
An Efficient Multi-core Parallel Implementation of
SSSP Algorithm with Decreasing Delta-stepping

Rakibul Hassan
Department of Computer Science
University of Nevada, Las Vegas

Las Vegas, USA
hassar2@unlv.nevada.edu

Shaikh Arifuzzaman
Department of Computer Science
University of Nevada, Las Vegas

Las Vegas, USA
shaikh.arifuzzaman@unlv.edu

Abstract—Single-Source Shortest Path (SSSP) algorithms are
essential in various applications, from optimizing transportation
networks to analyzing social networks. This paper focuses on
implementing and optimizing a parallel Delta-Stepping algo-
rithm for SSSP on shared-memory systems. We evaluate our
algorithm’s performance using synthetic Kronecker graphs and
large-scale real-world datasets, including LiveJournal, Orkut,
and Twitter. Our parallel Delta-Stepping algorithm achieves
significant speedup through several techniques: gradual reduction
of the delta value, property-driven graph reordering, bucket
fusion, and dynamic load balancing. Extensive experiments show
that our Parallel Delta-Stepping with Decreasing Delta (PD3)
achieves speedups between 10× and 65× compared to the best-
known serial implementations and is faster than or comparable
to other existing parallel methods. These results highlight the
importance of customized parallelization strategies and algo-
rithmic optimizations for efficient SSSP computation in shared-
memory systems, with broad implications for various graph-
based applications.

Index Terms—SSSP, Parallel Algorithm, Large graphs, Delta-
Stepping, Parallel Optimization, Multi-core Systems

I. INTRODUCTION

Graph algorithms are essential in various domains such
as network routing, transportation network optimization, and
social network analysis [3], [6]–[8], [14], [16]. With the
proliferation of massive-scale graphs containing millions of
vertices and billions of edges, the need for efficient parallel
implementation of these algorithms has become increasingly
critical [4], [5], [9], [11], [13], [23], [24]. Among the essential
graph algorithms, Single-Source Shortest Path (SSSP) algo-
rithms are widely used as one of the fundamental tools for
extracting valuable insights from complex graph structures [8],
[19]. Motivated by the challenges posed by large-scale graph
datasets, our research focuses on efficient implementation
of parallel SSSP algorithms on shared-memory systems. In
particular, we address the scalability concerns by implement-
ing Parallel Delta-Stepping Algorithm with some important
optimizations.

Among classical algorithms for finding the shortest path
from a single source in a graph, Dijkstra’s algorithm [12]
and the Bellman-Ford algorithm [8] are the most widely used.
Dijkstra’s algorithm employs a priority queue and is highly
work-efficient due to its linear edge visitation. In contrast, the
Bellman-Ford algorithm has a higher time complexity but can

handle graphs with negative cycles and offers greater potential
for parallelization [25]. Despite Dijkstra’s algorithm being
optimal in terms of work efficiency, its inherently sequential
nature limits its scalability. Conversely, the Bellman-Ford algo-
rithm is highly parallelizable because it allows for independent
processing of each vertex. However, its inefficiency due to
redundant edge visits makes it suboptimal for massive graph
datasets [25].

Parallel Delta-Stepping strikes a balance between work
efficiency and parallelizability. It uses a bucket-based approach
to process vertices concurrently, prioritizing vertices in a
bucket that have smaller distances from the source [19]. A
parameter called delta is used to define the buckets, facilitating
concurrent processing while maintaining efficiency.

In this paper, we implemented a parallel version of Delta-
Stepping algorithm called PD3 which dynamically modifies
the delta parameter from a higher value at the beginning
to speed up frontier expansion to a lower, more-optimal
value towards the end steps of the algorithm. It also uses
a bucket fusion technique to relax the edges in two phases
and vertices with smaller distances from the source vertex,
get the opportunity of repeated updates as far as they fall
into the smallest bucket [30]. Moreover, as real-world graphs
exhibit a power-law degree distribution, load balancing is
an inherent problem [6], [22]. PD3 utilizes dynamic load
balancing technique to distribute the workload properly to
each of the threads. Additionally, we have implemented some
pre-processing steps like graph reordering to improve the
performance of PD3 algorithm. For example, to reach the
depth of graph quickly, we have reordered the input graph
based on degree distribution where the vertices with higher
degree get the lower index. Also, we have sorted the edge
list in ascending order so that the smaller edges which are
potential parts of SSSP tree appears sooner and we have less
amount of relaxations.

In this paper, we present our implementation and exper-
imentation of various SSSP algorithms, including Dijkstra’s
algorithm, the parallel Bellman-Ford algorithm, and our effi-
cient parallel delta-stepping algorithm, PD3. Our study aims
to provide a comprehensive comparative analysis of these
algorithms’ performances across a range of graph sizes and
structural properties, using both synthetic and real-world large

graphs. Additionally, we evaluate the applicability of our
PD3 algorithm by comparing it against state-of-the-art parallel
SSSP implementations and the traditional serial Dijkstra’s
algorithm. PD3 demonstrates superior performance and scal-
ability when handling massive graph networks. Experimental
results reveal substantial speedups achieved by PD3, ranging
from 10× to 65× compared to Dijkstra’s algorithm, and up to
a 1.4-fold improvement over the state-of-the-art parallel imple-
mentation developed by the GAP Benchmark Suite (GAPBS)
[7]. These findings underscore PD3’s effectiveness in over-
coming the scalability challenges inherent in traditional SSSP
algorithms. The contributions of this study are summarized as
follows:

• We introduce an efficient parallel version of the Delta-
Stepping algorithm (PD3) that utilizes an optimized delta
parameter and bucket fusion technique to enhance the
efficiency and scalability of the SSSP algorithm.

• We implement a dynamic load balancing technique to
evenly distribute workloads across threads, effectively
addressing challenges posed by power-law degree distri-
butions in large graphs.

• We incorporate preprocessing steps, including graph re-
ordering based on degree distribution and sorting edge
lists, to improve parallel performance by accelerating
graph traversal and reducing the number of distance
updates.

• We conduct comprehensive experiments comparing par-
allel Bellman-Ford, the state-of-the-art parallel SSSP im-
plementation by GAPBS, and PD3, demonstrating PD3’s
superior performance and scalability (e.g., achieving 10×
to 65× speedups over Dijkstra’s algorithm and up to a
1.4-fold improvement over the GAPBS parallel imple-
mentation).

• We highlight the applicability of the PD3 algorithm in
handling massive graph networks, providing valuable
insights and demonstrating its effectiveness on both syn-
thetic and real-world networks.

II. BACKGROUND AND RELATED WORK

This section covers the foundational concepts and previous
work relevant to SSSP problem. We discuss existing methods,
highlight their limitations, and establish the context for the
proposed approach.

A. Single-Source Shortest Path (SSSP) Problem

The Single-Source Shortest Path (SSSP) problem aims to
determine the shortest paths from a given root vertex r to all
other vertices in a weighted graph G = (V,E,w). Here, V is
the set of vertices, E is the set of edges, n = |V | represents
the number of vertices, and m = |E| represents the number
of edges. The weight function w(e) assigns a non-negative
weight to each edge e ∈ E. To solve the SSSP problem, the
algorithm starts by setting the distance d(r) to 0 for the root
vertex r which is also known as source vertex and d(v) to
infinity for all other vertices v ∈ V . The root vertex r is
initially active. The algorithm then proceeds through a series

of relaxation operations, updating the distances d(v) to reflect
the shortest paths.

Relaxation is the key operation in the SSSP problem and
is employed by various algorithms, such as the Dijkstra’s
algorithm, the Bellman-Ford algorithm, and the Delta-Stepping
algorithm. For an edge e = (u, v, w), the relaxation operation
is defined as:

d(v) = min[d(v), d(u) + w(e)] (1)

This operation ensures that the shortest known distance to each
vertex is improved iteratively, leading to the final shortest
distances from the root vertex r to all other vertices in the
graph.

B. CSR Representation

There are several choices of data structures to represent
the graph for SSSP problem. Linear algebra based SSSP
implementations such as GraphBLAS [15], [18] uses matrix
representation for input graph. Adjacency list is also popularly
used for solving graph problems. In this study, we have used
Compressed Sparse Row (CSR) format which is a widely used
method for efficient graph representation in shared-memory
systems [7], [10], [28]. Unlike adjacency matrices, which often
lead to wasted storage space due to their sparsity, or adjacency
lists, which can be slow for data access, the CSR format
offers a balanced solution by reducing memory usage while
maintaining relatively fast access times.

C. Related Work

The prevalence of power law degree distribution in real-
world graphs poses a significant challenge for developing
efficient parallel algorithms [26]. This distribution leads to
load imbalances, complicating the task of designing algorithms
capable of effectively handling real-world datasets. Addition-
ally, the evaluation of algorithmic efficiency often requires
scale-free datasets that mimic the characteristics of real-world
graphs. Prior to 2010, the scarcity of weighted scale-free
datasets hindered the development of parallel and scalable
Single-Source Shortest Path (SSSP) algorithms. However, the
introduction of the Graph Benchmark Suite in 2010, addressed
this challenge by providing a method to generate scale-free
Recursive Matrix-based Kronecker graphs [1]. These graphs
exhibit power law properties similar to those of real-world
graphs, enabling researchers to accurately measure the effi-
ciency and scalability of SSSP algorithms on datasets that
closely resemble real-world scenarios. This development has
significantly advanced the field of parallel and scalable SSSP
algorithms, facilitating more accurate evaluations and enabling
the creation of algorithms tailored to handle the complexities
of real-world graphs.

Different algorithms are used for finding SSSP. Dijkstra’s
[12] algorithm gives the best solution with optimal edge visit
but it is very much serial in nature. On the other hand,
Bellman-Ford [8] can work with different vertices at the same
time, but it might do a lot of unnecessary repeated work. The
Delta-Stepping algorithm [19] balances these two by using

different groups to organize vertices based on their distance
from the source vertex. This technique helps it to run the
algorithm efficiently while also being fast. Many studies have
shown that Delta-Stepping is one of the quickest and most
effective methods when it comes to parallel SSSP computing
[17], [20], [21], [27].

Several studies have explored SSSP algorithms on both
shared and distributed memory systems. Chakaravarthy et al.
[9] introduced an optimized version of the Delta-Stepping
algorithm for shared-memory systems. Their optimizations
included hybridization with Bellman-Ford, optimizing direc-
tions in SSSP, and implementing an effective load-balancing
strategy. Their implementation achieved a promising result
using 32,768 IBM Blue Gene nodes on an R-MAT gen-
erated graph with edge weights ranging from 1 to 255.
However, for extremely large power-law graphs, the scalability
required significant enhancement. Yu, Huashan, Wang, and
Luo introduced an Edge-Fencing strategy to optimize SSSP
computation on large-scale graphs [29]. Their technique cus-
tomizes the schedule for each SSSP computation, focusing
on path-centric approach and utilizing a small set of fence
values to select relaxed edges efficiently. The Edge-Fencing
approach demonstrated significant performance improvements,
achieving 3.83×-55× higher Giga Traversed Edges Per Sec-
ond (GTEPS) compared to regular Delta-Stepping. But their
experiments were limited into small size graphs. They used
Kronecker graphs to scale 21 for their experimentation.

Wang et al. [26] also implemented a version of Delta-
Stepping algorithm name hyper stepping by combining Parallel
Degree Heap with Optimized Delta-Stepping [9]. Using a
Supercomputer, they ran Kronecker graphs with weight [0,1)
and got significant speedup. Their implementation reached
7638 GTEPS with 103158 processors (over 40 million cores).
Wang et al. achieved a performance improvement of 3.7×
and handled graph sizes 512 times larger with their imple-
mentation. However, their work provided more focus on work
efficiency than resource utilization. Zhang et al. [31] intro-
duced a Bucket-aware Asynchronous Single-Source Shortest
Path Algorithm for GPU. Their method, based on “Property-
driven Reordering”, recognizes the impact of vertex degree
and edge weight properties on SSSP execution. By reordering
vertices in descending order of degree and reassigning indices
accordingly, the algorithm prioritizes frequently accessed ver-
tices with higher degrees. Additionally, edges are reordered
based on weight, with small-weighted edges receiving priority
for updates. The authors also implemented adaptive load
balancing and kernel fusion techniques to enhance perfor-
mance. While their approach showed promising results on
small-scale Kronecker graphs for GPU based systems, its
performance suffered on road networks, indicating areas for
further improvement in real-world applications.

In our proposed SSSP approach, we adopt the property
driven reordering technique along with dynamic load balanc-
ing to optimize the performance of Delta-Stepping algorithm
for CPU environment.

III. METHODOLOGY

This section covers the detailed process and methodology
employed in developing the proposed PD3 algorithm.

A. Frontier Selection Process

In our exploration of shortest path algorithms, we examine
three prominent methodologies: Dijkstra’s algorithm, Bellman-
Ford algorithm, and Delta-Stepping algorithm. Each algorithm
adopts a distinct strategy for selecting vertices to expand,
influencing its efficiency and parallelization potential. Dijk-
stra’s algorithm, renowned for its work efficiency, prioritizes
the currently found shortest non-expanded vertex as the next
frontier. This approach ensures optimal path discovery but
operates in a serial fashion, hindering parallelization possi-
bilities. Conversely, the Bellman-Ford algorithm casts a wider
net, considering all vertices for potential relaxation in each
iteration. This highly parallelizable nature allows efficient
parallel computation but introduces the overhead of revisiting
vertices multiple times, particularly in graphs with extensive
edges or cycles. In striking a balance between efficiency
and parallelization, the Delta-Stepping algorithm emerges as
a compelling compromise. By partitioning the graph into
intervals of predetermined size (referred to as delta), the
algorithm selects vertices within these intervals for expansion,
constituting the next frontier. This methodology mitigates
unnecessary vertex revisits while maintaining a degree of
parallelism, offering a promising trade-off between the serial
nature of Dijkstra’s algorithm and the exhaustive exploration
of Bellman-Ford. Figure 1 visually depicts the frontier selec-
tion process for each of the algorithms.

Here, the green colored vertices indicate the vertices which
will be expanded in the next iteration. For Dijkstra’s algo-
rithm, only the non-expanded vertex with shortest distance is
selected, hence selecting vertex 2 as it has the distance 2 from
the source vertex that is the current minimum. For Bellman-
Ford algorithm, all of the vertices are explored in the next
iteration. However, for Delta-Stepping algorithm with delta
value = 3, vertex 2 and 3 will be selected as frontier and
expanded in the next iteration as their distances which are 2
and 3 respectively, belongs within the range of delta value 3.

B. Proposed SSSP Approach

Figure 2 Summarizes the workflow of our proposed ap-
proaches for the SSSP problem. Here, we aim to compre-
hensively address the challenges posed by collecting various
types of network data, including social, transportation, and
biological networks. Also, we have used scale free Kronecker
graphs upto scale 23 for our experiments. To effectively handle
the collected data, we employ multiple data representation
techniques such as adjacency matrices, adjacency lists, and
Compressed Sparse Row (CSR) format. Analyzing the perfor-
mance of our algorithms with all of these representations, we
have chosen CSR format as it provides better performance for
large scale graph data.

A crucial aspect of our approach is data pre-processing,
where we implement “Property-driven Reordering” strategy

Fig. 1. (a) Sample graph; Frontier list expansion process of: (b) Dijkstra, (c)
Bellman Ford, and (d) Delta-Stepping methods.

Fig. 2. Workflow of our proposed SSSP methods.

that involves degree-based indexing and sorting of the edge
list to optimize data access patterns and improve the efficiency
of our PD3 algorithm. For implementation, we consider both
serial and parallel SSSP algorithms including serial Dijkstra,
serial Bellman-Ford, parallel Bellman-Ford, state of the art
Parallel Delta-Stepping algorithm from GAPBS and PD3
with varying thread configurations. Our PD3 implementation
incorporates optimization techniques such as dynamic load
balancing, gradual decrease of delta and bucket fusion which
are essential for maximizing the efficiency and scalability.
Finally, we conduct a thorough performance analysis of
our proposed approach, focusing on scalability, runtime, and
speed-up metrics.

C. Parallel Delta-Stepping with Decreasing Delta (PD3)

This paper introduces parallel version of the Delta-Stepping
algorithm, known as PD3, which incorporates several opti-
mizations to enhance its performance on large-scale graphs.
This section details the techniques and strategies employed in
PD3. The algorithm 1 shows the pseudo code of proposed

PD3 implementation. Algorithm 2 shows how the delta is
decreased. We have experimented on different decrease rate
and the optimal one is chosen. Details of each optimiza-
tion strategies are provided in the following subsections.
Algorithm 1: Parallel Delta-Stepping with Decreasing
Delta Algorithm
Input: Graph G, source vertex r, threshold value δ
Output: Shortest paths from s to all other vertices
Initialize array dist with ∞ for all vertices except r

with dist[r] = 0;
Initialize array of vectors local bins for holding

vertices;
Initialize frontier F with source vertex r;
Set, MinimumDelta ← δ Set, δ ←
δ × 3 while current bin ̸= kMaxBin do

for each thread do
for each vertex u in F do

if dist[u] ≥ δ × current bin then
RelaxEdges(G, u, δ, dist, local bins);

end
end
while small bin not empty do

Process vertices in the small bin;
for each vertex u in the small bin do

RelaxEdges(G, u, δ, dist, local bins);
end

end
δ ←
CalculateNewDelta(MinimumDelta, δ)

Find next non-empty bin;
end
Update frontier F with vertices from the next bin;
Prepare for next iteration;

end
return final distances dist;

Algorithm 2: CalculateNewDelta
Input: Minimum delta value min delta, current delta

value current delta
Output: New delta value
Calculate new delta←
max(min delta, current delta/1.20);

return new delta;

1) Optimized Use of Delta Parameters: PD3 begins with a
higher delta value to quickly expand the frontier list, covering
a good portion of the graph initially. Otherwise, a good number
of initial iterations will not contain sufficient amount of
frontier vertices to work with. As the algorithm progresses, the
delta value is gradually reduced to an optimal level, balancing
the speed of exploration with the precision of edge relaxation.
We have empirically set the initial delta 3 times of the provided
delta. After few iterations it decreases to the given delta.

2) Bucket Fusion Technique: PD3 uses a bucket fusion
technique to facilitate edge relaxation in two phases. This
technique allows vertices, which are closer to the source

(a) (b)
Fig. 3. (a) Input graph, (b) Reordered graph based on degree based indexing.

vertex to receive repeated updates as long as they fall into
the smallest bucket. By prioritizing updates for these closer
vertices, PD3 improves the accuracy and speed of shortest path
calculations. Also, these two phases can run asynchronously,
which provides computational benefit in parallel environment.

3) Dynamic Load Balancing: Real-world graphs often ex-
hibit a power-law degree distribution, where a few vertices
have many connections, and most vertices have few. This
distribution makes it challenging to balance the computational
load across threads. PD3 addresses this with a dynamic
load balancing technique, which dynamically distributes the
workload among threads to ensure efficient use of resources
and prevent bottlenecks.

4) Pre-processing Steps: To further enhance PD3’s per-
formance, several pre-processing steps are implemented. The
input graph is reordered based on the degree distribution of
vertices. Vertices with higher degrees are given lower indices,
facilitating quicker traversal to the core parts of the graph.
Figure 3 shows how input graph is converted to reordered
graph based on degree count. This reordering helps rapidly
reach the graph’s core structure, improving the algorithm’s
overall efficiency [31]. Moreover, the edge list is sorted in
ascending order so that edges forming part of the SSSP
tree appear earlier in the processing sequence, resulting in
fewer updates. Sorting the edge list minimizes redundant
computations and speeds up the algorithm’s convergence.

IV. EXPERIMENTAL EVALUATION

In this section, we cover the evaluation of the proposed
SSSP approaches through detailed performance analysis.

A. Dataset Description

For evaluating the performances of implemented SSSP algo-
rithms, we used both synthetic and real world graph dataset.
The synthetic datasets utilized in this study were generated
using the Kronecker method with an edge factor of 16 as
provided in Graph 500 benchmark [1]. For real-world datasets,
we collected some large graphs covering different domains
from renowned Graph data repository [2]. The domain covers
social networks, transportation networks and web graphs.
Table I shows the details of the datasets.

B. Experimental Environment

We conducted experiments on a Linux machine with 13th
Gen Intel Core i7-13700 processor(16 cores) and 32GB
RAM, also including cache L1 640 KB, L2: 24 MB, and L3:
30 MB. Implementations are conducted in C++ with OpenMP
for parallelization.

TABLE I
DATASET DETAILS

Dataset #Vertices #Edges Max Avg
Degree Degree

Kron 20 1,048,576 33,554,432 138344 32
Kron 21 2,097,152 67,108,864 210643 32
Kron 22 4,194,304 134,217,728 320556 32
Kron 23 8,388,608 268,435,456 487144 32
road-road-usa 23,947,347 57,708,624 9 2
Live Journal 4,036,538 69,362,378 14815 17
Orkut 3,072,626 234,370,166 33313 76
Youtube 1,157,827 5,975,248 28754 5
socfb-uci-uni 58,790,782 184,416,390 4960 3
soc-sinaweibo 58,655,849 522,642,142 278491 8
soc-twitter-2010 21,297,772 397,538,714 132512905 18

Fig. 4. Speed-up for parallel Bellman Ford implementation with respect to
serial Bellman Ford on Kronecker graphs.

C. Evaluation of Implemented SSSP Approaches

For all SSSP algorithms, we initially generated weights for
the graphs randomly within the [1,1000] range. We have used
integer weights as the compared state of the art implementation
also does so. Our experiments with Delta-Stepping involved
testing different delta values, and the optimal value of delta
varies for different graphs. We have used the best found
delta for each dataset and for comparison, same delta is used
for corresponding algorithms. We have implemented parallel
Bellman-Ford algorithm and analyzed its performance and
scalability. The Figure 4 and 5 shows the speed-up for Parallel
Bellman-Ford algorithm both on synthetic and real world
graph. As we have experimented using a machine with 16
core processor, the optimal runtime is found using around
16 threads for all of the parallel algorithms. We can see
up to 3.66× speed-up for parallel implementation to it’s
serial version. For larger graphs it shows better speed up
which indicates increase in the graph size does not affects
the scalability. However, due to high repeated edge visits, the
results are not comparatively better than Dijkstra’s algorithm.

Fig. 5. Speed-up for parallel Bellman-Ford implementation with respect to
serial Bellman-Ford on real-world graphs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 14 16 20 24

Kron 20
Kron 21
Kron 22
Kron 23

E
x
e
cu

ti
o
n
 T

im
e
 (

m
il
is

e
co

n
d
s)

No. of Threads

Scalability of PD3 for Kronecker graphs

Fig. 6. Threads vs runtime in milliseconds for proposed PD3 implementation
experimented on Kronecker graphs.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 4 8 14 16 20 24

road-road-usa
LiveJournal

Orkut
Youtube

socfb-uci-uni
soc-sinaweibo

soc-twitter-2010

E
x
e
cu

ti
o
n
 T

im
e
 (

m
il
is

e
co

n
d
s)

No. of Threads

Scalability of PD3 for real world graphs

Fig. 7. Threads vs runtime in milliseconds for proposed PD3 implementation
experimented on real-world graphs.

We conducted a thorough analysis on our PD3 imple-
mentation. PD3 implementation shows promising results and
scalability for large graphs. Fig. 6 and Fig. 7 show number of
threads vs runtime in milliseconds for PD3 on synthetic and
real world graphs, respectively. We observe that the runtime
reduces significantly till thread 16 for each of the graphs.
The increase in graph size is not affecting the scalability.
We observe good scalability for both large and small graphs.
Fig. 8 and 9 show speed up for PD3 algorithm to its serial
version for synthetic and real world graphs, respectively. We
can see significant speed-up ranging from 5.4× to 9.38×
for Kronecker graphs. With the increase in graph size, the
performance is getting better. Similarly PD3 also exhibits
excellent speed-up for real-world graphs as well ranging
from 3.47× to 12.08×. The speed-up comparison for each
parallel SSSP implementation with respect to serial Dijkstra’s

Fig. 8. Speed-up of proposed Parallel Delta-Stepping algorithm (PD3) with
respect to single thread implementation on Kronecker graphs.

Fig. 9. Speed-up of proposed Parallel Delta-Stepping algorithm (PD3) with
respect to single thread implementation on real-world graphs.

Fig. 10. Comparative speed-up (with respect to Dijkstra’s algorithm) for
implemented parallel SSSP algorithms.

TABLE II
COMPARATIVE RUNTIME (MS) OF DIFFERENT SSSP IMPLEMENTATIONS

Serial Parallel
Graphs Dijkstra Bellman-Ford GAPBS PD3

Kron 20 1337 1134 54 48
Kron 21 2857 1979 94 82
Kron 22 6495 4765 180 144
Kron 23 15032 11305 430 307
road-road-usa 11991 751968 545 547
Live Journal 8347 7769 165 124
Orkut 11897 13322 230 223
Youtube 1066 496 19 20
socfb-uci-uni 92732 59112 1409 1396
soc-sinaweibo 130333 95591 2478 2353
soc-twitter-2010 22822 9472 2117 1749

algorithm is given in the Fig. 10. It is clearly visible that PD3
completely outperforms the parallel Bellman-Ford algorithm.
PD3 also shows comparatively better speed-up and scalability
than state of the art GAPBS [7] implementation of Parallel
Delta-Stepping. Table II presents a comparative analysis of
the runtime performance of PD3 against other state-of-the-art
serial and parallel implementations. PD3 consistently demon-
strates a significantly lower runtime compared to Dijkstra’s
algorithm and the parallel Bellman-Ford algorithm. Notably,
the performance of PD3 remains stable even as graph sizes
increase. Additionally, our PD3 implementation achieves a
significantly lower or comparable runtime to the state-of-the-
art GAPBS parallel Delta-Stepping implementation across all
input graphs.

V. CONCLUSION

In this paper, we conducted extensive experiments to assess
the performance of parallel SSSP algorithms. Our proposed
PD3 algorithm shows substantial improvements in scalability
and runtime compared to existing state-of-the-art serial and
parallel SSSP implementations. The PD3 algorithm exhibits
robust scalability across both synthetic and real-world graph
datasets. While our study offers valuable insights into the
performance of parallel SSSP algorithms on shared-memory
systems, future work will focus on evaluating these algorithms
in distributed memory environments. Additionally, since road
networks do not exhibit the desired speed-up due to their
inherent structure, alternative techniques could be explored
for these specific cases. Further research can also investigate
the use of additional tools, such as memory access hardware
and GPU-based acceleration, to enhance the scalability and
efficiency of SSSP algorithms.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Award Number 2323533.

REFERENCES

[1] Graph500 benchmark. http://www.graph500.org/.
[2] Network data repository. https://networkrepository.com/.
[3] S. Abdelhamid, M. M. Alam, R. Alo, S. Arifuzzaman, et al. {CINET}

2.0: {A} cyberinfrastructure for network science. In 10th {IEEE} In-
ternational Conference on e-Science, eScience 2014, Sao Paulo, Brazil,
October 20-24, 2014, pages 324–331, 2014.

[4] S. Arifuzzaman, H. S. Arikan, M. Faysal, M. Bremer, J. Shalf, and
D. Popovici. Unlocking the potential: Performance portability of graph
algorithms on kokkos framework. In 2024 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages
526–529, Los Alamitos, CA, USA, May 2024. IEEE Computer Society.

[5] S. Arifuzzaman, M. Khan, and M. Marathe. A space-efficient parallel
algorithm for counting exact triangles in massive networks. In Proceed-
ings of the 17th IEEE International Conference on High Performance
Computing and Communications, August 2015.

[6] S. Arifuzzaman, M. Khan, and M. Marathe. Fast parallel algorithms for
counting and listing triangles in big graphs. ACM Trans. Knowl. Discov.
Data (TKDD), 14(1):5:1–5:34, 2019.

[7] S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite.
arXiv preprint arXiv:1508.03619, 2015.

[8] R. Bellman. On a routing problem. Quarterly of applied mathematics,
16(1):87–90, 1958.

[9] V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and Y. Sabharwal.
Scalable single source shortest path algorithms for massively parallel
systems. IEEE Transactions on Parallel and Distributed Systems,
28(7):2031–2045, 2016.

[10] Y. Chi, L. Guo, and J. Cong. Accelerating sssp for power-law graphs.
In Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 190–200, 2022.

[11] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel
graph algorithms can be fast and scalable. ACM Transactions on Parallel
Computing (TOPC), 8(1):1–70, 2021.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs.
In Edsger Wybe Dijkstra: His Life, Work, and Legacy, pages 287–290.
2022.

[13] M. A. M. Faysal, S. Arifuzzaman, C. Chan, M. Bremer, D. Popovici, and
J. Shalf. Hypc-map: A hybrid parallel community detection algorithm
using information-theoretic approach. In 2021 IEEE High Performance
Extreme Computing Conference (HPEC 2021), 2021.

[14] M. A. M. Faysal, M. Bremer, C. Chan, J. Shalf, and S. Arifuzzaman. Fast
parallel index construction for efficient k-truss-based local community
detection in large graphs. In Proceedings of the 52nd International
Conference on Parallel Processing, ICPP 2023, page 132–141, New
York, NY, USA, 2023. Association for Computing Machinery.

[15] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, et al. Mathe-
matical foundations of the graphblas. In 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–9. IEEE, 2016.

[16] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[17] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak. An experimental
study of a parallel shortest path algorithm for solving large-scale graph
instances. In 2007 Proceedings of the Ninth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 23–35. SIAM, 2007.

[18] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira,
and C. Yang. Lagraph: A community effort to collect graph algorithms
built on top of the graphblas. In 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 276–
284. IEEE, 2019.

[19] U. Meyer and P. Sanders. δ-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114–152, 2003.

[20] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for
graph analytics. In Proceedings of the twenty-fourth ACM symposium
on operating systems principles, pages 456–471, 2013.

[21] T. Panitanarak and K. Madduri. Performance analysis of single-
source shortest path algorithms on distributed-memory systems. In
SIAM Workshop on Combinatorial Scientific Computing (CSC), page 60.
Citeseer, 2014.

[22] A. Raval, R. Nasre, V. Kumar, S. Vadhiyar, K. Pingali, et al. Dynamic
load balancing strategies for graph applications on gpus. arXiv preprint
arXiv:1711.00231, 2017.

[23] N. S. Sattar and S. Arifuzzaman. Community detection using semi-
supervised learning with graph convolutional network on gpus. In 2020
IEEE International Conference on Big Data (Big Data), pages 5237–
5246, 2020.

[24] N. S. Sattar and S. Arifuzzaman. Scalable distributed louvain algorithm
for community detection in large graphs. Journal of Supercomputing,
78, 2022.

[25] K. Wang, D. Fussell, and C. Lin. A fast work-efficient sssp algorithm
for gpus. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 133–146, 2021.

[26] Y. Wang, H. Cao, Z. Ma, W. Yin, and W. Chen. Scaling graph 500 sssp
to 140 trillion edges with over 40 million cores. In SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15. IEEE, 2022.

[27] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: A high-performance graph processing library on the gpu. In
Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming, pages 1–12, 2016.

[28] H. Yang, H. Su, Q. Lan, M. Wen, and C. Zhang. High performance graph
analytics with productivity on hybrid cpu-gpu platforms. In Proceedings
of the 2nd International Conference on High Performance Compilation,
Computing and Communications, pages 17–21, 2018.

[29] H. Yu, X. Wang, and Y. Luo. An edge-fencing strategy for optimizing
sssp computations on large-scale graphs. In Proceedings of the 50th
International Conference on Parallel Processing, pages 1–11, 2021.

[30] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun. Optimizing ordered graph algorithms with
graphit. In Proceedings of the 18th ACM/IEEE International Symposium
on Code Generation and Optimization, pages 158–170, 2020.

[31] Y. Zhang, H. Cao, J. Zhang, Y. Sun, M. Dun, J. Huang, X. An, and X. Ye.
A bucket-aware asynchronous single-source shortest path algorithm on
gpu. In Proceedings of the 52nd International Conference on Parallel
Processing Workshops, pages 50–60, 2023.

