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Abstract—Thorough performance analysis is crucial for
developing and optimizing algorithms, particularly for
compute-intensive operations like those in scientific li-
braries such as the Basic Linear Algebra Subprograms
(BLAS). While dense computations can predict perfor-
mance based on dataset dimensions and strides, sparse ma-
trix operations require more detailed analysis due to their
complexity. Standard performance evaluations for sparse
operations use a canonical set of matrices, but generalizing
these results to new datasets is limited. This paper presents
a framework to evaluate sparse matrix and graph oper-
ations by visualizing performance through parameterized
graph models. It assesses different parameter sets and noise
sources on performance, providing a modular and exten-
sible approach, which includes system-wide performance
considerations, allowing users to integrate various graph
model generators, operation implementations, and noise
types.

Index Terms—Sparse Matrix, Performance Analysis,
Graph Models

I. INTRODUCTION

Large, sparse, and irregular data is central in the
domains such as graph analytics, graph neural networks,
fluid mechanics, and finite element analysis. Specifically,
if the dynamic relationship between elements in a dataset
can be captured as an edge-pair relationship between
vertices, then graphs provide a natural representation
of that data. Furthermore, if the analysis of complex
relationships in the data can be performed through
sequential linear algebra-like operations over the adja-
cency matrices of these datasets, then operations such
as Sparse Matrix times Vector Multiplication (SpMV)
are critical to the performance of computations in these
domains. However, optimizing operations like SpMV is
challenging because the structure of the sparse data, the
implementation of the operation, and the architecture of
the target all have a tremendous bearing on the execution
time of these operations. If a sparse operation is tuned for
one class of data, that performance may not generalize
to another class. The core of this work is to provide
a benchmarking framework for correlating performance
with the structural features of sparse data.

Fig. 1: Double Precision Dense General Matrix-Vector
Multiplication Performance using cuBLAS on NVIDIA
RTX A6000 GPU as a function of input size

For dense matrices, performance evaluation and visu-
alization is straightforward. Figure 1 shows an example
of performance evaluation of the general matrix-vector
multiplication (GEMV) on a RTX A6000 GPU using
cuBLAS. For simplicity, evaluated matrices are assumed
to be of square dimensions: n × n. The horizontal axis
represents the different values of n evaluated, and the
vertical axis shows the performance in GFLOPs. Moving
along the horizontal axis (from left to right and from
right to left) shows a clear correlation between the
matrix dimensions (n × n) and GEMV performance.
Performance interpolation from existing data points is
possible based on the dense matrix dimensions (n)

Figure 2 presents the performance evaluation of
SpMV using cuSparse on matrices from the SuiteSparse
collection [1]. The horizontal axis represents different
matrices, and the vertical axis shows the SpMV perfor-
mance in GFLOPs. However, this evaluation provides
limited insights due to the distinct characteristics of
each matrix, which prevents meaningful performance
correlation. Using dimensions or the number of non-
zeros (NNZ) on the x-axis also fails to yield useful
conclusions since matrices with the same dimensions
can have different sparsity ratios, and those with sim-
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Fig. 2: Double Precision Sparse Matrix-Vector Multi-
plication Performance using cuSparse on NVIDIA RTX
A6000 GPU for a selected set of matrices from SuiteS-
parse, using the COOrdinate data representation.

ilar NNZ can vary greatly in dimensions and sparsity
ratios. Existing performance models and metrics face
challenges adapting to sparse data workloads [2], [3],
and relying on discrete sets of matrices for benchmarking
limits performance generalization [1], [4], [5]. Moreover,
many optimization techniques focus only on the sparse
operation, overlooking system-level execution time and
potential performance bottlenecks such as I/O.

To address the limitations in performance analysis
of sparse matrices and graph operations, we propose
a novel end-to-end framework that uses parameterized
graph models to generate synthetic graphs and evaluate
performance sensitivity to various sources of noise in
model parameters. This framework systematically an-
alyzes the relationships between input parameters of
sparse matrix/graph generators and the performance of
operations like SpMV. By building a predictive un-
derstanding between the generator and performance, it
enables informed decisions for data approximated by
these generators. Our framework focuses on identifying
features and parameters that relate to performance and
providing efficient performance visualization methods.

The main contributions of this work are as follows:
1) Propose an extensible framework for performance

analysis and evaluation for sparse data operations
and driving design choice for performance opti-
mizations.

2) Evaluate the usage of different graph model param-
eters and how it relates to performance interpolation
and extrapolation.

3) Provide an alternative to using discrete graph sets
for benchmarking sparse data workloads.

4) Estimate the effect of different noise sources in
performance and integrating it into potential per-
formance interpolations.

II. BACKGROUND AND RELATED WORK

(a) Example Sparse Matrix (b) COO Representation

(c) CSR Representation (d) CSC Representation

Fig. 3: Sparse Matrix Example (a) and its representation
using (b) COO, (c) CSR, and (d) CSC

A. Sparse Matrix Storage Formats

Different storage formats have been proposed in lit-
erature mainly to reduce the memory requirements for
sparse matrices. Figure 3 shows an example sparse ma-
trix and its representation using different sparse storage
formats: COOrdinate (COO), Compressed Sparse Row
(CSR), and Compressed Sparse Column (CSC).

B. Graph Models for Sparse Data

Many performance evaluation techniques for sparse
data have emerged in response to the generation of such
data from engineering and physics problems. However,
many real data is more accurately represented by large
scale-free synthetic data that follow a power-law distribu-
tion such as Kronecker graphs [6], [7] or a combination
of Kronecker + Random [8]. Kronecker graphs are a
class of synthetic graphs that have been widely used
to model real-world networks, and are generated by
recursively applying the Kronecker product of a small
base graph with itself. Let A and B be two matrices.
Then, their Kronecker product A⊗B is given by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (1)

where aij are the entries of A. The resulting graph has a
power-law degree distribution and exhibits a hierarchical
structure that captures both the local and global connec-
tivity patterns of the underlying real-world network.

While generative graph models (e.g. Kronecker
graphs) provide a parameterized way of generating syn-
thetic graphs similar to real graphs, tools that try to fit
real data to such model (e.g. Kronfit [7]) are limited
in estimation accuracy of the model parameters. Hence,



our framework uses different generation models, but
accounts for different sources of noise, including noise
in graph generation parameters.

C. Performance Evaluation for Sparse Data Operations
To correctly understand how modern algorithms con-

tribute to improving performance, several frameworks
have been proposed. The Graph Algorithm Iron Law
(GAIL) [2] targets graph processing algorithms, and
proposes the usage of more adequate metrics, other
than just execution time, to quantify performance con-
tributions in regard to graphs. The proposed metrics
include algorithmic work, communication volume, and
bandwidth utilization. While these metrics can provide a
better understanding of the performance improvements
of different algorithms, the main focus of this work is
performance metrics (vertical axis of performance plots),
and not the graph model features/parameters which can
affect these performance metrics (horizontal axis of
performance plots).

Fig. 4: Performance Evaluation of SpMV in MKL for
different sparse formats (COO, CSR, and CSC) on a
set of sparse matrices using the Roofline model. Since
the arithmetic intensity is imposed by the sparse data
format, little insights are provided on how to optimize
performance. Arithmetic intensity was estimated based
on memory footprint for different storage formats and
SpMV FLOPs.

The roofline model [3] has been the standard model
used in performance evaluation, where theoretical ma-
chine peak performance and bandwidth bounds are cal-
culated, and application performance is recorded as a
point under the theoretical bounds curve. The x value
for each point is the operational intensity (FLOPs/byte),
and the y value is performance (FLOPs). Additionally,
many derived variants of the roofline model have been
developed to accommodate for different memory hier-
archy assumptions [9], capture the hardware changes

in modern architectures such as GPUs [10]–[12], and
work on finer granularity than a FLOP/byte such as
instruction/transaction [13]. However, the application of
the roofline model for applications on sparse data is
less than adequate. Assuming we try to optimize SpMV
operation, and we evaluate the performance of each
algorithm using operational (arithmetic) intensity, and
FLOPs. Since SpMV operations are directly coupled to
a specific sparse data format (COO, CSR, CSC), the
operational intensity for any implementation is fixed for
a specific sparse data format, since the format imposes
the size (bytes) of the data pieces involved in the
SpMV operation. Figure 4 illustrates this issue, where
the SpMV performance was evaluated using COO, CSR,
and CSC for a set of input graphs. Most of the data points
lie on the same vertical line in the figure, since they have
similar arithmetic intensity imposed by the sparse data
format. This kind of plots provides little insights on how
to optimize such operations on sparse data.

In response to the above limitations, we developed
our framework to evaluate using different features on
the horizontal axis of performance plots, which have the
potential of being exploited for performance optimiza-
tion. These features can be parameters used to generate
graphs/sparse matrices using a specific graph model. In
addition, our framework is flexible to incorporate any
performance metric (vertical axis) similar to the ones
proposed in existing work (e.g. GRAIL), while providing
a better representation of datasets to enable performance
interpolation.

D. Benchmarking Sparse and Graph data Workloads

In order to benchmark sparse and graph data work-
loads, appropriate input data needs to be fed to devel-
oping algorithms. Most of existing work in literature on
different performance optimization for sparse matrices
and graphs uses SNAP dataset [4], SuiteSparse Matrix
Collection [1], and GAP [5]. These benchmarks pro-
vide a set of synthetic and real graphs/matrices from
different applications and structures. However, they are
limited in the sense that they are a discrete collection of
graphs. Interpolating the performance of unseen graphs
from a set of discrete graphs with no common con-
tinuity feature is challenging. For example, the GAP
benchmark graph dataset consists of only five graphs.
Tuning new algorithms on a discrete set of graphs, it
is difficult to expect the performance interpolations to
generalize across other sparse matrices and graphs. A
recent work [14] proposed the use of artificial sparse
matrix generators to tackle the issue of potential biased
performance decisions based on discrete sets of matrices.
However, the proposed generator parameters are limited
to the observed SpMV bottlenecks features (average
nnz per row, standard deviation of nonzeros per row,



bandwidth of matrix, etc.). Hence, additional work is
needed to provide a more comprehensive performance
analysis framework that takes into consideration any
input graph/sparse matrix generation models.

III. METHODS

Our framework aims at providing a modern infrastruc-
ture for describing the performance of applications where
sparse data and graphs are involved. As demonstrated in
Section II, existing techniques fall short in this category
of irregular memory access applications. Our framework
provides a means of interpolating and extrapolating the
performance of different sparse matrices/graphs, based
on models they closely fit.

The main goal of our framework is to find a rela-
tionship between the graph generation mechanism and
the resulting performance of operations in which the
graph is involved as an operand. Such analysis allows for
the identification of promising graph generation param-
eters/features that show direct influence on performance.
Algorithms can be developed to exploit these parameters
to optimize the performance of operations where graphs
of this model are used as operands.

The advantage of using our framework over profil-
ing a single application is that it allows for a deeper
understanding of the performance of applications that
would operate over any matrix/graph that fits a specific
graph model. It uses more representative features beyond
dimensions or arithmetic intensity that might not be
suitable in many cases.

Algorithm 1 General Framework Description
1: for each param in model_gen_params do
2: for each val in param_legal_values do
3: new_params← val∪(params−param_old_value)
4: G← gen(new_params)
5: append G to Gs
6: for n0 = 0 to nA_thresh step nA_step do
7: GNA ← gen_noiseA(G,n0)
8: append GNA to GsNA

9: end for
10: for n1 = 0 to nB_thresh step nB_step do
11: GNB ← gen_noiseB(G,n1)
12: append GNB to GsNB

13: end for
14: for each op in operations do
15: for each impl in implementations[op] do
16: for each fmt in sparse_formats do
17: for each graph in Gs ∪GsNA ∪GsNB do
18: r ← record(eval(impl(fmt(graph))))
19: append r to results
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: for each feature in features do
27: visualize(results, feature)
28: end for

A. High-Level Overview

A general overview of the framework is shown in
Algorithm 1. All Graphs discussed are directed weighted
graphs, where the vertices are row/column indices, and
the weights on edges are non-zero values. Initial Graphs
are generated using a parameterized graph model (gen-
erator). Each model takes as input a set of parameters. In
addition to the initial set of graphs, the framework gen-
erates additional sets Gs by varying the input parameters
within the legal range of values for each, while fixing
the rest of the values.

Then, the framework induces two forms of noise
indicated in Algorithm 1 as noiseA and noiseB.
noiseA tries to capture noisy prediction of real data
to the model parameter. Graph models are expected to
produce synthetic graphs with features similar to real-
world graphs, but noiseA tests the effect of errors in
these graph model parameters. noiseB on the other
hand assesses the cases in which the model alone does
not entirely describe the real data. Real graphs do not
appear as pure representation of a model, noisy data
might be added in the process of reading, transmitting,
or pre-processing such graphs. Also, those graphs do not
hold any node ordering guarantees.

The framework injects noiseA into Gs through the
arithmetic addition of Gs with a set of random sparse
matrices generated using a parameterized density that
varies from (n0) to nA_thresh from a uniform distri-
bution, and a user-defined step of nA_step producing a
new set of Graphs: GsNA. Injecting this noise is an arith-
metic matrix addition between the adjacency matrices of
the random sparse graph and the original graph. In this
process, new edges may be added, and/or existing edges
weight may change. Additionally, noiseB is added to
Gs as a random sparse matrix with density n1 in steps of
nB_step up to a maximum of nB_thresh, generating
the GsNB graph set.

After the completion of the graph sets generation
phase, performance of such graphs involved as operands
in operations is to be evaluated. Multiple operations can
be executed where these graphs are operands, for ex-
ample Sparse Matrix-Vector Multiplication (SpMV), in
which the graph represents the sparse matrix. The graph
or the sparse matrix can be represented using different
sparse formats (COO, CSR, CSC, etc.), and each of these
have their own implementation. The framework evaluates
the performance of SpMV using the different formats
and implementations for all generated graph sets.

The final step is to relate performance to different
features and parameters of the graph model. These
features and parameters are then used to represent the
horizontal axis of the performance plots. The goal of
such representation is to find a relationship between a
feature or a set of features, and the performance of the



operation on the graph. Using this information, more ef-
ficient algorithms can be tuned to optimize performance
by exploiting features that exhibit strong correlation with
performance.

IV. EVALUATION AND RESULTS

The general framework described in Algorithm 1 gen-
erates a high-dimensional set of experiments involving
different combinations of parameters and noise values.
We conducted a subset of experiments to showcase the
capabilities of our framework. In this section, we report
planar slices of some of the experiments. Our framework
was evaluated for both CPU and GPU. Table I shows the
configuration for the system used in our experiments.

TABLE I: System Configuration

Component Specification

GPU NVIDIA RTX H100
GPU Memory 80 GB
CUDA Version 12.0
CPU Intel Xeon Gold 6338 @ 2.00GHz
CPU Sockets 2
CPU Cores per Socket 32
CPU Threads per Core 2
MKL Version 2022.1.0
Main Memory 256 GB DDR4

A. Graphs Generated by Varying Model Parameters

1) K15 Graphs with Varying Initiator Matrix –
Heatmaps: A Kronecker power of 15 was used, and
the initiator matrix values were varied as follows: we
start with a sample 2 × 2 initiator matrix of the values
[0.999, 0.437; 0.437, 0.484], matching the estimated ini-
tiator values by Kronfit [7] for the High Energy Physics
- Phenomenology Collaboration (CA-HEP-PH) Graph
[15] from the SNAP dataset. Then, we fix the first and
last initiator matrix values, while varying the other two,
producing different combinations of them. For each of
the newly generated initiator matrices, a new Kronecker
graph is generated. Finally, we evaluate the performance
of each as a sparse matrix in a SpMV operation.

Figure 5 shows heatmaps generated by our framework,
representing the performance of SpMV for the generated
K15 graphs, using Intel MKL for different sparse data
formats: COO, CSR, and CSC. The choice of heatmap
for the visualization of the Kronecker graph performance
enables observing relationship between two different
features (parameters) of the model (two initiator matrix
values), and how the performance changes with varying
both of the parameters. Also, the comparison between
different sparse data formats (COO, CSR, and CSC)
drives the decision of choosing the ideal data format,
for the given input graph model (K15), tool (MKL), and
architecture (CPU). The figure clearly shows that CSR

is a winner among the three evaluated formats in this
specific situation. It also shows that the performance of
COO is stable across different x1 and x2 values, so no
potential benefit appears from optimizing using these two
parameters for this specific format.

B. Multiple Different Models with Different Features

In this experiment, we evaluate the performance of
different graph models (vertical axis) and relate that per-
formance to different features of the models (horizontal
axis). The purpose of this experiment is to show if we
can directly compare the performance of different sparse
matrix/graph models using common features. This shows
if we can interpolate or extrapolate the performance of
different model from existing performance results, by
dialing different parameters/feature.

To conduct this experiment, we used three graph
models: random graphs generated using the density
parameter, Kronecker graphs generated using K power
15 and different initiator matrix values and select graphs
from SNAP dataset collection.

Figure 6 shows the performance results of this ex-
periment using cuSparse on H100 GPU, plotted against
number of rows, and number of non-zeros used as
features on the horizontal axis. Each subplot illustrates
the performance of a specific sparse data representation
out of the three we evaluated: COO, CSR, and CSC.

Looking at the relationship between Performance and
number of rows (Figure 6a, 6b, 6c), one can observe
that it is not a suitable feature to tune for performance,
as compared to the case in dense matrices.

Regarding the choice of ideal format, Figure 6 shows
the need of using our framework to sweep across a
wide range of graph parameters and noise to generate
graphs and make optimization decisions. For the SNAP
subset of graphs we evaluated, the maximum attained
performance was for the web-NotreDam in COO
format, at 181 GFLOPs. If one was to tune for only this
subset of SNAP graphs, a conclusion to use the COO
format would have been made. However, throughout
our experiment, we can see that CSR shows the global
highest performance across the three graph models, using
cuSparse on the H100 GPU.

Random graph generators use a main parameter: den-
sity. All of the generated random graphs were of the
same dimensions (square). We can see that nnz (Figure
6d, 6e, 6f) as a feature on the x-axis does not work
as well for Kronecker graphs; multiple graphs with the
same number of nonzeros exhibit different performance
characteristics. Also, for SNAP, looking at the scattered
performance points, one cannot interpolate or extrapolate
the performance (using existing performance data) at
different non-zero values that have not been evaluated.



(a) COO (b) CSR (c) CSC

Fig. 5: MKL SpMV performance of K15 Kronecker Graphs with varying initiator matrix values x1 (x-axis), and
x2 (y-axis). The graph is represented in (a) COO, (b) CSR, and (c) CSC formats.

(a) COO Performance vs nrows (b) CSR Performance vs nrows (c) CSC Performance vs nrows

(d) COO Performance vs nnz (e) CSR Performance vs nnz (f) CSC Performance vs nnz

Fig. 6: cuSparse SpMV performance for: random, SNAP, and K15 graphs plotted against number of rows, and
number of non-zeros (nnz) on the horizontal axis. COO, CSR, and CSC formats are evaluated.

V. CONCLUSION

In this paper, we propose a highly modular framework
for evaluating and analyzing the performance of sparse
matrix and graph operations. Our proposed framework
makes use of parameterized graph models to gener-
ate graphs by varying these parameters and observing
performance. It also evaluates the effect of inducing
different types of noise to the performance of sparse
data operations: noise due to error in model fitting tools,
and noise rising from using the wrong model for the
data. Our framework focuses on evaluating performance

(using different metrics) against representative parame-
ters/features (horizontal axis of performance plots), from
which performance interpolations and extrapolation can
be performed. It also aims at overcoming the existing
limitation of using discrete graph sets to tune the per-
formance of sparse matrix and graph kernel. We show
results from sets of experiments, conducted through our
framework to show the potential it provides to draw
insightful performance optimization decisions.
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