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Abstract—In modern critical infrastructure such as power
grids, it is crucial to ensure security of data communications
between network-connected devices while following strict latency
criteria. This necessitates the use of cryptographic hardware
accelerators. We propose a high-performance unified elliptic
curve cryptography accelerator supporting NIST standard Mont-
gomery curves Curve25519 and Curve448 at 128-bit and 224-bit
security levels respectively. Our accelerator implements extensive
parallel processing of Karatsuba-style large-integer multiplica-
tions, restructures arithmetic operations in the Montgomery
Ladder and exploits special mathematical properties of the un-
derlying pseudo-Mersenne and Solinas prime fields for optimized
performance. Our design ensures efficient resource sharing across
both curve computations and also incorporates several stan-
dard side-channel countermeasures. Our ASIC implementation
achieves record performance and energy of 10.38 µs / 54.01 µs
and 0.72 µJ / 3.73 µJ respectively for Curve25519 / Curve448,
which is significantly better than state-of-the-art.

Index Terms—elliptic curve cryptography, ASIC, Curve25519,
Curve448, NIST standard, unified hardware accelerator, high
performance, side-channel countermeasures.

I. INTRODUCTION

The need for enhanced cybersecurity is more critical than
ever in today’s interconnected world. As digital communica-
tions and transactions become ubiquitous, ensuring informa-
tion confidentiality, integrity and authenticity has become a
paramount concern. Public Key Cryptography (PKC) [1], [2]
is pivotal in securing these communications by enabling key
establishment, digital signatures and authentication protocols.
This is especially important in the Internet of Things (IoT)
such as industrial automation, sensors, power grids, smart
cities and automotive applications [3]. As these sectors con-
tinue to digitize, ensuring robust security while maintaining
operational efficiency becomes a significant challenge. For
example, digital communications between intelligent elec-
tronic devices in modern electrical substations follow the IEC
61850 standard [4], [5] and their security recommendations are
provided by the IEC 62351 standard [6], [7]. These protocols
demand low latency and high reliability for associated mes-
saging protocols for real-time operation, e.g., 3 ms and 250 µs
for GOOSE (Generic Object Oriented Substation Event) and
Sampled Value (SV) messages respectively, thus making it
extremely challenging to implement strong cryptographic se-
curity measures in critical infrastructure [8]. Due to the use
of embedded systems, it is also crucial to ensure hardware
resilience against side-channel attacks [9].

Cryptographic hardware accelerators are widely used to
meet application-specific requirements such as low power,
high performance and energy efficiency which are not achiev-
able using software implementations with general purpose
micro-processors [10]. Elliptic Curve Cryptography (ECC) is
the current standard for PKC algorithms due to small key sizes
[11], [12], and the U.S. National Institute of Standards and
Technology (NIST) has recently recommended two new ellip-
tic curves Curve25519 and Curve448 [13]. Both Curve25519
and Curve448 are Montgomery curves which stand out for
their exceptional performance and security properties, as spec-
ified in [14]. Curve25519, introduced by Daniel J. Bernstein
in 2006 [15], is renowned for its speed and robustness against
side-channel attacks. Curve448, introduced by Mike Hamburg
in 2015 [16], offers a higher security level while maintaining
efficiency and side-channel resilience. In spite of the advent
of new quantum-safe cryptography algorithms, elliptic curves
such as Curve25519 and Curve448 continue to play a vital
role in enabling post-quantum hybrid key exchange protocols
due to the strong confidence in their security [17].

Previous literature has presented various dedicated hardware
accelerator designs for Curve25519 and Curve448 imple-
mented in FPGA (field-programmable gate array) and ASIC
(application-specific integrated circuit) [18]–[40]. Despite the
numerous similarities between Curve25519 and Curve448, a
unified hardware architecture supporting ECC with both curves
is yet to be explored. In this work, we present the ASIC
implementation of a high-performance unified hardware accel-
erator which can be configured to perform elliptic curve scalar
multiplication over both Curve25519 and Curve448. Since
finite field arithmetic is the most expensive component of these
computations, we propose an efficient modular arithmetic
architecture with four 256-bit 2-level Karatsuba multipliers.
This allows us to exploit the power of parallel processing
for Curve25519, while the same can also be fully re-used for
Curve448 by exploiting the special structure and mathematical
properties of its underlying prime field. We re-structure and re-
arrange the sequence of operations in the Montgomery Ladder
to reduce the latency. Our design is constant-time by design
and also incorporates the randomized projective coordinate
countermeasure against power side-channel attacks. Compared
to previous designs, our proposed accelerator excels in terms
of both performance and energy-efficiency while supporting a
higher security level along with side-channel countermeasures.



II. BACKGROUND

A. Elliptic Curve Cryptography (ECC)

An elliptic curve E over a finite field K is defined as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a5, a6 ∈ K. There are two major types of
elliptic curves defined over finite fields where the characteristic
char(K) is a very large prime p:

• Short Weierstrass curves consisting of the set of points
E(Fp) = {(x, y)

∣∣ y2 = x3 + ax+ b (mod p)} ∪ O
• Montgomery curves consisting of the set of points E(Fp)

= {(x, y)
∣∣ by2 = x3 + ax2 + x (mod p)} ∪ O

where a, b ∈ Fp are the curve parameters and O is the
distinguished point at infinity.

The fundamental operations in ECC are point addition (R =
P + Q) and point doubling (R = P + P ), where P,Q,R ∈
E(Fp). With these operations, the points on the curve E(Fp)
form an abelian group, with O serving as the identity element,
that is, P + O = O + P = P for all P ∈ E(Fp). The
order of this group (number of points in E(Fp)) is denoted by
#E(Fp) = n, and nP = O for all P ∈ E(Fp).

Repeated additions of a point P with itself is called elliptic
curve scalar multiplication (ECSM). For any scalar k, the
scalar multiple kP is computed as

kP = P + P + · · ·+ P︸ ︷︷ ︸
(k-1) point additions

This computation forms the basis of the elliptic curve discrete
logarithm problem (ECDLP) – determine scalar k given the
elliptic curve E(Fp) of order n, and the points P,Q ∈ E(Fp)
such that Q = kP . For a t-bit prime p, the fastest known algo-
rithms that can solve ECDLP have time complexity O(2t/2)
[12]. For sufficiently large primes and appropriate curve pa-
rameters, it is infeasible for a computationally bounded (non-
quantum) adversary to solve ECDLP, and this guarantees the
security of ECC and associated public key protocols.

B. Curve25519

Curve25519 is a Montgomery curve defined by the equation

y2 = x3 + 486662x2 + x

over the prime field F2255−19 [15]. It is optimized for key
exchange at the 128-bit security level and has smaller key
sizes and faster computations compared to traditional elliptic
curves. It is designed to resist side-channel attacks, making
it suitable for a wide range of applications including secure
communications. Its simplicity and efficiency have led to its
widespread adoption in various standards [13], [14].

C. Curve448

Curve448 is a Montgomery curve defined by the equation

y2 = x3 + 156326x2 + x

over the prime field F2448−2224−1 [16]. It offers a higher
224-bit security level while maintaining similar characteristics

as Curve25519. It is optimized for cryptographic protocols
requiring robust security such as key exchange and digital
signatures. Its resistance to side-channel attacks makes it
suitable for high-security applications [13], [14].

D. Hardware Acceleration of Curve25519 and Curve448

Previous work on hardware implementations of Curve25519
have been mostly based on Zynq 7000 series FPGAs [18],
[19], [22], [24]–[27], [31]–[34], [36], [37]. The general ap-
proach has been to efficiently utilize the on-chip DSP and
BRAM slices to speed up the ECSM operation. Various side-
channel countermeasures such as scalar blinding, randomized
projective coordinates and memory address scrambling have
also been proposed [41]. Most recently, [39] demonstrated a
high-performance design consisting of compute groups with
processing elements (PEs), massive parallelism and a high
degree of pipelining implemented in a Zynq 7000 series
FPGA. The first compact low-power ASIC implementation
of Curve25519 was presented in [20], and this was sub-
sequently optimized for high-performance in [28], [40]. A
similar approach was followed for FPGA-based hardware
implementations of Curve448 [21], [23], [29], [35], [38], with
ECSM performance significantly slower than Curve25519 due
to the increased computational complexity. Various implemen-
tation strategies for Curve448 hardware architectures in FPGA,
such as light-weight, area-time-efficient and high-performance,
were investigated by [30]. Efficient ASIC implementations
of Curve448 are yet to be explored. Also, unified hardware
architectures for accelerating ECSM over Curve25519 and
Curve448 have not yet been demonstrated in state-of-the-art,
thus motivating our proposed design in this work.

III. ACCELERATOR ARCHITECTURE

A. ECSM Computation using Montgomery Ladder

Curve25519 and Curve448 are elliptic curves offering 128-
bit and 224-bit of security levels respectively. Both curves
use the Montgomery form, enabling fast and constant-time
elliptic curve scalar multiplication, which is crucial for secure
implementation. Supporting both curves in the same hardware
accelerator facilitates interoperability and flexibility, allowing
systems to choose the appropriate curve based on application-
specific security needs. The proposed unified implementation
also benefits from sharing hardware resources for the core
arithmetic computations, thus reducing overall power and area
without compromising performance.

Algorithm 1 shows how an ECSM computation is per-
formed on a Montgomery curve with t-bit scalar k =
(kt−1, kt−2, · · · , k2, k1, k0)2. Note that t = 255 and t = 448
for Curve25519 and Curve448, respectively. The input and
output points P and Q are specified by their x-coordinates xP

and xQ, respectively. For Curve25519 and Curve448, xP and
xQ will be elements in their respective prime fields F2255−19

and F2448−2224−1. This algorithm is inherently constant-time,
that is, execution time is independent of the secret scalar k.
This helps prevent timing and simple power analysis (SPA) at-
tacks. In order to prevent more sophisticated differential power



Algorithm 1 ECSM using the Montgomery Ladder [42]
Require: input point P with x-coordinate xP and t-bit secret

scalar k = (kt−1, kt−2, · · · , k2, k1, k0)2
Ensure: output point Q = kP with x-coordinate xQ

1: X1 ← xP , X2 ← 1, X3 ← xP

2: Z1 ← 1, Z2 ← 0, Z3 ← 1
3: for (i = t− 1; i ≥ 0; i = i− 1) do
4: if ki = 1 then
5: (X3, Z3, X2, Z2)← LADDER (X1, X3, Z3, X2, Z2)
6: else
7: (X2, Z2, X3, Z3)← LADDER (X1, X2, Z2, X3, Z3)
8: end if
9: end for

10: Z2 ← Z−1
2

11: xQ ← X2 Z2

12: return xQ

Fig. 1. Modular arithmetic operations in the Montgomery Ladder.

analysis (DPA) attacks, the randomized projective coordinate
technique can be used [41]. This involves first generating a
pseudo-random element λ in the underlying field (F2255−19

for Curve25519 and F2448−2224−1 for Curve448). Then, steps
1 and 2 in Algorithm 1 are modified as X1 ← λxP , X2 ← λ,
X3 ← λxP and Z1 ← λ, Z2 ← 0, Z3 ← λ respectively.
Rest of the ECSM computation remains unchanged, and the
modular division in steps 10 and 11 in Algorithm 1 ensure
that the final output is correct irrespective of the value of λ.

The most important step in Algorithm 1 is the LAD-
DER(.) function, which is the Montgomery Ladder [42].
Both Curve25519 and Curve448 ECSM computations em-
ploy the Montgomery Ladder to perform point double-and-
add operations in projective coordinates, and its constituent
modular arithmetic operations are shown in Fig. 1. There are
8 modular additions/subtractions and 11 modular multiplica-
tions/squarings (including multiplication by the curve constant
A, where A = 121665 for Curve25519 and A = 39081 for
Curve448) involved in each LADDER computation.

Fig. 2. Top-level block diagram of the proposed unified Curve25519 and
Curve448 elliptic curve cryptography accelerator.

Fig. 3. Restructuring of arithmetic operations in the LADDER computation.

B. Accelerator Building Blocks

The top-level block diagram of our proposed hardware
accelerator is shown in Fig. 2. The most important component
of the accelerator is the Finite Field Arithmetic Unit (FFAU).
A 448-bit k-reg register is used to store the secret scalar k. A
unified controller module is used to send appropriate control
signals and instructions to the main data-path, and they work
in tandem with a finite state machine (FSM). 12 × 448-bit
internal registers are used to store the inputs, outputs and
temporary values generated during ECSM computation. The
most significant 193 bits of all these registers are clock-gated
for power savings when performing ECSM over Curve25519,
while all 448 bits are utilized for Curve448. A pseudo-random
number generator (PRNG) module, containing a hardware
instantiation of the light-weight Trivium stream cipher [43],
is used to generate the λ values for DPA countermeasures as
discussed earlier. The PRNG is clock-gated for power savings
when DPA countermeasures are disabled.



Fig. 4. Detailed architecture of the finite field arithmetic unit (FFAU) module.

C. Unified Controller

Inspired by the instruction mapping technique from [39],
we restructure the 19 modular arithmetic operations in the
LADDER computation from Fig. 1 as 11 steps in the form
of (A ± B) × (C ± D). This restructuring is shown in
Fig. 3. Control signals and register addresses for these steps
in the LADDER computation for both curves are stored as
instructions in lookup tables (LUTs), as shown in Fig. 2. For
ECSM computation, 255 and 448 iterations of the LADDER
are performed for Curve25519 and Curve448, respectively.
The controller also contains similar LUTs for the modular
inversion computations which will be discussed later.

D. Finite Field Arithmetic Unit (FFAU)

All the modular arithmetic operations in our accelerator are
executed in the FFAU module shown in Fig. 4. It is capable of
computing four (A±B)×(C±D) operations simultaneously,
where A, B, C, D are 255-bit inputs. The FFAU has eight
opsel (operation select) input lines corresponding to the four
operations to select whether additions or subtractions need
to be performed. The FFAU contains four 256-bit multipliers
Mul256 and eight 255-bit adder / subtractor modules Add255.
It also contains two 193-bit adder / subtractor modules Add193
to together compute 448-bit addition / subtraction. Clearly, the
FFAU can perform four instructions together for Curve25519,
thus completing a LADDER in just 3 clock cycles. When
working with Curve448, the fact that its prime modulus is
a Solinas trinomial prime (= ϕ2 − ϕ − 1) with the golden
ratio ϕ = 2224 can be exploited. This allows the product of
A = (a1ϕ+ a0) ∈ Fϕ2−ϕ−1 and B = (b1ϕ+ b0) ∈ Fϕ2−ϕ−1

to be calculated efficiently as: C = A × B (mod ϕ2 −
ϕ − 1) = (a1ϕ + a0) × (b1ϕ + b0) (mod ϕ2 − ϕ − 1) =
(a1b1 + a0b0) + (a1b0 + a0b1 + a0b0)ϕ (mod ϕ2 − ϕ − 1).
Here, a0, a1, b0, b1 being 224-bit quantities, it is possible to
perform this computation using the four 256-bit multipliers.
Therefore, the FFAU can perform only one instruction at a

time for Curve448. Consequently, 10 clock cycles are required
to complete a LADDER (11 clock cycles with DPA counter-
measure enabled). The multiplier outputs are finally processed
by the Unified Reduction Block which employs fast reduction
algorithms to compute the final result. Details of the FFAU
sub-module implementations are described as follows:

1) 256-bit Multiplier: The Mul256 modules are imple-
mented as 256-bit 2-level Karatsuba multipliers [44]. Using
Karatsuba’s algorithm, the product of two 2b-bit unsigned
integers X = x12

b +x0 and Y = y12
b + y0 can be calculated

as Z = XY = x1y12
2b + (x0y1 + x1y0)2

b + x0y0 =
x1y12

2b + [(x0 + x1)(y0 + y1) − (x0y0 + x1y1)]2
b + x0y0,

that is, three instead of four b-bit × b-bit multiplications at the
cost of some extra additions / subtractions. This reduces the
complexity of n-bit large integer multiplication from O(n2)
to O(nlog2(3)), or approximately O(n1.585). Fig. 5 shows the
block diagram for this construction. The Mul b blocks com-
pute x0y0 and x1y1, while the Add b blocks compute x0+x1

and y0 + y1. Then, the final result is computed by performing
one more multiplication followed by appropriate additions,
subtractions and shifting. These are efficiently handled by

Fig. 5. Block diagram of 2b-bit × 2b-bit Karatsuba multiplier (b = 128 and
b = 64 for Mul256 and Mul128 respectively).



the 3:2 CSA b Compressor and the MulAdd b modules.
Similarly, the multiplier inside the MulAdd b module can
also be further decomposed into smaller units. In our FFAU,
the Mul256 module is implemented following this approach
with b = 128, while the Mul128 module inside it is again
implemented similarly with b = 64, thus creating 2 levels of
Karatsuba multiplication.

2) Unified Reduction Block: The prime 2255 − 19 in
Curve25519 is a pseudo-Mersenne prime which allows fast
reduction of each 512-bit product using shifts and additions /
subtractions [28]. The prime 2448 − 2224 − 1 in Curve448 is
a Solinas prime which also allows fast reduction of the 896-
bit product using shifts and additions / subtractions [38]. The
reduction unit can perform 4 reductions modulo 2255 − 19
at once for Curve25519, simultaneously reducing all 4 of
the 512-bit products computed by the 4 multipliers in the
FFAU. The adders required for this pseudo-Mersenne prime
reduction are re-used for reducing the 896-bit product modulo
2448 − 2224 − 1 for Curve448.

3) Modular Inversion: Fermat’s Little Theorem [2] has
been employed to perform modular inversion at the end of
the ECSM computation for both Curve25519 and Curve448.
This requires iteratively computing 265 and 462 modular
multiplications, respectively, for Curve25519 and Curve448.
These two-operand multiplications are executed in the FFAU
by computing A×C as (A+0)× (C+0). The corresponding
control signals and register addresses are also stored in LUTs
similar to the LADDER computations.

E. Side-Channel Countermeasures

Side-channel attacks [9] exploit physical leakages such as
timing, power consumption and electromagnetic emissions
to extract secret information from software and hardware
implementations of cryptographic algorithms. Ensuring side-
channel resilience is crucial for maintaining the security
and integrity of cryptographic operations. Elliptic curves like
Curve25519 and Curve448 are designed to have constant-
time ECSM computation independent of the secret scalar, thus
reducing the risk of timing attacks [42]. This automatically
prevents SPA attacks as well. In order to further enhance
side-channel resilience by preventing DPA attacks, randomized
projective coordinates [41] are used to represent elliptic curve
points during the ECSM computation. The randomization
process involves transforming a point (X , Y , Z) in projective
coordinates to (λX , λY , λZ), where λ is a pseudo-random
non-zero scalar. This helps to obscure the correlation between
physical measurements and the internal arithmetic operations.

In our accelerator, the scalar λ is generated using a PRNG
and it is multiplied with the input coordinates in the FFAU
before the ECSM computations begin. The pseudo-random
scalar is 255-bit for Curve25519 and 448-bit for Curve448.
This additional security feature has negligible impact on
performance as it requires only few additional clock cycles.

The PRNG contains a light-weight Trivium stream cipher
[43] which can generate 64 cryptographically secure pseudo-
random bits per clock cycle. These 64-bit outputs are concate-

nated over multiple cycles to obtain the 255-bit and 448-bit
wide pseudo-random scalars. The Trivium core operates with
a 288-bit internal state initialized using an 80-bit key and an
80-bit initialization vector (IV).

IV. IMPLEMENTATION RESULTS

We design our accelerator using Verilog HDL and verify its
functionality with Cadence Incisive v15.20-s086. We imple-
ment the accelerator in a commercial 28nm ASIC technology
and obtain post-synthesis simulation results with Cadence
Genus v21.18-s082 1 and Cadence Joules v21.18-s002 1. Our
synthesized ASIC implementation operates at a maximum fre-
quency of 100 MHz, occupies 1096 kGE (gate equivalent) area
and consumes around 69 mW power at 0.9 V supply voltage
under typical operating conditions. The FFAU consumes 93%
of the area and 97% of total power in the accelerator. The
registers consumes 6% of the area and 2% of total power, while
the remaining 1% is due to the PRNG and control logic. Area
and power breakdown of the FFAU in terms of multipliers (4
× Mul256), adders (8 × Add255 and 2 × Add193), modular
reduction and other control logic is shown in Fig. 6. Clearly,
the 256-bit multipliers account for majority of the area and
power consumption within the FFAU. The critical path of
the accelerator also lies in the complex modular arithmetic
circuitry (multiplications, additions / subtractions and modular
reduction) present inside the FFAU.

For Curve25519, each ECSM computation takes 1,032 and
1,038 clock cycles respectively without and with randomized
projective coordinate DPA countermeasures. This corresponds
to ECSM latency of 10.32 µs and 10.38 µs respectively.
The corresponding energy consumption per ECSM operation
are 0.71 µJ and 0.72 µJ respectively. For Curve448, each
ECSM computation takes 4,944 and 5,401 clock cycles re-
spectively without and with randomized projective coordinate
DPA countermeasures. This corresponds to ECSM latency
of 49.44 µs and 54.01 µs respectively. The corresponding
energy consumption per ECSM operation are 3.41 µJ and
3.73 µJ respectively. The ECSM computation times achieved
by our design for both curves are well within the requirements
of latency-critical industrial communication protocols such
as IEC 61850 [8]. Also, the DPA countermeasure, that is,
randomization of projective coordinates, has almost no impact
on overall performance and energy-efficiency.

Fig. 6. Area and power breakdown of the FFAU.



TABLE I
COMPARISON WITH STATE-OF-THE-ART HIGH-PERFORMANCE ECSM HARDWARE ACCELERATORS

Design Implementation Supported Voltage Freq. Area Power ECSM ECSM SPA DPA
Platform Curve(s) (V) (MHz) (mW) Latency Energy CM 1 CM 1

This 28nm ASIC 2 Curve25519 0.9 100 1096 kGE 69 10.38 µs 0.72 µJ Yes Yes
Work Curve448 54.01 µs 3.73 µJ
[28] 45nm ASIC 2 Curve25519 1.1 102 541 kGE - 52 µs - Yes Yes
[40] 180nm ASIC 3 Curve25519 1.8 102 377 kGE 627 8.54 ms 5.35 mJ Yes -

[31]
Zynq 7020

Curve25519 - 60
6,183 Logic Slices

- 103 µs - Yes Yes
FPGA + 81 DSPs + 0.5 BRAMs

[39]
Zynq 7000

Curve25519 - 204
5,403 Logic Slices

- 14 µs - Yes -
Series FPGA + 128 DSPs + 24 BRAMs

[23]
Zynq 7020

Curve448 - 335
1,648 Logic Slices

- 1.41 ms - Yes Yes
FPGA + 35 DSPs + 14 BRAMs

[30]
Zynq 7020

Curve448 - 95
4,424 Logic Slices

- 1.4 ms - Yes Yes
FPGA + 81 DSPs

[38]
Virtex-7

Curve448 - 245
7,666 Logic Slices

- 200 µs - Yes Yes
FPGA + 88 DSPs

[45] 65nm ASIC 4 FourQ 1.2 250 1400 kGE 394 10.1 µs 3.98 µJ Yes -

[46]
Zynq 7020

FourQ - 190
1,691 Logic Slices

- 157 µs - Yes -
FPGA + 27 DSPs + 10 BRAMs

[47] 45nm ASIC 2 NIST P-256 1.1 295 1034 kGE - 37 µs - Yes -
[48] 65nm ASIC 4 Any 1.2 105 1.92 mm2 43 325 µs 13.9 µJ Yes -
[49] 65nm ASIC 3 Any 1.2 105 2490 kGE 178 60 µs 10.7 µJ Yes -
For all previous work, the fastest implementations with side-channel (SPA and/or DPA) countermeasures are considered for fair comparison.
1 CM: Countermeasures 2 post-synthesis simulation results 3 post-layout simulation results 4 post-silicon measurement results

Table I compares our design with previous work on high-
performance ECSM hardware accelerators implemented in
FPGA and ASIC. Our proposed accelerator not only supports
two curves at different security levels in the same hardware but
also incorporates SPA and DPA countermeasures. Our design
achieves better performance and lower energy consumption
compared to previous Curve25519 and Curve448 accelerators
[23], [28], [30], [31], [38]–[40]. Compared to previous work
on ECC accelerators for other curves at 128-bit security level
such as FourQ and NIST P-256 [45]–[49], our design achieves
better or similar performance and energy consumption while
supporting a higher security level curve as well as stronger
side-channel countermeasures. Compared to previous work on
low-power ASIC implementations of ECC hardware accelera-
tors [20], [50], our design has lower energy consumption but
much larger area due to the high performance requirement.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a high-performance unified
hardware accelerator for elliptic curve scalar multiplication
(ECSM) over NIST standard Montgomery curves Curve25519
and Curve448. We implement an efficient finite field arithmetic
unit (FFAU) with four 256-bit 2-level Karatsuba multipliers to
enable parallel processing of arithmetic operations. We restruc-
ture the sequence of operations in the Montgomery Ladder for
faster computation and store the corresponding instructions in
lookup tables for efficient control. Our proposed design strat-
egy facilitates the concurrent execution of up to four 255-bit
arithmetic operations during Curve25519 ECSM computation.
The same circuitry is re-used for the execution of one 448-
bit arithmetic operations during Curve448 ECSM computa-

tion. We implement a unified modular reduction block which
enables fast reduction using special mathematical properties
of the pseudo-Mersenne and Solinas primes in Curve25519
and Curve448 respectively. Our implementation is constant-
time by design and the Montgomery Ladder ensures inherent
resilience against SPA attacks. Using a Trivium-based PRNG,
we also incorporate the randomized projective coordinate
countermeasure to prevent DPA attacks with negligible impact
on performance. Our ASIC implementation achieves record
performance and energy of 10.38 µs / 54.01 µs and 0.72 µJ
/ 3.73 µJ respectively for Curve25519 / Curve448. This is
significantly better than state-of-the-art, which makes our de-
sign particularly attractive for latency-critical applications. Our
proposed architecture will benefit electronic systems which
need to support elliptic curve cryptography at different security
levels based on the requirements of the target applications
and can easily switch between Curve25519 and Curve448 to
achieve security-versus-efficiency trade-offs.

As future work, our proposed hardware architecture can be
extended to incorporate additional side-channel countermea-
sures. With minor modifications to its controller, the design
can also be extended to support Montgomery Ladder ECSM
computation with other curves, underscoring its versatility.
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