
Accelerating Multi-Agent DDPG Training on
Multi-GPU Platforms

Samuel Wiggins, Viktor Prasanna
Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California

Contact: {wigginss, prasanna}@usc.edu

Abstract—Multi-Agent Reinforcement Learning (MARL) is a
crucial technology in artificial intelligence applications. Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) is a state-
of-the-art MARL algorithm that has gained widespread adoption
and is considered a popular baseline for comparing against novel
MARL algorithms. The training process of MADDPG systems
involves a high volume of data communication and computation
when scaling to larger problem sizes. While state-of-the-art CPU-
GPU systems provide the necessary computing power for high-
throughput training, they do not efficiently utilize underlying
platform resources and are unable to facilitate training using
multiple GPU devices. We propose a novel accelerated system
for MADDPG training that leverages multiple GPU devices
while additionally increasing the utilization of CPU resources.
We access our MADDPG system on multiple benchmarks on a
multi-GPU platform, resulting in up to a 1.5× higher system
throughput compared to state-of-the-art CPU-GPU systems.

Index Terms—Multi-Agent Reinforcement Learning, Multi-
GPU, MADDPG

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) is an emerging
technology that has seen success in various applications such
as wireless networks [1], Unmanned Aerial Vehicle (UAV)
deployment [2], power distribution networks [3], etc. Com-
pared to single-agent Reinforcement Learning (SARL), MARL
introduces partial observability and non-stationarity challenges
when multiple agents learn in a shared environment [4]. Inter-
agent communication and coordination help alleviate these
challenges, enabling agents (or sub-sets of agents) to learn
together in a dynamic environment. Thus, MARL algorithms
differ in how they manage inter-agent dependencies and how
effectively they balance exploration in a multi-agent setting.

Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) [5] is a state-of-the-art (SOTA) MARL algorithm that
alleviates the communication learning problem through the
exchange of actions and observations between agents in an
all-to-all manner during the training process. It is considered a
Centralized-Training Decentralized-Execution (CTDE) MARL
algorithm, where all agents train centrally (using this all-to-all
exchange) while executing their own determined action on an
environment using their individual policy. MADDPG is one of
the earliest successful MARL algorithms, demonstrating effec-
tiveness in various fields, including smart grids [6], Internet
of Things (IoT) applications [7], satellite-UAV networks [8],
intelligent radar anti-jamming decision-making [9], etc.

This work was supported by the U.S. National Science Foundation (NSF)
under grant SaTC-2104264.

We conduct a comprehensive analysis of current GPU-
enabled MADDPG systems and observe several limitations
and inefficiencies that impact their overall speed performance.
(1) Sequential Execution of MARL Training Tasks: Current
CPU-GPU MADDPG systems partition the entire environment
sampling and agent training phases on different devices, per-
forming each stage sequentially, effectively underutilizing the
heterogeneous platform’s compute resources. Such a task allo-
cation is suboptimal since MADDPG is an off-policy MARL
algorithm with no strict dependency on using only newly
generated experiences. (2) Inability to train using Multiple
GPUs: State-of-the-art implementations of MADDPG are un-
able to be trained on multi-GPU platforms. Using the vast data-
parallel compute resources of multiple GPU devices should be
considered when training large-scale MARL scenarios.

Motivated by the above limitations, we propose a novel
system for MADDPG training. Our system can launch multiple
processes that collaboratively train on more than one GPU
device. We further optimize our system by concurrently ex-
ecuting tasks of off-policy MADDPG. We justify the use of
a CPU-multi-GPU platform for MADDPG training. (1) Envi-
ronment Sampling on CPU: Most open-source environments
are developed on CPU devices for easy plug-and-play between
different application-specific software simulations. (2) Model
Training on GPUs: Large-scale MARL training scenarios,
which involve many agents, large model sizes, and large batch
sizes, can take advantage of the data-parallel compute cores
of multiple GPU devices, which allows for handling larger
models and datasets that exceed the memory capacity of a
single GPU. Each GPU processes a portion of the input batch
in parallel, leading to reduced training time and increased
utilization of underlying platform resources.

Our main contributions are:

• We conduct an extensive analysis identifying limitations
and inefficiencies of current MADDPG training systems.

• We propose a novel MADDPG training system that effec-
tively utilizes system resources of a multi-GPU platform.

• We perform several ablation studies to confirm that our
optimizations have little to no effect on reward conver-
gence compared to baseline MADDPG implementations.

• We evaluate our multi-GPU MADDPG system on mul-
tiple large-scale benchmarks, resulting in up to 1.5×
higher system throughput compared to CPU-single-GPU
MADDPG systems.



II. BACKGROUND

A. Multi-Agent Deep Deterministic Policy Gradient

We consider a partially observable N -agent Markov Game
[10], a multi-agent extension of traditional Markov Decision
Processes [11], composed of a state space S, an action space
for each agent Ai (i ∈ 1...N ), a reward function for each agent
Ri : S×A 7→ R, and transition probability T : S×A 7→ P (S)
which defines the probability for agents to transition to other
states given their current states and actions taken. For agent
i, we denote its policy as a probability distribution over its
action space πi : S → P (Ai). Each agent i aims to find an
optimal policy that maximizes its own expected cumulative
reward until terminal time step T : Ri =

∑T
t=0 γ

irti , where
γ is a discount factor. Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) follows an actor-critic training paradigm
[12], using four Deep Neural Network (DNN) models for each
agent. One DNN model is used to approximate the action-
value function (critic network) and helps facilitate the training
of an agent’s policy model. Two additional DNN models,
target critic and policy networks, are used for training stability
[13] to train their non-target counterparts. These models are
usually represented by Multi-Layer Perceptrons (MLPs).

Fig. 1. Current state-of-the-art training of MADDPG systems

The training process of MADDPG can be viewed as two
distinct phases, as shown in Figure 1. (1) Data Collection: N
Actors, each holding an agent’s policy network, interact with
multiple (determined by the number of rollouts) environment
simulations, taking actions based on received observations.
Experience tuples containing data points for training are stored
in a replay buffer. (2) Model Update: A Learner is responsible
for agent critic and policy networks training through Stochastic
Gradient Descent (SGD) [14] using a batch of experiences
sampled from the replay buffer. In MADDPG, critic mod-
els are updated first, followed by policy networks. Updated
policies are then used to interact with the environment in the
following Data Collection phase. This phase in current SOTA
MADDPG implementations can either happen on the CPU or
offload to an accelerator device, such as a GPU, FPGA, etc.,
to use additional compute resources on those platforms.

B. Challenges of training large-scale MADDPG Systems

There are several limitations that impact the speed perfor-
mance of current MADDPG systems. Figure 2 shows a single-
training-iteration of MADDPG on an environment simulation

Rover Tower [15] based on the popular Multi-Particle Envi-
ronment (MPE) [5] using a CPU-GPU platform. This figure is
representative of different environment simulations. While the
ratio between Data Collection and Model Update execution
times may differ between different simulations (since state
space S and an agent’s action space A may have different
dimensions), increasing the number of agents (along with
batch size, model size, etc.) will result in the Model Update
phase continuing to dominate end-to-end MADDPG training.
This motivates the need to accelerate the Model Update phase
of MADDPG. A data-parallel multi-GPU approach can reduce
execution time by concurrently processing a subset of the full
batch of experiences on each GPU device. More information
about our multi-GPU system is discussed in Section III.

Fig. 2. Normalized Execution Time Breakdown

C. Related Work

There are few works that focus on accelerating MARL
systems. RLlib [16] is a popular SARL library with support for
a few decentralized MARL algorithms. However, multi-GPU
support can only be applied to SARL algorithms. MARLlib
[17] extends RLlib to include additional popular MARL al-
gorithms, including MADDPG. However, MARLlib does not
have any multi-GPU support. [18] introduces a CPU-FPGA
heterogeneous system that accelerates MADDPG training.
However, this work only explores smaller-scale MPE envi-
ronments with few agents. All of the above implementations
do not enable concurrent Data Collection and Model Update
for their respective off-policy algorithms.

III. MULTI-GPU MADDPG TRAINING SYSTEM

A. System Overview

Our MADDPG system, shown in Figure 3, consists of
an Actor process and multiple Learner processes. An exam-
ple notation: “Experience Sampling i (G.1)” refers to the
Experience Sampling at iteration i for GPU 1. The Actor
process is responsible for the Data Collection Phase, where
agent policy models interact with the environment simulations
to generate experiences. These experiences (observation, ac-
tion, next observation, reward) are stored in a replay buffer
that is created in a shared memory space available to all
processes (Actor and Learners). The Actor process appends
experiences to this shared replay buffer, while the Learner
processes sample a random batch of experiences to perform
Critic and Policy network updates using SGD. Unlike current
state-of-the-art MADDPG implementations, our system can
deploy multiple Learner processes on multiple GPU devices,
addressing the limitation of the Inability to train using Multiple
GPUs. We use a batched-data-parallel training scheme across



Fig. 3. MADDPG Training on a Multi-GPU Platform

GPU devices. Each GPU device stores copies of all agent
neural networks in GPU global memory. We send a micro-
batch (a subset of the whole batch; i.e., for a batch size of
1024, two GPUs will each get 512 samples) to each GPU
Learner in order to perform SGD. Gradients are synchronized
across Learner processes using a Ring AllReduce operation,
where each process can then calculate the same final Critic and
Policy weights with the aggregated gradients. Updated agent
policy weights are then used in the next Data Collection phase
to generate new experiences.

MADDPG is an off-policy MARL algorithm. Actors inter-
acting with simulations generate experiences during the Data
Collection Phase and stores these experiences in a replay
buffer. Learners samples a batch of experiences from the replay
buffer in the following Model Update phase. It is possible that
a Learner samples experiences that were not collected during
the previous Data Collection iteration. Experience tuples that
are multiple iterations old (meaning they were generated from
outdated policy models) are still considered in off-policy
MARL. Because of this, our system addresses the limitation
of Sequential Execution of MARL Training Tasks by enabling
concurrent execution of Data Collection and Model Update
Phases (hence Experience Sampling from the replay buffer
that is from the previous iteration: i-1 from Figure 3).

IV. ABLATION STUDIES

A. Overlapping Data Collection and Model Update Phases
A key optimization of our system is leveraging the off-

policy nature of MADDPG by overlapping the Data Collection
and Model Update phases rather than executing each task
sequentially. This means that Actors in the Data Collection
phase will sample experiences from the environment with
policy networks that are an iteration old. Figure 4 shows
the mean episode reward using our optimization against the
original synchronous training method for an example en-
vironment simulation Cooperative Communication from the
MPE. We average across ten different runs and observe that
this optimization has a negligible (0-2%) impact on reward
convergence. This trend is consistent with other environment
simulations. Overlapping these phases is particularly beneficial
in scenarios with a fewer number of agents, where the exe-
cution times of both phases are relatively close. Our speedup

benefit of overlapping both phases is bounded by the single-
iteration-execution time of the slowest phase.

Fig. 4. Reward Convergence Comparison overlapping MADDPG Phases

B. Shared Replay Buffer among Training Processes

Our system can deploy multiple Learner processes depend-
ing on the number of available GPUs on a given platform.
These GPU Learner processes need to be able to access
the shared replay buffer that stores the experience tuples
generated by the Actor process. In traditional single-Learner
MADDPG training, a single CPU or GPU process randomly
samples a batch of experiences from the replay buffer. In our
system, each Learner process samples its own micro-batch
of experiences, where it is possible to select duplicate or
different samples because of the randomness of sampling from
the replay buffer. Figure 5 shows the mean episode reward
of a single Learner process compared to ours with multiple
Learners averaged across 10 runs. Again, we see negligible
convergence differences (slightly in the beginning) between
the two (0-5%).

Fig. 5. Reward Convergence Comparison using a Shared Replay Buffer



Fig. 6. MADDPG System Throughput Comparison with varying Batch Sizes (left) and number of Agents (right)

V. EVALUATION

A. Experiment Setup

Performance Metrics: The main metric optimized by an
acceleration system for MARL is the system throughput
in terms of number of Agent-gradient-updates Per Second
(APS):

APS =
number of agents × batch size

Titeration
, (1)

where Titeration is the single-training-iteration execution
time. Since we are overlapping the Data Collection and
Model Update phases in our implementation, Titeration =
max(TDC , TMU ), where TDC and TMU are the single-training-
iteration execution times of the Data Collection and Model
Update phases, respectively.

TABLE I
PLATFORM SPECIFICATIONS

Platform CPU
AMD EPYC 9754

GPU
NVIDIA H100

Frequency 3.1 GHz 1.755 GHz
Memory Bandwidth 460.8 GB/s 2.04 TB/s
On-Chip Memory 256 MB L3 Cache 50 MB L2 Cache
Peak Performance 6.35 TFLOPS 51.2 TFLOPS

Platform and Environment Specifications: We evaluate
our implementation using the Rover Tower environment from
the MPE. Our results are representative of other benchmarks,
which all share relatively similar simulation times with varying
action and observation space dimensions. In our experiments,
we vary the batch size and number of agents since GPUs
greatly outperform CPUs when training on larger problem
sizes. All DNNs for each agent are 3-layer MLPs with hidden
dimensions of 1024. Other hyperparameters are consistent with
the original MADDPG paper [5].

The specifications for our chosen devices are outlined in
Table I. We use a two-socket AMD EPYC 9754 with two
NVIDIA H100 GPUs connected via PCIe, where our baseline
comparison is a CPU-GPU setup using the same devices.
While our experimental setup only utilizes two GPU Learners

on two GPU devices, our training system can be extended
to accommodate any number of GPUs. We implement our
design using PyTorch v2.3.1 with CUDA v12.1.0 and Python
v3.10.14. We use PyTorch’s DistributedDataParallel wrapper
to enable multi-process MADDPG training. For our Multi-
GPU implementation, we split the full batch of experiences
into equal micro-batches for each GPU.

B. Performance: System Throughput (APS)

The bar plots in Figure 6 show an APS comparison between
the baseline CPU-GPU and our multi-GPU implementation.
The left plot varies the batch size from 512 - 4096 samples
in a 32-agent experiment. We observe that the CPU-GPU
platform outperforms our multi-GPU implementation when
training with smaller batch sizes, specifically sizes of 1024
and below. This is because each gradient update employs full-
batch forward and backward propagation for both the critic
and policy networks, allowing concurrent operation on mul-
tiple samples, which scales effectively with increasing batch
sizes without significantly extending TMU . In our multi-GPU
system, the original batch is divided into micro-batches. When
these micro-batches fail to fully utilize the extensive CUDA
cores available on the GPU devices, distributing the training
across multiple devices becomes inefficient, coupled with the
additional synchronization overhead of gradient aggregation.

The right plot varies the number of agents using a batch size
of 4096. Using our multi-GPU approach, we observe up to a
1.5× increased system throughput (maximum achieved APS
at 64 agents). Our optimization of overlapping Data Collection
and Model Update phases has less effect when training with
more agents; thus, the reduced training time using multiple
GPUs has more effect when scaling to a large number of
agents. The empirical results from both plots suggest that using
multiple GPUs should be considered when training with large
batch sizes with many agents.

VI. CONCLUSION

We developed the first MADDPG system that can leverage
multiple GPU devices for agent policy network training. We
conclude that the usage of multiple GPUs can lead to increased



system throughput when training with larger batch sizes and
number of agents. Our ideas can be applied to other off-policy
algorithms with different model specifications.

REFERENCES

[1] X. Lin, Y. Tang, X. Lei, J. Xia, Q. Zhou, H. Wu, and L. Fan, “Marl-
based distributed cache placement for wireless networks,” IEEE Access,
vol. 7, pp. 62 606–62 615, 2019.

[2] Z. Dai, Y. Zhang, W. Zhang, X. Luo, and Z. He, “A multi-agent
collaborative environment learning method for uav deployment and
resource allocation,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 8, pp. 120–130, 2022.

[3] J. Wang, W. Xu, Y. Gu, W. Song, and T. C. Green, “Multi-agent
reinforcement learning for active voltage control on power distribution
networks,” Advances in Neural Information Processing Systems, vol. 34,
pp. 3271–3284, 2021.

[4] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. De Cote,
“A survey of learning in multiagent environments: Dealing with non-
stationarity,” arXiv preprint arXiv:1707.09183, 2017.

[5] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[6] W. Lei, H. Wen, J. Wu, and W. Hou, “Maddpg-based security situational
awareness for smart grid with intelligent edge,” Applied Sciences,
vol. 11, no. 7, p. 3101, 2021.

[7] Y. Zhu, H. Yao, T. Mai, W. He, N. Zhang, and M. Guizani, “Multiagent
reinforcement-learning-aided service function chain deployment for in-
ternet of things,” IEEE Internet of Things Journal, vol. 9, no. 17, pp.
15 674–15 684, 2022.

[8] S. Guo and X. Zhao, “Multi-agent deep reinforcement learning based
transmission latency minimization for delay-sensitive cognitive satellite-
uav networks,” IEEE Transactions on Communications, vol. 71, no. 1,
pp. 131–144, 2022.

[9] J. Wei, Y. Wei, L. Yu, and R. Xu, “Radar anti-jamming decision-making
method based on ddpg-maddpg algorithm,” Remote Sensing, vol. 15,
no. 16, p. 4046, 2023.

[10] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine learning proceedings 1994. Elsevier,
1994, pp. 157–163.

[11] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[12] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] S.-i. Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[15] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International conference on machine learning. PMLR,
2019, pp. 2961–2970.

[16] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” in International conference on machine learn-
ing. PMLR, 2018, pp. 3053–3062.

[17] S. Hu, Y. Zhong, M. Gao, W. Wang, H. Dong, X. Liang, Z. Li,
X. Chang, and Y. Yang, “Marllib: A scalable and efficient multi-agent
reinforcement learning library,” Journal of Machine Learning Research,
2023.

[18] S. Wiggins, Y. Meng, R. Kannan, and V. Prasanna, “Accelerating multi-
agent ddpg on cpu-fpga heterogeneous platform,” in 2023 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2023,
pp. 1–7.


