.

In this community detection problem, this local correction
step is so powerful that typically any result that is close enough
to the correct partitions can be vastly improved with this extra
step. In their original paper [1] showed that this simple method
achieves the result proposed in Theorem 1.

For the remainder of this paper, we will consider extensions
of this algorithm for variations where the basic assumptions
of the SBM are broken, and we will explore how the spectral
algorithm can be adapted to work in these cases.

ITII. VARIATION 1: BLOCKS OF UNEQUAL SIZE

The first variation we consider in this paper is the case
where the blocks are not the same size. In this modified
SBM, the network is still partitioned into distinct blocks each
representing a community. However, the sizes of these blocks
can differ, reflecting the heterogeneous nature of real-world
networks. We will require an additional parameter to define the
network beyond the standard model, in this case the extra size
variable. First we can consider the k£ = 2 case where the block
sizes will be defined as n and m. The edge probabilities can
no longer be defined as -~ and % as a result of the change, and
we would like to keep the edge densities within communities
consistent. Therefore, we introduce p as the probability of
within-block edges and ¢ as the probability of between block
edges, where p > ¢. See Figure 1 for a visual representation
of the expectation matrix in this variation.

Motivated by the previous result of [1] we will first consider
the eigenvectors of E(Ay). Immediately, it becomes clear that
the first eigenvector is no longer the all ones vector, and in
fact, the first eigenvector separates the blocks of this matrix.

In this case, we will get an eigenvector of E(Aj) where
values associated with vertices in V; will have value z and
vertices in V5 will have value y: [p Mgy

qgmx + pny Y

Solving for [z, y]:

]E(Au) =

Fig. 1. The expectation of the adjacency matrix in variation 1 where block
sizes vary; one block is size m and the other is size n.

y(pmz + gny) = z(gma + pny)

Then, without loss of generality we can set y = 1 and after
some algebra:

qma® 4+ p(n —m)z —qn =0

p(m —n) + /p?(n —m)? + 4¢>mn
2gm

xTr =

The eigenvector corresponding to the largest eigenvalue will
be the addition case. Since all p, q,n, m are defined by the
problem, this eigenvector can be explicitly computed. Note
that it will never be 1, unless n = m or p = ¢, both of which
we assumed to not be the case.

Now, we don’t need to find the vector space spanned by the
top two eigenvectors of Ay, we can simply compute the top
eigenvector of Ay and the Davis Kahan sin©® theorem from [6]
[7] allows us to bound the angle between the first eigenvector
of E(Ap) and the first eigenvector of Aj.

The new strategy thus becomes:

1) Remove all high degree rows and columns in the adja-

cency matrix
2) Compute the first eigenvector of the adjacency matrix
3) Take the top n entries of the eigenvector and assign its
corresponding vertices to V7 and the rest to V3

4) Apply local correction by polling the neighborhood of
each vertex. If it has more neighbors in the other block,
move it to that block.

To prove that this will work with high probability, we define
error £y = Ay — E(Ap). First we must delete rows/columns
in Ag that are outliers with degree > 20(p + q)(n + m)
because they disproportionately contribute to the operator
norm, causing ||Fy|| to be too large. Let A,E(A), and E
be the matrices obtained from deleting high degree rows
and columns from Ap,E(Ag), and Ey respectively. Define
A =E(A) —E(Ap); then we have:

A=E(A)+E



A=E(A)+A+E

The goal now is to show that A and F have a small
contribution to the operator norm. It is a simple process to
bound A, because very few nodes will have high degree.

We use the following theorem, from [1] via a Chernoff
bound:

Theorem 2. There exit a constant dy such that if d > dg then
with probability 1 — exp(—Q((p + q)~*(n + m))) not more
than (p + q)~3(n + m) vertices have degree > 20d

We take d = (p+ ¢)(n + m). From the lemma, there are at
most (p+q) ~3(n+m) vertices with degree > 20(p+q)(n+m),
which are precisely the vertices who’s corresponding rows and
columns in the original adjacency matrix will be recorded in
A, by definition. Then, A has at most 2(p + q) ~3(n + m)?
non-zero entries, 2(n + m) for each vertex, because we zero
out the entire row and column in Ay. The magnitude of each
entry is at most p + ¢ so taking the norm of A, we get:
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This is sufficient because the Operator norm is bounded by
the Hilbert-Schmidt norm.
Now, we will bound |E| using the following lemma from
[1] adapted from [8] and [9]:

Lemma 3. Suppose M is a random symmetric matrix with
zero on the diagonal whose entries above the diagonal are
independent with the following distribution:

M;; = L= P
—Dij

W.p. Dij
w.p. 1-— Dij

Let o be a quantity such that p;; < o2 and M, be the
matrix obtained from M by zeroing out all the rows and
columns having more than 200>n positive entries. Then with
probability 1-o(1), ||M1|| < Co+/n for some constant C > 0.

We can see that this structure is exactly the construc-
tion for the matrix FE. It directly follows that |[E| <

C+v/(p+ q)(n+m) for some C' with high probability.

Now we can apply the Davis-Kahan sin® Theorem to get:

E+A
A

If we bound A = (p — q)(m —n) by Cs

sin(< ug,uy) <

(p+q)(n+m)

sin(< up,uy) < Cviptaglntm _ c
Caov/(p+q)(n+m)

Assuming this condition on A, and thus that the gap between
pm+gn and gm+ pn is sufficiently large, we can see that the
angle between the two vectors: the first eigenvector of E(A)
and the first eigenvector of A is small. Therefore, we can use
it to approximate the blocks.

a b

n n
]E(Aol =

b c

n n

Fig. 2. The expectation of the adjacency matrix in variation 2 where block
sizes are the same but the probabilities of edges within blocks differ by block;
one block has intra-block edge probability % and the other has intra-block
edge probability .

The rest of the proof follows directly from the [1] paper,
once this bound is achieved we can show a high probability
of a y-correct partition reconstruction.

IV. VARIATION 2: BLOCKS OF UNEQUAL EDGE DENSITY

For the second variation, we will focus on blocks of equal
size that differ in edge density within blocks. Here, we will
denote the size of the blocks as n, just like in the classic
SBM setup. We will also return to the 7 and % notation for
intra- and inter-edge probabilities respectively, but = will be
the edge probability for just vertices within Vi, and for V5
we will use probability . See Figure 2 for a figure of the
expectation matrix for this variation.

In this case, we follow similar steps to compute the eigen-

vector of the expectation of the adjacency matrix E(A) as

we see that:
ax + by N
bx + cy Y

y=1
(a—c)£/(a—c)? +4b?
v 2

Which we can easily verify would be 1 in the case that
a = c. Again, we have that the all ones vector is no longer the
first eigenvector, and indeed, the first eigenvector separates the
blocks. We can follow a similar proof to the first variation to
show that using the same alteration to the spectral algorithm
will result in community detection with high probability of
correctness.

V. VARIATION 3: COMBINED CASE

In the combined case, we consider a scenario where the
blocks have both unequal sizes and edge distributions. A visual
representation of the expectation of the adjacency matrix in
this situation is shown in Figure 3. Here, we define our two
blocks to have sizes m and n respectively, similar to the first
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Fig. 3. The expectation of the adjacency matrix in variation 3 where both
block sizes and edge probabilities differ. One block is size m with intra-block
edge probability p and the other is size n with intra-block edge probability
.

variation. Additionally, similar to the second variation, block
one will have edge probability within blocks p and the second
block will have probability » within the block. For any two
vertices not within the same block, the edge probability will
be denoted gq.

Following similar steps to the previous two cases, we can
compute the eigenvectors of E(A) to observe that:

pmx + rny T
gmx + pny Y

y=1

(pm —rn) £ /(rn — pm)2 + 4¢®>mn
2gm

Assuming that x # 1 then we can show perfect reconstruc-
tion using the first eigenvector approximation:

Theorem 4. If mp + gn >> logln + m) and
V (mp +ng)log(m +n) << ‘(mpJ’q");(qu’m)l then the
proposed algorithm can partition communities with high prob-
ability.

Proof. We want to show that we classify nodes to communities
incorrectly with low probability. Where X; is an entry in
the adjacency matrix in row ¢, ¢ will be misaligned with
probability:

(mp + qn) + (mgq +rn)

PT(Z X; > 5

K3

)=

—(mp + gn) + (mqg + rn))
2

Pr(d_ Xi > (mp+qn) +

From the assumption in the theorem statement, this is
bounded by the following:

<< PT(Z Xi > (mp + qn) + /(mp + ng)log(m + n))

?

Take A = mp+ng and C = 1004/log(m + n), for example
Pr()_Xi = XA+ CVX)
i

Then, from the Chernoff Inequality stated in [10], we see
that this is bounded:

C2\
Pr(} X; > A+ CV\) < eap(—
(zi: ) o 2(A+Cﬁ/3)
Since C' = 1004/log(m + n) < A\? by our first assumption:
2

Pr(}_ Xi = A+ CV) < eap(——)

= exp(—100%log(n + m)/4) = (n+ m)_2500

This probability is very small compared to n + m, so it is
very probable that perfect reconstruction can be achieved in
the general case under the theorem’s assumptions.

O

If we additionally employ the correction step, this should
remove the log term in the bound via the union bound over
all sets of vertices, similarly to the result of [1]. The intuition
behind this is that C' can be a much larger factor since more
vertices are allowed to fail at the step prior to local correction
to achieve close to perfect reconstruction guarantees.

However, this general case is more complicated than the
previous two, because it is possible to observe a situation
where z = 1 if the equality: pm + gn = gm + rn holds.
In this situation, we would indeed need to explore the second
eigenvector algorithm proposed originally by [1].

Therefore, in this combined case we need to employ an
adaptive strategy that is robust to this equality becoming close
to true. We implemented the algorithm in software and found
experimentally that as expected, when the equality is not
satisfied, the blocks are easily reconstructed, as shown in Fig
6. Similarly, when the equality is satisfied, the blocks cannot
be reconstructed with the first eigenvector approximation and
we must use the second eigenvector instead, see Fig 9.

An interesting case arises when the equality is close to true,
but not completely satisfied, as shown in the example in Fig 12.
If the first eigenvector algorithm is able to find any partition,
even if it is incomplete, we can apply iterated correction steps
until convergence to further improve the community recovery.

Therefore, the adaptive strategy becomes:

1) Run the approximation algorithm of the first eigenvector.

2) If the algorithm predicts any two communities, no matter
their sizes, run the correction step repeatedly until the
communities converge.

3) If the algorithm predicts only one community, then we
approximate the second eigenvector of the expectation of
the adjacency matrix to separate the blocks.

This strategy is robust to general variations of unequal block

sizes and densities within the Stochastic Block Model, filling
in a gap from the original paper [1].
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Fig. 6. Variation 3 (unequal block size and density) example: a) Original
Adjacency Matrix, b) Reconstructed Adjacency Matrix demonstrating a full
reconstruction with the first eigenvector approximation method. This example
was generated with m=4000, n=2000, q=.1, p=.2, r=.5
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VII. CONCLUSION

In this paper, we have provided an overview of a simple
spectral algorithm for community detection of the stochastic
block model (SBM) and its variants. We have underscored
the importance of considering realistic variations of the SBM,
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Fig. 9. Variation 3 (unequal block size and density) example: a) Original
Adjacency Matrix, b) Reconstructed Adjacency Matrix demonstrating a failed
reconstruction with the first eigenvector approximation method as the first
eigenvector of the expectation of A is the all ones vector. In this case, we
will need to use the second eigenvector approximation to separate the blocks.
This example was generated with m=4000, n=2000, g=.2, p=.5, r=.8

such as those accommodating unequal block sizes and edge
densities. By embracing such natural extensions, we hope to
make the classic spectral algorithm more versatile, and to
better capture the nuanced structure of real-world networks
which often exhibit heterogeneous community organization.
This refinement is motivated by the enhancement of the fidelity
of SBM-based models to empirical data and also enriches our
understanding of the limits of this approach.

We focused on the k = 2 case specifically but the algorithms
discussed here can easily be extended to the general case. We
have not implemented the general case in software yet, but
this is something that we would like to complete as a next
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Fig. 12. Variation 3 (unequal block size and density) example: a) Recon-
struction after one Correction step, b) Reconstruction after two Corrections.
In this case, we observe an intermediate stage where the first eigenvector
approximation is able to identify a portion of the blocks but not completely
successfully. With repeated corrections, the reconstruction improves. This
example was generated with m=4000, n=2000, q=.2, p=.5, r=.775

step in this project.

Some potential future work involves considering additional
cases, such as when we do not have complete information
about the graph. In this paper, we assumed that all of the
parameters are known but this is not realistic for community
detection tasks over real-world networks. We could consider a
case like the third variant proposed here, but where the values
of p,q,r,m, and n are not known. The algorithm at its core is
still sound under this scenario, but it does have repercussions
for specific implementation and will likely affect experimental
results.

Additionally, it would be illuminating to explore further

practical applications of this method. We implemented and
tested the algorithm for the combined case on synthetic graphs,
but it would be a natural next step to empirically examine
how well this method performs on real-world networks, as the
algorithm extension presented here is more aligned than other
previous iterations of methods for this problem.
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