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Abstract—High-performance computing (HPC) has enabled
advancements in computation speed and resource cost by uti-
lizing all available server resources and using parallelization
for speedup. This computation scheme encourages simulation
model development, massive data collection, and AI computation
models, all which store and compute on massive amounts of data.
Data compression has enhanced the performance of storing and
transferring this HPC application data to enable acceleration,
but the benefits of data compression can also be transferred
to the active allocated memory used by the application. In-line
compression is a compression method that keeps the applica-
tion memory compressed in allocated memory, decompressing
memory as its data is needed by the algorithm. The actively
decompressed data size in allocated memory can be limited by
grouping and compressing the data into blocks informed by the
application’s computational kernel’s data access patterns and a
selected compressor. This research explores factors such as block
size and compressor choice on the runtime and memory usage of
the Matrix Multiplication kernel. Matrix multiplication (MM) is a
fundamental HPC algorithm that exemplifies the memory access
patterns and use cases present in other HPC kernels. MM kernels
provide a baseline for evaluating in-line compression due to MM’s
row-based data access patterns and the usage of several matrices
to compute the resulting matrix. Trade-offs between memory
size and the compression runtime necessitate tuned parameters
for each in-line compression-enabled kernel. The results of this
research demonstrate essential parameter trends, trade-offs, and
the importance of locality in the kernel’s data access patterns.

Index Terms—HPC, Data Compression, In-line Compression,
Matrix Multiplication

I. INTRODUCTION

High-performance Computing (HPC) is the practice of
sharing computing resources and tasks among several nodes
to enable streamlined data processing and increased comput-
ing power. Data scientists use HPC systems to process and
generate terabytes and petabytes of data through simulations
and data collection [9].

Memory storage sizes and transfer speeds are bottlenecks
in HPC operations [1], [10], [11], [21]. To mitigate this
bottleneck, HPC systems use data compression schemes to
exchange extra computations to reduce the size of data to be
stored or transferred.

Compression is a necessary tool for large-data HPC systems
in two ways. First, it reduces the size of the data needed to be
stored in memory storage. This enables efficient usage of the
memory space to allow more data storage. Second, reduced
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data storage means that less data needs to be transferred to
allocated memory, enabling faster transfer times than transfer-
ring the complete original data.

Processing any data requires loading the data into a node’s
allocated memory. Any compressed data must be decom-
pressed for calculations to have any meaning. The standard
approach is to load all of the required application data in
the kernel’s allocated memory space. This approach requires
using large nodes with massive memory spaces, enabling
fast transfers and calculations across the entire dataset. This
method enables fast calculations, but enabling this approach
has some drawbacks. The more memory a kernel needs, the
less likely the resources will be available to perform that
function. Decompressing and storing an entire dataset requires
nodes with memory suitable for such large data. The process
would require nodes to be selected that have the memory
capacity necessary for that process. Because there is a limited
number of large nodes available, those that are available
have a high demand. Enabling nodes with large memory
becomes expensive time-wise due to waiting for the necessary
resources. In a cloud-based system, this time-cost becomes a
monetary cost to access a high-demand resource.

Costly nodes encourage searching out a solution that could
process large data with smaller, less powerful nodes. One
could search out the smallest possible node with the memory
space to analyze data the standard way, but that approach post-
pones examining if those resources are being used effectively.
This allocated memory management opens the door for in-line
compression and other allocated memory reduction techniques.

A. Purpose of this Research

This research analyzes the properties of in-line compression
to explore its benefits and limitations across input parameters
and configurations. In-line compression parameters such as
data organization and blocking impact the number of com-
pression/decompression operations requested, the runtime of
the system, and the compression ratio or memory benefit from
utilizing in-line compression.

In-line compression builds on preexisting kernels to improve
their allocated memory access, and any improvements pro-
vided by in-line compression are relative to the performance
of the kernel. Matrix-multiplication is used as the exemplary
kernel due to its abundance and importance in HPC operations
as well as its ability to demonstrate features like locality
and multiple datasets that are present in many other kernels



that could benefit from in-line compression techniques. An
interesting aspect of in-line compression is the use of splitting
the kernel dataset into several sections, or blocks, to enable
random access to compressed data.

The properties obtained by this research informs decisions
for improving the performance of in-line compression in sys-
tems involving many in-line kernels. This research makes the
following contributions to in-line compression development:

• Discuses the importance and potential use-cases for both
full and partial in-line compression.

• Uses matrix-matrix multiplication as an exemplary kernel
to analyze design trade-off decisions went adapting code
to use both types of in-line compression.

• Experimental results on dense matrices representative
of those in ML and scientific computing show in-line
compression significantly reduces the memory footprint
for a dense matrix-matrix multiply by more than 300×.

• Determine that data layout transformations that lever-
age knowledge of both the data access pattern and the
compressed array structure are required to obtain good
performance.

The following sections lay a framework for understanding
and building upon in-line compression. Section II introduces
key background concepts for the construction of in-line com-
pression, such as compression itself, kernels, and the purpose
and use cases for in-line compression. Section III presents
the in-line compression architecture and describes how in-line
compression can be done. This chapter also highlights key
parameters and presents an in-line compression performance
model. Section IV examines key parameters experimentally by
exploring the results of in-line compression performance on a
Matrix-Multiplication kernel.

II. BACKGROUND AND RELATED WORK

In-line compression is based on several mainstays in HPC
development. Existing compressors, with their differing design
philosophies and architectures, can be incorporated into an
in-line compression application. In-line compression applica-
tions incorporate these compression techniques in the same
continuous operational sequence as a kernel performing a
specified algorithm. The kernel that is selected determines
several options for how compression can be implemented in
that kernel, and each compression option impacts the overall
runtime and memory performance of the in-line compression
algorithm. In-line compression algorithms vary based on the
use case of the kernel, how much memory is available to the
kernel, and the memory access patterns of the kernel.

A. Compression

1) Compression Factors: Data compression is an effective
tool to reduce memory storage and transfer requirements in
HPC systems [4], [7], [12]. There are several important factors
to consider when compressing data. The compression ratio
or rate of the compression quantifies the change of data size
between the original size and the compressed size. Equation
1, with the compression ratio CR, the original data size

O, and the compressed data size C, reveals how a positive
compression ratio indicates a smaller compressed data size.

CR =
O

C
(1)

Another important consideration of compression is the com-
pression runtime speed, as the memory reduction comes at the
cost of additional processor time. A slower but more precise
compressor is great for large scientific data where accuracy is
important, but it is not as useful for streaming applications that
require fast decompression operations. A final consideration
is the impact of the compression on the integrity of the data.
Some systems require the compression process to be able to
exactly restore the original data, while others can sacrifice
some acceptable level of accuracy for improvements in runtime
and rate.

2) Lossless and Lossy Compression: Lossless compression
algorithms are designed to guarantee that the data generated by
decompression perfectly matches the original uncompressed
data. There is no loss in the data accuracy; the error is zero.
This type of data is useful for applications such as measuring
sensitive data, recording rare events, and fields where precision
and accuracy are critical. This accuracy comes at a cost of
increased runtime and small compression ratios.

Error-bounded lossy compression sacrifices an acceptable
level of accuracy to gain increases in compression ratio and
runtime. The acceptable error is a parameter of the compressor
that can ensure a specific error bound range. State-of-the-art
lossy compression ratios can enable compression ratios in the
range of 20 [4]–[6]. Lossy compression is commonly used
to compress scientific floating-point data, as it is by nature an
approximation.

There are two major error-bounded lossy floating-point
compressors used in this research. SZ is an adaptive
prediction-based error-bounded lossy compression framework
developed at Argonne National Laboratory [4]–[6]. SZ uti-
lizes three main error-bounding modes. The absolute error-
bounding (SZ-ABS) limits the error to within a specified
absolute error bound. The point-wise-relative error-bounding
mode (SZ-PWR) limits the error to within the user-provided
proportion of the dataset’s range. The Peak-Signal-to-Noise-
Ratio error-bounding mode (SZ-PSNR) guarantees that the
PSNR calculation of the data retains the minimum user-
provided value.

ZFP is a block-wise transformation-based compressor de-
veloped at Lawrence Livermore National Laboratory. [7] Two
ZFP error-bounding modes are utilized in this research. First,
the fixed-accuracy mode (ZFP-ACC) limits the absolute error
to the user set error bound, similar to SZ-ABS. Second, the
rate-based ZFP error-bounding mode (ZFP-RATE) supports
random access into the compressed data at the cost of com-
pression ratio.

Testing various compressors normally requires a complete
redesign of software to configure and run different compres-
sors with different APIs. LibPressio [8] is a software library
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Fig. 1. Matrix Multiplication Implementation

designed to provide a common interface for various compres-
sion algorithms within HPC environments. It allows developers
to integrate compression and decompression functionalities
into their applications more easily by abstracting away the
complexities of individual compression libraries.

B. Matrix Multiplication

Matrix multiplication is a common linear transformation
kernel that is common in many HPC use cases, such as
scientific computing, graphics processing, machine learning
model training, and cryptography. For this reason, matrix
multiplication is the representative kernel used in testing in-
line compression.

Given matrices A and B where the number of columns in
A matches the number of rows in B, matrix C is calculated
by Equation 2, where n is the size of the matrices. Figure 1
provides a visual guide for what the data access pattern for
matrix multiplication is. For each of the output elements in
C, the corresponding row in A and column in B are accessed
and linearly transformed to generate that output element.

Cij =

n∑
k=1

Aik ×Bkj (2)

The time complexity of the standard matrix multiplication
kernel is O(n3). While optimizations to matrix multiplication
have been made to improve its runtime complexity, the stan-
dard matrix multiplication calculation is used as an example
for in-line compression.

C. Related Work

Compression schemes that reduce memory use are the basis
for memory savings in HPC. Much research is dedicated to
use cases and improvements for data compression. [21] details
use cases for floating-point lossy data, the type of data used
in this research. Compressed plots and images keep the data
size lower while still retaining acceptable visual fidelity for
the image’s use case. These compressed files are smaller than
uncompressed data, reducing the memory footprint of the data.
Smaller files implies a reduced intensity of the data stream
when transferring data from memory storage [25]–[29].

These software-level benefits can be used to reduce the
I/O time of the system, accelerate checkpoint/restart systems,
network speedup [30]–[32], and accelerate the overall kernel
execution. Reduced checkpoint times [22]–[24] allows HPC
simulation checkpoints to have a smaller impact on the over-
all application operations while still providing the memory
backup.
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Caching is enables speedup by keeping frequent or im-
minent resources close to where computation is performed.
This can be performed through hardware and software caches
that save a copy of frequent data to reduce access times
for later operations. Software caches [13]–[15] are useful to
improve I/O performance and to cache input for parallel tasks.
Hardware caches [16]–[20] have been paired with compression
to expand the size of main memory and hardware caches. In-
line compression has been explored utilizing software caches,
specifically how cache configuration impacts the performance
of full in-line compression [3].

III. IN-LINE COMPRESSION ARCHITECTURE

A. Methods Summary

In-line compression is a transformative data management
system that uses compression and aggregation techniques to
reduce the amount of data stored and transferred in allocated
memory in high-performance computing environments. This
section explores the differences in purpose and implementation
between standard memory storage compression and in-line
compression.

1) In-line Compression Overview: The purpose of in-line
compression differs from compression for memory storage.
Compression is commonly used to reduce the size of kernel
data that is stored in memory storage such as a hard drive or
cloud memory. Its purpose is to reduce both the storage size
and the size of data needed to be transferred to a node for
computation. The purpose of in-line compression is to reduce
the amount of allocated memory in a node that is needed to
access all of the data necessary for a kernel’s computation.

Figure 2 illustrates the standard method of decompressing
data to use with a kernel. The compression and decompression
operations occur between the compressed data housed in mem-
ory storage and the decompressed data storage in allocated
memory. The entire dataset is decompressed in main memory.



Figure 3 demonstrates the in-line compression implementa-
tion. The compressed data size is copied into allocated mem-
ory. When data is needed, only what is needed for a specific
operation is decompressed. This means that the compression
and decompression operations retrieve and store data from the
allocated memory alone. Note that if the entire compressed
data gets decompressed, the allocated memory usage is larger
than its standard counterpart. The compressed data needs to
be arranged such that individual sections (or blocks) of that
data can be decompressed as needed. Block selection is a
feature of interest when exploring the performance of in-line
compression.

Enabling in-line compression in a kernel involves three
main steps: configuring input data in the format for that
in-line compression configuration, storing compressed data
in allocated memory, and moving compressor calls to data
access time. First, the kernel data is arranged into blocks of
data that are individually compressed. Any manager for in-
line compression needs to keep track of which block each
element of data is in so that the correct block can be randomly
accessed when the data is needed at runtime. Second, the
in-line configured data is copied over to allocated memory.
This enables the compressor to quickly access the data blocks
that are needed for decompression without relying on slower
memory storage bus access. Third, instead of decompressing
all blocks before the kernel’s operation to keep the data close
to the kernel, the decompression calls need to be moved into
the kernel’s data access scheme. That is, when a new row
or data from a specific block is needed, any old blocks are
compressed back into allocated memory, and the correct blocks
are decompressed to take their places.

2) Block Types: Breaking a dataset into blocks of data
enables each block to be compressed and decompressed in-
dividually, enabling random access to compressed data. How
the data is blocked informs runtime and memory performance.

There are two main types of in-line compression blocking
schemes: full and partial. The full in-line compression scheme
involves compressing each sub-dataset individually. For the
matrix multiplication kernel, each matrix is compressed in-
dividually. When a matrix is needed, that entire matrix is
decompressed. This enables fast access times as the entire
matrix is present in allocated memory, but the allocated
memory must store the entire decompressed matrix.

The partial in-line compression scheme enables the user to
keep less active allocated memory decompressed by limiting
the size of each block of compressed data. This results in
many smaller compressed data blocks. The user specifies a
block size, the number of elements in each compression block.
For all of the data in all of the sub-datasets, data is com-
pressed in groups of that block size. Accessing smaller blocks
involves decompressing the blocks needed, manipulating the
data in those blocks, and re-compressing that data block.
These additional compression calls increase the overhead of
the compressor on runtime but limits the allocated memory
usage. This enables less active memory usage as only a
necessary fraction of the data is decompressed during each

kernel operation. How these blocks are selected can play a role
in memory and runtime performance of in-line compression.

3) Block Tuning Factors: Block size is an integral com-
ponent of how in-line compression works, and the block size
parameter needs to be tuned for its use case. The extreme
block sizes provide qualitative insight into how the block sizes
affect memory and runtime performance. On one extreme,
full in-line compression, where every matrix is its own block,
provides access to an entire dataset close to memory. This
means that the decompressed matrix is taking a relatively large
space in allocated memory, but only one set of compression
and decompression operations are needed to access this data.
Full in-line compression causes a small runtime increase, but
it enables an entire matrix to be decompressed with easy
access to the kernel at the cost of large allocated memory
usage. On the opposite extreme, a partial in-line compression
scheme with each element being its own block (i.e. a block
size of 1) has the opposite performance. The allocated memory
usage is very minimal, as only the elements needed for
each operation are compressed at once, but this memory
savings comes at a large runtime cost to enable the many
compression and decompression calls to access those small
blocks. Tuning these block sizes are essential to providing the
memory improvements necessary for a kernel on user-specified
hardware while keeping the runtime cost at a tolerable limit.

Block count also subtly affects the memory usage in the
compressed data. Each compressed block has some level of
overhead metadata that enables the decompression of that
block. Having more blocks can decrease the impact of the
decompressed data on the allocated memory size, but more
blocks can increase the compressed data’s impact on allocated
memory through 2 main methods. First, the increase in blocks
increases the amount of memory attributed to metadata. As
block sizes decrease toward the minimum of 1 element per
block, the metadata could even be larger than the encoded
data depending on the chosen compressor. Second, less data
in blocks means less locality for the compressor to take
advantage of when compressing the data. Compressors like
SZ and ZFP that rely on interpolating from neighboring data
have better compression ratios when more data is compressed
as compressions can be informed by more data [4], [7], [33].
These increases in compressed memory size as the number
of blocks increases enables the memory improvements to
eventually become saturates, limiting more allocated memory
size improvements enabled by block size.

The context of data is important in selecting blocks for
that dataset. Data rarely exists in a vacuum, and patterns in
types of data can be leveraged for better compression. Block
dimensionality can be used to leverage the dimensionality used
by compressors. 1-dimensional blocks group the data as if it is
just a list of data. This would be the equivalent of only looking
at a row of a picture’s pixels to draw information from. 2 and
3 dimensional blocks could keep data blocked together if they
are frequently decompressed together for compressors that use
multiple dimensions. If a compressor makes decisions using
multiple dimensions, then having blocks that consider these



multiple dimensions may be useful to reduce the compressed
data size in allocated memory.

4) Kernel Data Access: Decompressing data when the
kernel needs it is the main means for in-line compression
to reduce the allocated memory usage. HPC kernels access
data differently depending on what operations they are per-
forming. A kernel could access data row-by-row, sequentially,
or even random access. When selecting the block sizes and
locations, it is important to take the kernel’s access patterns
into consideration. Blocking choices that decompress all and
only the required data for each operation and accomplish
this with minimal decompression operations balance reducing
the decompressed allocated memory usage with managing the
runtime overhead for compression.

The matrix multiplication access pattern provides a useful
example to explore this concept of kernel access patterns
affecting the data blocking. To calculate a single element in
the output matrix, all of the elements in the corresponding row
in the first matrix and the corresponding column in the second
matrix must be accessed.

Block choice matters when tuning in-line compression for
a kernel, and the matrix multiplication kernel is no excep-
tion. Because each kernel operation requires access to a 1-
dimensional slice of multiple matrices, 1-dimensional blocking
enables streamlined access to the specific required data. An
entire row or column needs to be decompressed at once to
enable each operation. Thus, selecting a block size that is
related to the shared row and column length limits extra
decompression operations.

B. Compression Manager Analysis
Managing the compression and decompression of memory

blocks inside of the allocated data is essential to the im-
plementation of in-line compression. In-line compression for
this research was managed through an in-line compression
manager (ICM). The ICM enables the selection of compressor,
compressor options such as error bound, block size, and other
parameters for in-line compression.

The ICM provides a good starting point for understanding
in-line compression. It enables the blocking and compressed
data management necessary to enable full and partial in-line
compression. It provides options to explore matrix dimen-
sionality, block sizing, compressor choice, error bound, and
optimization choices. The main disadvantages of the ICM’s
implementation is the lack of certain options. Currently only
SZ and ZFP are supported compressors, athough the use
of LibPressio makes adding more compressors trivial. Data
blocking in the ICM is only 1-dimensional, which limits the
context a compressor has to enable higher compression.

C. In-line Compression Metrics
The general performance of in-line compression algorithms

can be modelled by understanding how in-line compression is
set up. Input parameters such as kernel, compressor, specified
compression ratio, original data size, and block size play a
role in affecting the allocated memory usage and the runtime
of the kernel.

1) Compression Ratio: Compression ratio (CR) is typically
defined with respect to the uncompressed data size (U ) and
the compressed data size (C) as reflected in Equation 1 where
U is the original data size. A simple ratio easily demonstrates
whether positive compression occurred (if CR > 1).

While this compression ratio information is useful, it does
not demonstrate the size of the active allocated memory data.
Since reducing the allocated memory usage is the main goal
of in-line compression, having a memory measurement that
takes the allocated data size into account is essential to accu-
rately assess the memory implications of in-line compression.
Equation 3 describes the compression ratio equation used for
the following results. Because the allocated memory size is
the compressed data size (C) and the decompressed block
sizes (DB), the modified in-line compression ratio (iCR) is a
compression ratio that takes the entire allocated memory into
account, rather than just the compressed size of the data.

iCR =
U

C +DB
(3)

This modified compression ratio reveals how block choice
can affect the overall allocated memory usage. Take a matrix
multiplication kernel that process 2 matrices (A,B) and gen-
erate a third matrix (C) where AB=C. First, one can note that
reducing memory involves a balance between the compressed
data size and the size of the decompressed blocks. Reducing
allocated memory usage involves reducing or mitigating the
growth of these two compression outputs.

Second, the in-line compression ratio reveals a possibility
for negative compression with full in-line compression. If the
kernel’s in-line compression is implemented with full in-line
compression, note that all 3 matrices are always decompressed
to access the data if the kernel is using full in-line compres-
sion. This means that the uncompressed data is the same as
the decompressed block data; all of it is decompressed. No
matter the size of the compressed data, the allocated memory
size is larger in this configuration than if in-line compression
had not been used at all. This case illustrates when full in-
line compression is useful. If a different kernel was used, one
that needed access to only a subset of the matrices, then only
a subset of the data needs to be decompressed. The in-line
compression ratio aids in describing allocated memory usage
regardless of the matrix dimensions.

2) Compressor Counts: Each time that a block is com-
pressed or decompressed, the specified compressor is called.
While the compressor choice and size of the data do play a role
in runtime, the number of compressor calls indicates whether
there are inefficiencies in the blocking for the specified kernel.
Because the time to compress and the time to decompress
are different, it is important to distinguish which type of
compressor operation is more prevalent for which matrix.

Two methods of approaching this runtime metric is to
consider its response to block size and kernel access patterns.
First, the more blocks there are, the more compression and
decompression operations needed to access the block. These



compressor calls increase runtime through the overhead nec-
essary to access the data. Second, efficient blocking dependent
on the kernel’s access patterns can reduce the number of
compressor calls. Depending on how the kernel accesses data
and how the blocks are configured, compressor calls have
extreme cases. If several blocks are accessed to decompress all
of the elements needed for an operation, several compressor
calls need to be made. A block choice that aligns with the
kernel’s access patterns can reduce the number of compressor
calls.

3) Runtime: In-line compression achieves its allocated
memory usage reduction at the cost of runtime. Understanding
what factors go into runtime is important to understand how
runtime growth can be controlled as improvements are made in
memory. Equation 4 identifies what factors influence the run-
time of an in-line compression kernel, with runtime R, original
kernel runtime K, and the runtimes for all compression and
decompression operations O.

R = K +
∑

O (4)

The runtime for an in-line compressed kernel is the sum of
three main factors: the original kernel’s runtime, the time for
all compression operations, and the time for all decompression
operations. The number of compressor calls directly impacts
the time for compressions and decompressions. The kernel
choice itself is a constant if in-line compression is to be
selected for that specific algorithm. The time complexities of
the compressor accesses and the original kernel are important
to predicting the runtime of the in-line compression kernel
itself.

The compressor calls, with its time complexity, occur inside
the kernel data access calls based on the original kernel, with
its time complexity. At low matrix dimension sizes and low
block counts, the compressor calls have a larger impact on
the relative runtime. As the dimension size of the matrices
increase, the time for compressor accesses may be amortized
by the time taken by the original kernel.

IV. EXPERIMENTAL RESULTS

A. Testing Environment

1) Hardware: Tests were run using the Clemson’s Univer-
sity’s Palmetto Cluster Phase 19b. Each compute node in this
phase contains 2 Intel Xeon 6230R CPUs along with 372
GB of DRAM. Each test is run using a single core. This is
done to profile and understand the performance of a single
process. Future work will expand this work to investigate in-
line compression for shared memory and distributed memory
applications.

2) Software: The software utilized for these tests were
built on GCC (GNU Compiler Collection) version 12.1.0. The
compressors SZ version 2.1.8.1 and ZFP version 1.0.0 were
used as floating-point error-bounded lossy compression bench-
marks, and compressor managment was maintained through
LibPressio version 0.97.3. Python 3.11.6 served as the primary

scripting language for orchestration and automation of com-
putational tasks, with additional support from Seaborn version
0.13.2 and Matplotlib version 3.8.2 for data visualization and
analysis.

3) Testing Format: The matrices used for matrix multipli-
cation were square matrices of a user-specified dimension (n
in plots). These matrices were populated with linear transfor-
mations of pi.

The lossy floating-point compressors used in this research
are error bounded. Unless otherwise noted, the error bounds
utilized are ϵ = 0.01 for SZ ABS, SZ PWR (point-wise rela-
tive), ZFP RATE, and ZFP ACC (accuracy). For SZ PSNR,
ϵ = 40db. Unless noted, all experiments utilize the B opti-
mization that stores the B matrix as transposed. (see Figure
8)

B. Memory Footprint Analysis

1) Allocated Size: In-line compression reduces the amount
of allocated memory that is being used by the application by
storing data outside the working set in compressed form. Only
when data is needed by the application is it decompressed just
before it is operated on. One key parameter to control how
much data is stored decompressed is the size of each block
that the data is decomposed into prior to compression. We
first experiment and determine the impact of block size on the
allocated memory size, and it also illustrates how memory is
organized inside of the allocated memory.

This experiment demonstrates how in-line compression is
an effective means of reducing the allocated memory size.
To understand the resulting allocated memory size, one must
understand how in-line compression organizes the data in
the allocated memory. Allocated memory contains 2 main
sections: the compressed application data, and the decom-
pressed data needed for a single operation — i.e., kernel. This
experiment highlights how the sizes of those sections trade-off
to result in overall data reduction.

Figure 4 illustrates the used memory size and the contents
of that memory at various block counts. This experiment
performs matrix multiplication on matrices of order n = 50.
We use the SZ compressor with an absolute error bound of
ϵ = 0.01.

The height of each bar is the amount of allocated memory
needed for each block size. Each bar is subdivided into the
memory that is needed for this application. Matrices A,B,
and C all need to be compressed, and some level of memory
is needed to store their decompressed blocks. The lighter
shades represent the compressed section of memory, while the
darker shades represent the largest decompressed blocks for
that block size.

The overall trend of this plot is that the allocated memory
size decreases as the number of blocks increases. This test
demonstrates that the allocated memory size is a trade-off
between the compressed size of the entire data and the decom-
pressed data sizes. More blocks means that less decompressed
data needs to be stored for each block. However, more blocks
requires more compressor metadata overhead and a potential
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for the smaller blocks to not be able to be compressed as well.
Future in-line compression algorithms should be designed to
limit or reuse meta-data.

The key takeaway of this experiment is that partial in-
line compression is made possible due to the balance of the
decompressed block sizes and the compressed data size. This
trade off in block count needs to be tuned to enable the
memory usage reduction that enables in-line compression’s use
case of being able to run kernels with large data on nodes with
smaller allocated memory space. A second takeaway is that
this memory balance has another input that was held constant
in this experiment: the data size.

2) Partial In-line Compression Ratio: Considering the full
input data size while attempting to minimize the allocated
data size requires a new metric to keep track of the allocated
memory’s size relative to the original data size. Normally for
most compressors, compression ratio is used as the metric, as
it compares the uncompressed size to the compressed data
size. In this case, a modified in-line compression ratio is
used to relate the original data size compared to the overall
allocated memory usage (see Section III-C1). The use of this
modified compression ratio is necessary to contribute for the
uncompressed blocks of data that are also present in allocated
memory. Essential inputs toward the in-line compression ratio
include the original data size and the number of blocks.

Figure 5 compares the in-line compression ratio achieved by
varying the number of blocks that we decompose our matrix of
order n = 100 into before compressing with various versions
of SZ and ZFP. The error bounds is ϵ = 0.01 for SZ ABS,
SZ PWR (point-wise relative), ZFP RATE, and ZFP ACC
(accuracy). For SZ PSNR, ϵ = 40db.

The in-line compression ratio increases with block count,
but it has an upper limit. The allocated memory size decreases
by dividing each matrix into more blocks, thus having less
data decompressed in main memory. The choice of underlying
compressor also impacts the compression ratio, although only
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Fig. 5. In-line compression ratio for various compressors for matrix-matrix
multiplication with order n = 100.

in the compressed data section of the allocated memory. We
see ZFP performance the best due to its lower meta-data
overhead than SZ. This becomes magnified for large block
counts where the number of elements per block is small.

A compression ratio of 300× is remarkable, but where is
this benefit coming from? The main contributor to this is
the decrease in the size of the allocated memory size due
to less decompressed data. With more blocks per data array,
less memory is accessed for each calculation — i.e., the
decompressed working set is small. However, as the block
size shrinks, more compression and decompression operations
are needed for the computation. With the additional additional
compression and decompression operations the overhead in
runtime increase; thus longer application execution time (see
Section III-C2).

The compression ratio of ZFP is particularly notable. For
high block counts, its compression ratio outshines SZ. This
is possible by having less data in each block for high block
counts, but also due to the metadata of both compressors.
ZFP has less metadata than SZ [33]. For a few larger blocks,
this metadata difference is imperceptible. For several smaller
blocks however, the metadata takes on a larger proportion
of the memory usage. Thus, ZFP demonstrates a higher
compression ratio than SZ for large block counts.

3) Full In-line Compression Ratio: This experiment com-
pares the matrix dimensions to the compression ratio for a full
in-line compressed matrix multiplication kernel. Full in-line
compression was chosen to analyze a simple example with 1
block per matrix, including how data is impacted by the error
bound.

An experiment on how data size impacts the in-line com-
pression ratio is essential due to the difference from traditional
compression ratios. The entire allocated memory size is com-
pared to the uncompressed data size. Thus, it is important
to consider how much of the data set is decompressed, even
if using full in-line compression where an entire matrix is
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Fig. 6. Full In-line Compression Ratio by Dimensions and Error Bound

compressed together.
Similar to the previous in-line compression ratio experi-

ment, this experiment compares the in-line compression ratios
over square matrices orders ranging from n = 5 to n = 1000.
The SZ compressor is used with the indicated error bounds to
illustrate their affect on in-line compression, whether full or
partial. Results for other compressors are similar and omitted
for clarity.

Figure 6 illustrates how data size impacts compression ratio.
Because compression is possible through locality and repeti-
tion, it is expected that smaller data sizes have a smaller com-
pression ratio. The effects of the error bound on each block’s
compression are passed through to in-line compression, with
the tightest error bound having the smallest compression ratio,
and the loosest error bound can sacrifice accuracy to gain
space.

Note that this experiment is using full in-line compression,
or a single block per matrix. This means that for the in-
line compression ratio equation 3, if all of the matrices in
the dataset are involved in each operation in the kernel, the
uncompressed data size and the decompressed block sizes
are the same. This situation is present with matrix-matrix
multiplication and yields negative compression no matter what
the data size.

This situation highlights that full compression is great for
some use-cases but not for others. If a subset of the matrices
are used per kernel operation, then only a subset of the
matrices need to be decompressed for each operation. The un-
compressed dataset is greater than the necessary decompressed
matrices for each operation, so depending on the size of the
compressed dataset, positive compression is possible.

In-line compression can yield negative compression if the
decompressed data size is larger than the difference between
the uncompressed data size and the compressed data size.
The error bound and data size impact the in-line compression
performance in the same way they impact the compressor that
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is chosen.

C. Timing

Similar to how traditional compression improves the com-
pression ratio by leveraging more time and computational
resources, obtaining a decrease in allocated memory usage
comes at a cost of runtime. The main source of additional time
usage is in the compression and decompression operations.
This section presents the general compressor call pattern as
well as some techniques to reduce the number of compression
calls and to keep the runtime manageable.

1) Compression/Decompression Calls: Runtime analysis
requires determining what operations takes up time, and the
main timing difference between a standard kernel and an in-
line kernel is the number of compression and decompression
counts. Understanding what causes these compressor count
increases is essential to selecting proper settings to reduce the
runtime increases.

Figure 7 identifies which matrices are compressed and
decompressed for the in-line compressed matrix multiplication
kernel. A portion of each matrix is required to compute the
next output matrix. The order in which operations are done
matters for runtime because the correct portions of the matrices
need to be decompressed in allocated memory. Identifying
the reasons behind which blocks are decompressed more
frequently enables understanding for better fitting a kernel for
in-line compression with respect to its runtime.

This experiment compares the number of compression and
decompression calls with respect to the number of blocks per
kernel. The dimensions of the matrices analyzed are 50x50.

As the number of blocks increases, the number of com-
pression and decompression operations also increases. Block
counts of 1, 2, 5, and 10 are interesting due to having the
least number of compression calls (Full) or actually having
less compressor calls than neighboring block counts. The only
matrix that is compressed is matrix C, as it is the one with the
results that need to be stored. Note that the number of matrix



C compressions is equal to the block size. This is because
the order in which operations are done iterates through all C
matrix entries, then through the blocks containing the entries
in A and B to compute the C entry.

The decompressions provide the bulk of the compressor
calls. All of the C blocks are decompressed once to access
them to compute the resulting entries. This step could be
removed for kernels where intermediate operations don’t need
to be stored, like for matrix multiplication. The number of
A and B decompression counts provide factors of interest,
particularly with how the selected decompressed blocks align
with the kernel’s access pattern.

For each entry in C, a single row from A and a single
column for B need to be accessed to perform a standard matrix
multiplication operation. How the blocks are selected impacts
which ones are available to get data from. For block size 1 (i.e.
full in-line), each matrix is only decompressed once, as all of
the rows and columns have been decompressed by the time
they are needed for any of the matrix multiplication operations.

Block sizes 5 and 10 have different characteristics from
their neighboring block counts. Not only are their overall
compressor counts less than their neighbors, but the A matrix
requires significantly less decompression counts. Because all
dimensions tested are divisible by 2, 5 or 10, this illustrates
an important kernel access pattern for matrix multiplication
that can be used to reduce decompression calls. Because the
blocks used for testing are 1-dimensional, each block can be a
row or a part of a row. In this case, block sizes of 2, 5, and 10
are factors of the matrix row length. This feature limits future
redundant operations for other data in that block (for example,
if a block overflows into another row).

While block counts of 2, 5, and 10 have a significantly
smaller number of compressor calls due to a decrease in A
matrix decompressions, the B matrix decompressions look
significantly larger. This is an artifact of the logarithmic scale
used in this plot. A linear scale reveals that B matrix decom-
pressions are directly related to block count. B is dependent
on the kernel’s access pattern.

This experiment also showcases what does not affect the
number of compressor counts. Data dimensions, compressor
choice, and error bound do not affect the compressor counts
because they are part of the compression process. They are
not used to select how many counts, but rather how the data is
compressed in those operations. What does affect compressor
choice is kernel access pattern locality and the choices of how
blocks are implemented.

2) Matrix Multiplication Informed Blocking: The previous
experiment demonstrated how block choices can affect the
compression and decompression operation counts. The choice
in block dimensions and size details what kind of data is
present in each block, and thus what is available during
that step of the computation. The purpose of this experiment
is to give an example of this property using the matrix
multiplication kernel access pattern.

Each element in the output matrix C requires access to
the corresponding row of matrix A and the corresponding
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column of matrix B. Because blocks with this system are 1-
dimensional row-wise, one can access the partial or complete
row with a limited number of decompression operations.
However, since the data needed from the B matrix is by
columns, the column data is contained in many row-based
blocks. To compensate for this, an option for the kernel is
to optimize the B matrix for the row-based blocking by
transposing the B matrix. This enables the blocks to access
the data needed by the kernel with less decompression calls.
The dimensions for matrices in this experiment are 100x100.

Figure 8 indicates a large decompression count difference
between using using the B-transpose optimization and keeping
the standard operation. For the 100x100 matrix, since the
block size is less than or equal to the number of elements
in the row, accessing a column of B requires accessing 100
different blocks. When this operation is accounted for all
10,000 elements in the output matrix C, that setup requires
1,000,000 decompression operations for the B matrix alone.
In all of these decompression steps, many unused elements are
being decompressed along with the column data of interest.
Transposing B allows the kernel access pattern to match the
blocking pattern for in-line compression to limit the number
of decompression counts and unnecessary data accesses.

The implications of this experiment go beyond just matrix
multiplication. Whatever the base kernel is, an important
means of limiting a runtime increase is to select blocks and
kernel configurations that have blocks that meaningfully relate
to the data needed for each operation in the kernel.

3) Runtime: After examining the sources of compression
and decompression operations, how do these observations
relate to runtime? The original kernel’s runtime complexity,
the compressor, and the block count all affect the overall
runtime of the in-line compression kernel. Figures 9 and 10
demonstrate how these choices impact the overall runtime of
the in-line compression kernel.

These experiments relate runtime to the same parameters



101 102 103

n

10 7

10 5

10 3

10 1

101

Ru
nt

im
e 

(s
)

Full In-line Compression Runtime

Compressor_Input
NONE
ZFP_RATE
ZFP_ACC
SZ_PSNR
SZ_PWR
SZ_ABS

Fig. 9. Runtime with All Compressors and Dimensions

that memory was compared to: data size and block count.
Additionally, the compressor choice is included to provide a
better picture on all of the factors affecting runtime. These
experiments compare the runtime to the matrix data dimen-
sions, while also highlighting the compressor choice and the
block counts. The runtime of the original kernel without in-line
compression is also included for comparison. The dimensions
of the matrices analyzed range from 5x5 to 1000x1000.

Adding any in-line compression to a kernel increases the
runtime to compress and decompress, as Figure 9 demon-
strates. The original matrix multiplication kernel has a O(n3)
time complexity, and each of the in-line methods with various
compressors follows suit. Each of the compressors has a
similar relationship to what it had to memory in Figure 5: ZFP
has the larger compression ratio and has the smaller runtime,
while SZ has the smaller compression ratio and the larger
runtime. An interesting point of note in Figure 9 is that around
n=700, SZ-ABS gets a faster runtime briefly. This is peculiar
that a compressed version would run faster than the kernel it is
based on. An explanation for this could be the hardware cache
optimizations, but this could be an area for future interest.

Another feature of interest with Figure 9 is that for all
compressors with block size 1, the runtime of the compression
gets amortized into the overall kernel runtime for large n. This
indicates the possibility of in-line compression kernel runtimes
in the same time complexity as the original kernel.

Figure 10 illustrates the direct relationship between runtime
and the number of blocks. Each block adds additional com-
pressor time to the original kernel time complexity. Not only
is it additional time, but almost an order of magnitude more.

The in-line compression kernel has the time complexity of
the original kernel with the linear increase of the number
of compressor operations and the impact of the original
compressor’s runtime. Compared with Figure 9, Figure 10
reveals the possibility for tuning and improvement of the
system itself. Offloading compressions to other threads and
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improved processor choice can mitigate the growth of runtime
caused by additional blocks.

V. CONCLUSIONS

In-line compression provides a viable approach to reducing
the allocated memory usage for HPC kernels with large kernel
data. This research explored the runtime and memory per-
formance of in-line compression on the matrix multiplication
kernel. Matrix multiplication was selected as the exemplary
kernel due to its prevalence in HPC systems and its ease of
illustrating the properties of in-line compression.

The use cases for full and partial in-line compression were
explored, revealing the trade-off between allocated memory
usage and runtime. Larger block sizes provide a small al-
located memory size reduction for a small runtime cost,
while smaller block sizes enable greater reduction in allo-
cated memory usage at the cost of runtime for compress-
ing and decompressing those blocks. The spacial locality of
those blocks impacts compressability, and block choices that
leverage knowledge of both the data access pattern and the
compressed array structure encourage good performance.

Experimental results from the matrix multiplication in-line
compression kernel were analyzed for key parameters’ affects
on runtime and allocated memory usage. Findings include
insights into how in-line compression works and methods
for memory and runtime optimization. In-line compression
is possible through a balance between the compressed data
size and the amount of data decompressed. The decompressed
data size is dependent on the block size, while the com-
pressed data is dependent on the location of blocks and
the compressor choice. Compression and decompression calls
can be minimized by blocking with respect to the kernel’s
access pattern. Improvements are possible which can enable
the compression overhead time to be amortized by the original
kernel’s runtime. The tuning of in-line compression parameters
enables its impact on more kernels and applications than just
matrix multiplication.
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