
LLM Inference Serving: Survey of Recent
Advances and Opportunities
Baolin Li∗, Yankai Jiang∗, Vijay Gadepally†, Devesh Tiwari∗

∗ Northeastern University, † MIT Lincoln Laboratory

Abstract—This survey offers a comprehensive overview of
recent advancements in Large Language Model (LLM) serving
systems, focusing on research since the year 2023. We specifically
examine system-level enhancements that improve performance
and efficiency without altering the core LLM decoding mech-
anisms. By selecting and reviewing high-quality papers from
prestigious ML and system venues, we highlight key innovations
and practical considerations for deploying and scaling LLMs
in real-world production environments. This survey serves as a
valuable resource for LLM practitioners seeking to stay abreast
of the latest developments in this rapidly evolving field.

I. INTRODUCTION

Large language models (LLMs) have rapidly gained im-
mense popularity since the release of ChatGPT. However,
deploying and scaling these powerful AI models in production
environments has presented significant challenges. The sub-
stantial computational and memory demands of LLMs often
necessitate the use of high-performance GPU servers, yet even
these resources can be strained by the sheer size of the models
and the lengthy text sequences they process.

The growing demand for LLM-powered applications has
fueled a surge of research into LLM serving systems. In this
paper, we present a comprehensive survey of these systems,
focusing on advancements since 2023. While previous LLM
system research existed, the landscape has dramatically shifted
within the last year. Nearly every major system conference
now features dedicated sessions on LLMs, with a particular
emphasis on serving systems due to their widespread deploy-
ment and the importance of low-latency performance for user
experience.

The sheer volume of research published in such a short time-
frame makes it difficult for LLM practitioners to stay abreast
of developments and identify the most promising approaches
for real-world deployment. This survey aims to provide a
clear overview of the current state of the art, highlighting key
areas of innovation and practical considerations for production
environments.

In this survey, we reviewed over 100 publications and
meticulously selected about 50 high-quality research papers
focused exclusively on LLM serving systems, published be-
tween January 2023 and June 2024. Our selection criteria
prioritized publications from prestigious machine learning
(ML) and system venues (e.g., ASPLOS, MLSys, OSDI), as
well as impactful arXiv submissions from established industry
and academic research groups. Notably, we exclude studies
that modify LLM decoding algorithms (e.g., multiple decoding
head [1], lookahead decoding [2], key token selection [3]) and

solely focus on system-level enhancements that maintain the
integrity of standard LLM decoding processes.

While a few prior LLM inference system surveys exist [4],
[5], [6], these generally cover a broader scope and do not
specifically emphasize system research. Additionally, many of
the papers discussed in those surveys involve decoding algo-
rithm modifications that can affect model accuracy. Our survey,
in contrast, explicitly focuses on system-level solutions that do
not alter the core LLM decoding mechanisms. Moreover, our
survey encompasses a significant body of research published
after the release of these earlier surveys, thus providing a more
comprehensive and up-to-date overview of the field.

We have organized the recent advances in LLM serving
systems into four distinct categories, each with its own set of
challenges and opportunities, which we will delve into in the
following sections.
KV cache and memory management. Efficient memory
management is crucial to handle the dynamic growth of
KV caches, which store previous key-value pairs to acceler-
ate LLM inference. Recent research explores non-contiguous
memory allocation, distributed management, and intelligent
caching strategies to optimize memory utilization. Compres-
sion techniques are also being investigated to reduce the over-
all memory footprint, ultimately enhancing LLM performance
and scalability by allowing for longer context lengths and
lower memory overhead.
LLM computation optimization. Efforts to optimize LLM
computation focus on request batching to maximize resource
utilization. Additionally, disaggregating the inference process
into prefill and decode phases enables independent optimiza-
tion and hardware specialization. Model parallelism, employ-
ing various techniques, facilitates efficient execution across
multiple GPUs. These strategies collectively enhance LLM
execution efficiency and hardware utilization.
Cloud LLM deployment. Cloud platforms provide a scalable
and cost-effective foundation for LLM inference. However,
challenges remain in optimizing costs and resource utiliza-
tion. Research is addressing this through techniques such as
spot instance management, serverless optimizations, intelligent
resource allocation, and power management. Additionally,
strategies like cloud task co-location and token delivery opti-
mization enhance user experience and overall cloud efficiency.
Emerging research fields. Emerging areas in LLM serving
include retrieval-augmented generation (RAG) and mixture-
of-experts (MoE) inference. RAG faces challenges related to

Self-attention Calculation
Norm Layer

WQWQ WKWK WVWV
QQ KK VV

Concatenation, Projection W0W0

FF
N

Block 1

Block 2

Block N

 Encoded Input Prompt X Output

Fig. 1: Transformer-based LLM architecture including both the
multi-head attention mechanism and feed-forward network.

the computational overhead of increased input lengths due to
retrieved documents, while MoE inference grapples with effi-
cient communication and load balancing between distributed
experts. Other research efforts address ethical concerns in
LLM serving, such as fairness and environmental sustainabil-
ity, for which we provide a comprehensive list of relevant
studies.

II. BACKGROUND

A. Overview of Transformer-based LLM Architecture

Mainstream LLMs are built on multiple transformer
blocks [7]. Each identical transformer primarily consists of
self-attention-based Multi-head Attention (MHA) operations
and Feed-Forward Networks (FFN). Initially, the transformer
applies three weight matrices (WQ,WK ,WV) to the input
X (encoded representation of input text sequence) to compute
queries Q, keys K, and values V . Then, the Self-attention is
calculated as:

Q = XWQ;K = XWK ;V = XWV

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

This is the calculation of one attention head (Hi), and
multiple heads are concatenated and linearly projected into
the final attention result:

Hi = Attention(XWQ
i , XWK

i , XWQ
i)

Multi-Head Attention = Concat(H1, H2, ..., Hh)W
O

MHA makes transformers focus on different parts of the
sequence in different representational spaces. Next, following
the MHA block, the normalized output is fed into a position-
wise FFN, which consists of two linear transformations with
a ReLU activation.

FFN(x) = max(0, xW1 + b1)W2 + b2

The FFN can be applied separately to each position, further
refining the information captured by the MHA block. The
output will have the same dimension as the input X . Fig. 1
provides a visualization of the LLM architecture.

B. Overview of LLM Inference

LLM inference generates output tokens autoregressively [8]
based on the initial input sequences P , referred to as Prompts.
This process is divided into two major phases: the prefill
phase and the decoding phase. The prefill phase is essential
for setting up the model to generate text efficiently, while the

 “Computer
science is”

Iteration 1

KV-Cache

Iteration 2 Iteration 3

discipline <EOS>

a Iteration 4

.

Prefill Phase Decoding Phase

Fig. 2: Prefill and decoding phase in the LLM inference.

decoding phase handles the generation of subsequent tokens.
We visualize this process until it reaches the End-of-Sequence
token (EOS) in Fig. 2.

The prefill phase starts with a tokenized and encoded
representation of the prompt going through layers of the
transformers. Note that the generated key-value (KV) pairs
of all transformer blocks are cached during the prefill phase,
referred to as KV cache [9]. It ensures that the model can
generate tokens more efficiently without recomputing the
KV vectors of all previous tokens. Let the input prompt
P = [p1, p2, ..., pn], during the prefill phase, a new token is
generated, denoted as Pn+1, and the new K and V are cached
as [(k1, v1), (k2, v2), ..., (kn, vn)].

The decoding phase is where the model generates new
tokens autoregressively. The LLM predicts the next token,
appends the newly generated token pn+1 to the original prompt
P , and updates the KV cache. Note that the KV cache grows
linearly with the number of tokens generated. The autoregres-
sive LLM inference process is outlined in Algorithm 1.

Algorithm 1 Autoregressive LLM Inference

Input P : encoded input sequence [p1, p2, ..., pn]
Output X: generated new sequence [].

1: Forward Pass ([p1, p2, ..., pn])
2: Store the KV cache: [(k1, v1), (k2, v2), ..., (kn, vn)]
3: for i from 1 to M do
4: Predict the next token pn+i using the KV cache.
5: Store (kn+i, vn+i) to the KV cache.
6: X ← X ∪ {pn+i}
7: if pn+i is EOS token or len(X)>max length then
8: break

III. MEMORY MANAGEMENT AND CACHING

In this section, we explore memory management techniques
to mitigate memory footprint and access overhead during
LLM inference. While model parameters remain constant and
intermediate activations are relatively small, the KV cache –
used to store attention information – grows substantially with
the number of generated tokens. Therefore, recent research has
focused on efficient KV cache management to enable larger
batch sizes and longer context processing.

A. Efficient Management of KV Cache

PagedAttention [10] identifies that the KV cache dynam-
ically grows and shrinks over time as the model generates
new tokens, but the request generation lifetime and length
are not known a priori. Thus, it proposes to manage the

KV cache as non-contiguous memory blocks. Compared to
contiguous KV cache, non-contiguous KV cache management
significantly reduces the memory waste on pre-allocation and
fragmentation. Due to its efficient memory management using
pages, PagedAttention has become an industry norm in LLM
serving frameworks, supported by TGI [11], vLLM [10] and
TensorRT-LLM [12].

Despite its success, researchers still identify its weakness
as PagedAttention requires rewriting attention kernels to ac-
commodate the non-contiguous memory blocks, its memory
manager adds software complexity and redundancy, and intro-
duces performance overhead. Recently, vAttention [13] was
proposed to retain the KV cache in contiguous virtual memory.
It leverages pre-existing low-level system calls for demand
paging, which is a standard operating system feature to re-
duce the software complexity. vAttention overlaps memory
allocation with computation, pre-allocates memory ahead of
time, and defers memory reclamation to hide the latency of
memory allocation and improve the overall performance of the
system.

Besides system memory management, other efforts have
addressed application-specific KV cache efficiency. Prompt
Cache [14] designs specific prompt schema for users to submit
their requests, so that attention states from these pre-defined
modules (e.g., system prompt) can be reused across multiple
prompts. AttentionStore [15] identifies that human interactions
with applications such as ChatGPT are mostly multi-turn
conversations. However, LLM engines would discard the KV
cache when the user session becomes inactive to free up HBM
space for other active sessions and re-compute the whole KV
cache again when the session becomes active, leading to extra
pre-filling costs. AttentionStore utilizes slower-mediums (e.g.,
CPU memory and disk), overlaps KV cache loading with
computation, and designs intelligent pre-fetching and eviction
policies.

B. Support for Long-Context Applications

Serving long-context LLM applications is particularly chal-
lenging as the size of the KV cache scales with the number
of tokens. The limited memory limits LLM’s ability to handle
long sequences, demanding more memory-efficient solutions.
Ring attention [16] is a novel distributed approach that lever-
ages blockwise computation of attention and feedforward of
long sequences across multiple devices. It efficiently overlaps
KV cache communication with computation and extends the
context length by the device count times. Infinite-LLM [17]
is another distributed solution, it breaks down KV cache into
smaller manageable units called rBlocks across GPUs/CPUs,
and efficiently manages them with dynamic memory sharing
and coordination. MemServe [18] unifies handling of inter-
request and intra-request optimizations for LLM serving by
introducing MemPool, a distributed memory pool to manage
KV cache across all cluster memory and employs a global
scheduler to maximize KV cache reuse.

When the context grows larger than the GPU memory limit,
most systems offload the KV cache to the CPU. InfiniGen [19]

is a solution that speculates the important KV cache entries
by rehearsing the attention computation of the current layer in
the preceding layer and prefetches only the essential entries
to the GPU, thereby reducing the data transfer overhead.
LoongServe [20] introduces a new parallelism paradigm called
Elastic Sequence Parallelism (ESP) to dynamically adapt to
resource usage variance between requests and phases (pre-
filling and decoding) of a request. It reduces KV cache
migration overhead and KV cache fragmentation when serving
long sequences.

C. Compression of KV Cache

Due to the large memory footprint of LLM serving, some
systems have resorted to compressing the KV cache. On
top of memory aggregation and communication scheduling,
FlexGen [21] uses fine-grained groupwise quantization to
compress the weights and KV cache to 4 bits. KIVI [22]
analyzes the element distribution of the LLM KV cache
and applies asymmetric quantization of the Key and Value
cache. KIVI quantizes the key cache per-channel (grouping
elements along the channel dimension) and the value cache
per-token to achieve minimum quantization error. Gear [23]
achieves near-lossless high-ratio KV cache compression by
quantizing the majority of entries of similar magnitudes and
employs a low-rank matrix to approximate the quantization
error. MiniCache [24] observes that the KV cache states
exhibit high similarity between adjacent layers in the middle-
to-deep portion of LLMs. Based on this insight, MiniCache
leverages this high similarity to merge them into a shared
representation to reduce redundancy, while also identifying
and retaining distinct states that are crucial for maintaining
the model’s performance, preventing information loss during
compression.

IV. COMPUTATION TASK SCHEDULING

Besides memory and KV cache management, the compu-
tation of LLM also presents significant system challenges.
Due to the sequential dependency between tokens during the
autoregressive generation, LLM can only generate one token
at a time for each request. Thus, LLM inference workloads
are less resource-efficient than training workloads on GPU
hardware that is designed for massively parallel execution.
Following this incentive, we investigate system solutions that
optimize the scheduling of computation tasks during the
inference process.

A. Request Batching

When a single request cannot efficiently utilize the GPU,
it is intuitive to batch multiple inference requests together to
boost the occupancy of GPU cores. However, as responses to
different prompts can have significantly variable lengths, when
batched together, the shorter responses are forced to wait for
the longer ones to complete, resulting in computational waste.
Response Length Perception and Sequence Scheduling [25]
instructs the LLM to predict the response length before starting
to generate the actual response, and batches queries with

similar predicted response lengths to reduce computational
waste. A similar approach, S3 [26], finetunes a Distillbert
model for sequence length prediction. Upon mispredictions,
it preempts sequences that exceed their allocated memory and
retrain the predictor to learn from its mistakes.

Generation length prediction based batching is less practical
due to the strong reliance on the predictor. Orca [27] proposes
continuous batching at the token level rather than the request
level. It continuously schedules new requests into the batch as
soon as a request in the current batch completes. Continuous
batching now has become an industry standard in LLM serving
frameworks, incorporated into the software of TGI, vLLM, and
TensorRT-LLM. Based on continuous batching, DeepSpeed-
FastGen [28] proposes a dynamic SplitFuse mechanism that
decomposes long prompts into smaller chunks scheduled
across multiple iterations and composes short prompts together
to maintain the inference running at high throughput region
(bounded by GPU compute not memory bandwidth). A similar
idea was explored in Sarathi-Serve [29], which splits prefill
requests into smaller chunks and schedules them alongside
ongoing decode requests without causing stalls (stall-free
batching). This allows new requests to join a running batch
without pausing ongoing decodes, leading to minimal pipeline
bubbles.

B. Disaggregated Inference

LLM inference goes through a prefill stage to process the
prompt, populate the KV cache, and start the decoding stage
to generate tokens (Sec. II). Existing LLM serving systems
colocate the two phases and batch the computation of prefill
and decoding across all users and requests. However, these
two phases display distinct characteristics and can interfere
with each other when requests at the prefill stage are batched
with requests at the decoding stage. TetriInfer [30] separates
prefill and decode instances, allowing each phase to run
independently and preventing interference between batch-like
prefill jobs and latency-critical decode tasks. It employs a
two-level scheduling algorithm that incorporates predicted
resource usage to avoid scheduling hotspots during the decode
phase, ensuring efficient resource allocation and minimizing
contention.

Splitwise [31] extensively characterizes the differences in
the execution and utilization patterns of the prefill and de-
coding stage on different generations of GPUs (heterogeneous
hardware). Splitwise proposes to split these two phases into
separate machines, allowing for specialized hardware for each
phase to achieve better utilization, reduce hardware ownership
costs, and save energy. DistServe [32] designs a placement
algorithm to schedule the prefill and decoding stage compu-
tation tasks. In clusters with high-speed cross-node networks,
DistServe optimizes parallelism configurations for prefill and
decoding instances independently to achieve the best per-GPU
goodput; In clusters with limited cross-node bandwidth, it
ensures that prefill and decoding instances of the same stage
are co-located within a single node and optimizes parallelism
configurations within the node.

C. Model Parallelism

LLMs can have hundreds of billions of parameters, re-
quiring model parallel execution on multiple GPUs. Pope et
al. [9] develop an analytical model for inference efficiency,
enabling the selection of optimal multi-dimensional partition-
ing techniques tailored for TPU v4 slices based on specific
application needs. HeteGen [33] introduces a framework for
heterogeneous parallel computing using CPUs and GPUs.
It employs a heterogeneous parallel computing algorithm
to distribute computation within its hybrid heterogeneous
parallelism framework and enables asynchronous overlap to
mitigate I/O bottlenecks between the CPU and GPU.

ExeGPT [34] can find an optimal schedule control variable
of the batch size and tensor parallelism degree that maximizes
inference throughput while adhering to a given latency limit.
It leverages the distribution of input and output sequence
lengths to allocate resources efficiently and determine the best
parallelism configuration. Helix [35] is designed to partition
an LLM across heterogeneous GPUs and different types of
network connections. It formulates its model partition scenario
as a max-flow problem of a directed, weighted graph whose
nodes represent GPU instances and edges capture both GPU
and network heterogeneity through their capacities in the max-
flow problem.

V. LLMS IN THE CLOUD

LLM deployments are computationally intensive and often
require significant infrastructure to run effectively. Cloud
platforms offer a scalable and cost-effective solution for de-
ploying LLMs, eliminating the need for expensive hardware
investments. The flexibility of cloud deployment allows or-
ganizations to easily adjust resources as needed, ensuring
optimal performance and minimizing downtime. However, the
significant costs associated with cloud computing resources
and the challenge of ensuring their efficient utilization can be
major obstacles for LLM service providers.

A. Cloud Deployment Cost

Modern clouds offer a variety of spot instances (e.g., AWS
EC2 Spot Instance, Azure Spot Virtual Machines, Google
Cloud Spot VMs). These instances run on spare capacity and
are offered at highly discounted prices, but may be preempted
at any time when other instances need the capacity. Spot-
Serve [36] addresses the challenges of using these instances
for LLM serving, such as how to quickly adapt to changes in
available instances and how to minimize the cost of migrating
instances when interruptions occur. It also introduces a stateful
inference recovery mechanism for inference engines to com-
mit their progress at the token level and efficiently resume
interrupted requests.

Serverless is a recently emerged cloud computing paradigm,
where inference service users can submit their model to the
cloud and the cloud provider takes care of all infrastructure
provision and scaling with varying inference request load,
and saves unused hardware costs for customers. A major
challenge in serverless is mitigating cold start, where a service

instance would be shut down after not being accessed for some
time, and once a new request arrives, it would experience
a latency spike associated with re-initializing the service
instance. ServerlessLLM [37] addresses these latency issues
by utilizing the underutilized storage and memory resources
available on GPU servers. It introduces a new checkpoint
format and loading system to speed up LLM model loading,
a live migration mechanism to avoid interrupting ongoing
inferences, and a locality-aware server allocation strategy to
minimize LLM inference cold start latency.

Cloud providers often offer a wide range of heterogeneous
instance selections labeled at different prices. Mélange [38]
is a cloud resource allocation framework that considers three
key LLM service characteristics: request size, request rate,
and service-level objective. It automatically navigates through
the GPU option space to determine the most cost-efficient
heterogeneous GPU allocation for a given LLM service. With
the resources allocated and model hosted on the GPUs, Llum-
nix [39] is a dynamic scheduling system for LLM serving that
addresses the challenges of heterogeneous and unpredictable
requests by rescheduling them across multiple model instances
at runtime – similar to how OS context switches across cores.
Llumnix introduces an efficient live migration mechanism for
requests and their in-memory states, minimizing downtime
during rescheduling, and employs a dynamic scheduling pol-
icy that unifies various rescheduling scenarios, such as load
balancing, de-fragmentation, prioritization, and auto-scaling.
This efficiency has resulted in significant cost savings while
achieving similar tail latency.

B. Cloud Efficiency

A key bottleneck resource in cloud datacenters is power,
which LLMs are quickly saturating due to their growing
computation demand. POLCA [40] characterizes the power
consumption patterns of LLMs in the cloud and finds that
while training LLMs demands a lot of power and can strain the
data center’s power infrastructure, inference tasks offer more
flexibility for power management due to their less predictable
power demands. POLCA devises a framework to manage
power in LLM inference clusters by dynamically applying
techniques such as GPU frequency locking and power capping.
PerLLM [41] takes the LLM inference to an edge-cloud
collaboration scenario, where it leverages the strengths of
edge computing (low latency, reduced energy costs) and cloud
computing (high processing power) to handle LLM inference
tasks efficiently. PerLLM employs a Constraint Satisfaction
Upper Confidence Bound (CS-UCB) algorithm to optimize
service scheduling and resource allocation while adhering to
constraints like processing time, bandwidth, and computing
power – achieving energy LLM efficiency.

Workloads often get co-located in the cloud environment.
FlexLLM [42] is a system designed to efficiently service
LLM inference and parameter-efficient fine-tuning (PEFT)
requests in the same iteration. LLM inference, which involves
generating text token by token, is primarily limited by memory
bandwidth due to the need to access all model parameters

for each token generation. In contrast, PEFT, which processes
all tokens of a request simultaneously, is mainly constrained
by compute resources, such as the tensor cores on GPUs.
FlexLLM introduces a token-level fine-tuning mechanism that
breaks down the fine-tuning process into smaller, more man-
ageable token-level computations to minimize memory usage
and inference latency, making co-serving feasible.

As LLM inference follows token-by-token generation, users
also read the response word-by-word. Andes [43] defines a
user experience metric of Quality of Experience (QoE) for text
streaming services. It is formulated by comparing the actual
token delivery timeline (TDT) of a request with its expected
TDT. The expected TDT is determined by the expected time
to first token (TTFT) and the expected token delivery speed
(TDS), which can vary depending on factors like the user’s
typical reading speed. The intuition is generating text too fast
(than user reading speed) does not yield QoE benefits, wasting
cloud resources. Andes addresses this by strategically allocat-
ing GPU resources among multiple requests to optimize QoE.
It employs a dynamic priority-based preemptive scheduler that
operates at the token level, prioritizing urgent requests and
preempting those that have been sufficiently served. Andes
improves average QoE and can handle higher request rates
while maintaining similar token generation throughput.

VI. EMERGING RESEARCH FIELDS

A. Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG) [44] is a technique
that enhances LLMs by incorporating external information
sources. It addresses the limitations of LLMs in retaining
factual knowledge and their tendency to generate inaccurate
or fabricated information (hallucinations) [45]. RAG operates
in two stages: retrieval and generation. During retrieval, the
system identifies the most relevant contexts from an external
knowledge base or corpus based on the given query. Once
the relevant contexts are retrieved, they are integrated into the
LLM’s generation process in different processes including con-
catenation (where the retrieved contexts are simply appended
to the query) and cross-attention (where the LLM attends to
the retrieved contexts during generation).

Sparse RAG [46] observes that RAG can be computationally
expensive due to the increased input length from retrieved
documents. It first encodes retrieved documents in parallel
to eliminate latency caused by long-range attention, then
selectively decodes the output by attending only to highly
relevant caches chosen via prompting the LLM with special
control tokens. RAGCache [47] caches intermediate states of
external knowledge with a knowledge tree to organize and
store intermediate states. The cached knowledge can be shared
across multiple queries to reduce the redundant computation.
Another knowledge caching technique is CacheBlend [48],
which selectively recomputes a small portion of the KV cache
based on the preceding text in the input.

B. Mixture-of-Experts Inference

The mixture of Experts (MoE) is used in LLMs to im-
prove efficiency and performance. It divides the model into
specialized sub-networks, called “experts”, each focusing on
a specific task. A “gating” network then directs input to the
most suitable expert. In the inference process of an MoE trans-
former, the input is first passed through a gating network. This
network determines which expert, or a combination of experts,
is best suited to process the specific input. MoE’s sparsely
activated subset of experts avoids the large computational need
to process the entire model for every inference.
MoE Communication. Lina [49] is a system designed to
address the all-to-all communication bottleneck in distributed
MoE. The all-to-all communication occurs when distributed
MoE sends tokens to their selected experts for processing and
then sends the results back to the original devices. During
inference, Lina dynamically schedules resources based on
expert popularity, balancing the transfer size and bandwidth
of all-to-all communication across devices. ExFlow [50] is
an optimization technique to accelerate the inference of dis-
tributed MoE. It leverages the inter-layer expert affinity, which
is the correlation between expert selection across different
MoE layers. By placing experts on corresponding GPUs based
on their affinity, ExFlow reduces cross-GPU routing latency
and improves inference throughput.
Expert offloading. SiDA-MoE [51] (Sparsity-inspired Data-
Aware) leverages both main memory and GPU memory by
exploiting the inherent sparsity of expert activation in MoE
models. SiDA-MoE includes two parallel threads: an inference
thread and a hash-building thread. The hash-building thread
predicts which experts will be activated for each token at
each layer, storing these predictions in a hash table. The
inference thread then uses this information to dynamically
load activated experts onto the GPU and offload inactive
experts to main memory, maximizing GPU memory utilization.
MoE-Infinity [52] takes a different approach toward expert
offloading. The system leverages the observation that MoE
models exhibit sparse activation and temporal locality during
inference, meaning only a few experts are repeatedly activated
for processing a specific sequence. MoE-Infinity traces expert
activation at the sequence level, enabling it to predict which
experts will be needed and prefetch them accordingly.
MoE Efficiency. Fiddler [53] is a system designed to
efficiently run these models on a limited number of GPUs,
even when the model’s size would typically exceed the GPU’s
memory capacity. Fiddler strategically distributes the model’s
components. Non-expert layers, which are used frequently, are
kept on the GPU. A subset of expert layers, chosen based
on how often they’re used, are also placed on the GPU.
The rest remain in the CPU’s memory. Huang et al. [54]
introduce three optimization techniques to address the MoE
inference inefficiencies. (i) Dynamic gating allows the number
of tokens processed by each expert to vary, which avoids the
over-provisioning of resources in static gating and reduces
computational waste, communication overhead, and memory

consumption. (ii) Expert buffering leverages the observation
that expert activation is often sparse and exhibits temporal
locality. By caching frequently used (hot) experts in GPU
memory and buffering less active experts in CPU memory,
expert buffering reduces the static memory allocation on GPU.
(iii) Imbalanced token assignments to experts can lead to bot-
tlenecks and performance degradation. Expert load balancing
ensures a more even distribution of workload across devices.

C. Miscellaneous Fields

Ethics and environmental sustainability. Sheng et. al [55]
ensure fairness in serving LLMs by introducing a Virtual
Token Counter (VTC). VTC defines LLM serving fairness
based on a cost function that accounts for the number of
input and output tokens processed. It achieves fairness by
tracking the services received by each client and prioritizing
those with the least service, while also considering the varying
costs of processing input and output tokens. Sprout [56] ad-
dresses the environmental sustainability of LLMs and designs
a framework to reduce the carbon footprint of LLM inference
services. Sprout introduces “generation directives” to guide
the autoregressive generation process, balancing the need for
sustainability with the demand for high-quality generation.
End-to-end optimization. FlashDecoding++ [57] improves
performance in softmax synchronization, GPU kernel, and
dataflow. For example, the decoding phase performs linear
GEMM operations with flat shapes where the batch size
dimension involved in the multiplication is much smaller
than the others. FlashDecoding++ accelerates flat GEMM with
double buffering that overlaps computation and data transfer
and hides the memory latency in loading input matrices. Par-
rot [58] is designed to optimize the performance of LLM-based
applications that involve multiple LLM requests with complex
workflows. Parrot performs data flow analysis and uncovers
correlations across multiple LLM requests. FlashAttention-
3 [59] introduces techniques like warp specialization and asyn-
chronous block-wise operations to optimize GPU utilization.
Frugal inference. FrugalGPT [60] proposes several solutions
to reduce the inference cost, such as prompt caching and
LLM cascading which uses a sequence of LLMs, starting
with cheaper ones and moving to more expensive ones only if
necessary. SpecInfer [61] applies speculative decoding using
smaller, speculative models to predict the LLM’s output,
reducing the computational resources. These predictions are
organized into a tree structure, and their accuracy is verified in
parallel against the LLM. RouteLLM [62] dynamically selects
between a stronger and a weaker LLM during inference to
optimize the balance between cost and response quality.

VII. CONCLUSION

This survey has presented a comprehensive overview of
recent advancements in LLM serving systems, emphasizing
the importance of system-level solutions for enhancing per-
formance and efficiency. We have highlighted key innovations
for deploying and scaling LLMs, paving the way for the future
development of LLM serving systems.

ACKNOWLEDGMENTS

This material is based upon work supported by the Assistant
Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8702-15-D-0001, and United States Air
Force Research Laboratory Cooperative Agreement Number
FA8750-19-2-1000. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
Assistant Secretary of Defense for Research and Engineering,
or the United States Air Force. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES

[1] T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and T. Dao,
“Medusa: Simple llm inference acceleration framework with multiple
decoding heads,” arXiv preprint arXiv:2401.10774, 2024.

[2] Y. Fu, P. Bailis, I. Stoica, and H. Zhang, “Break the sequential de-
pendency of llm inference using lookahead decoding,” arXiv preprint
arXiv:2402.02057, 2024.

[3] M. Adnan, A. Arunkumar, G. Jain, P. Nair, I. Soloveychik, and P. Ka-
math, “Keyformer: Kv cache reduction through key tokens selection for
efficient generative inference,” Proceedings of Machine Learning and
Systems, vol. 6, pp. 114–127, 2024.

[4] X. Miao, G. Oliaro, Z. Zhang, X. Cheng, H. Jin, T. Chen, and Z. Jia,
“Towards efficient generative large language model serving: A survey
from algorithms to systems,” arXiv preprint arXiv:2312.15234, 2023.

[5] Z. Yuan, Y. Shang, Y. Zhou, Z. Dong, C. Xue, B. Wu, Z. Li, Q. Gu,
Y. J. Lee, Y. Yan et al., “Llm inference unveiled: Survey and roofline
model insights,” arXiv preprint arXiv:2402.16363, 2024.

[6] Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang,
Z. Yuan, X. Li et al., “A survey on efficient inference for large language
models,” arXiv preprint arXiv:2404.14294, 2024.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[8] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[9] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, pp.
606–624, 2023.

[10] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[11] “Text generation inference: A rust, python and grpc
server for text generation inference.” [Online]. Available:
https://github.com/huggingface/text-generation-inference

[12] “Tensorrt-llm: A tensorrt toolbox for optimized large language model
inference.” [Online]. Available: https://github.com/NVIDIA/TensorRT-
LLM

[13] R. Prabhu, A. Nayak, J. Mohan, R. Ramjee, and A. Panwar, “vattention:
Dynamic memory management for serving llms without pagedattention,”
arXiv preprint arXiv:2405.04437, 2024.

[14] I. Gim, G. Chen, S.-s. Lee, N. Sarda, A. Khandelwal, and L. Zhong,
“Prompt cache: Modular attention reuse for low-latency inference,”
Proceedings of Machine Learning and Systems, vol. 6, pp. 325–338,
2024.

[15] B. Gao, Z. He, P. Sharma, Q. Kang, D. Jevdjic, J. Deng, X. Yang,
Z. Yu, and P. Zuo, “Cost-Efficient large language model serving
for multi-turn conversations with CachedAttention,” in 2024 USENIX
Annual Technical Conference (USENIX ATC 24). Santa Clara, CA:
USENIX Association, Jul. 2024, pp. 111–126. [Online]. Available:
https://www.usenix.org/conference/atc24/presentation/gao-bin-cost

[16] H. Liu, M. Zaharia, and P. Abbeel, “Ring attention with blockwise
transformers for near-infinite context,” arXiv preprint arXiv:2310.01889,
2023.

[17] B. Lin, T. Peng, C. Zhang, M. Sun, L. Li, H. Zhao, W. Xiao,
Q. Xu, X. Qiu, S. Li et al., “Infinite-llm: Efficient llm service for
long context with distattention and distributed kvcache,” arXiv preprint
arXiv:2401.02669, 2024.

[18] C. Hu, H. Huang, J. Hu, J. Xu, X. Chen, T. Xie, C. Wang, S. Wang,
Y. Bao, N. Sun et al., “Memserve: Context caching for disaggregated
llm serving with elastic memory pool,” arXiv preprint arXiv:2406.17565,
2024.

[19] W. Lee, J. Lee, J. Seo, and J. Sim, “Infinigen: Efficient generative in-
ference of large language models with dynamic kv cache management,”
arXiv preprint arXiv:2406.19707, 2024.

[20] B. Wu, S. Liu, Y. Zhong, P. Sun, X. Liu, and X. Jin, “Loongserve:
Efficiently serving long-context large language models with elastic
sequence parallelism,” arXiv preprint arXiv:2404.09526, 2024.

[21] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang,
C. Ré, I. Stoica, and C. Zhang, “Flexgen: High-throughput generative
inference of large language models with a single gpu,” in International
Conference on Machine Learning. PMLR, 2023, pp. 31 094–31 116.

[22] Z. Liu, J. Yuan, H. Jin, S. Zhong, Z. Xu, V. Braverman, B. Chen, and
X. Hu, “Kivi: A tuning-free asymmetric 2bit quantization for kv cache,”
arXiv preprint arXiv:2402.02750, 2024.

[23] H. Kang, Q. Zhang, S. Kundu, G. Jeong, Z. Liu, T. Krishna, and
T. Zhao, “Gear: An efficient kv cache compression recipefor near-
lossless generative inference of llm,” arXiv preprint arXiv:2403.05527,
2024.

[24] A. Liu, J. Liu, Z. Pan, Y. He, G. Haffari, and B. Zhuang, “Minicache:
Kv cache compression in depth dimension for large language models,”
arXiv preprint arXiv:2405.14366, 2024.

[25] Z. Zheng, X. Ren, F. Xue, Y. Luo, X. Jiang, and Y. You, “Response
length perception and sequence scheduling: An llm-empowered llm
inference pipeline,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[26] Y. Jin, C.-F. Wu, D. Brooks, and G.-Y. Wei, “S3: Increasing gpu
utilization during generative inference for higher throughput,” Advances
in Neural Information Processing Systems, vol. 36, pp. 18 015–18 027,
2023.

[27] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca: A
distributed serving system for {Transformer-Based} generative models,”
in 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), 2022, pp. 521–538.

[28] C. Holmes, M. Tanaka, M. Wyatt, A. A. Awan, J. Rasley, S. Rajbhandari,
R. Y. Aminabadi, H. Qin, A. Bakhtiari, L. Kurilenko et al., “Deepspeed-
fastgen: High-throughput text generation for llms via mii and deepspeed-
inference,” arXiv preprint arXiv:2401.08671, 2024.

[29] A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani,
A. Tumanov, and R. Ramjee, “Taming throughput-latency tradeoff in llm
inference with sarathi-serve,” arXiv preprint arXiv:2403.02310, 2024.

[30] C. Hu, H. Huang, L. Xu, X. Chen, J. Xu, S. Chen, H. Feng, C. Wang,
S. Wang, Y. Bao et al., “Inference without interference: Disaggre-
gate llm inference for mixed downstream workloads,” arXiv preprint
arXiv:2401.11181, 2024.

[31] P. Patel, E. Choukse, C. Zhang, Í. Goiri, A. Shah, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative llm inference using phase
splitting,” arXiv preprint arXiv:2311.18677, 2023.

[32] Y. Zhong, S. Liu, J. Chen, J. Hu, Y. Zhu, X. Liu, X. Jin, and H. Zhang,
“Distserve: Disaggregating prefill and decoding for goodput-optimized
large language model serving,” arXiv preprint arXiv:2401.09670, 2024.

[33] Z. XUANLEI, B. Jia, H. Zhou, Z. Liu, S. Cheng, and Y. You, “Hetegen:
Efficient heterogeneous parallel inference for large language models on
resource-constrained devices,” Proceedings of Machine Learning and
Systems, vol. 6, pp. 162–172, 2024.

[34] H. Oh, K. Kim, J. Kim, S. Kim, J. Lee, D.-s. Chang, and J. Seo, “Exegpt:
Constraint-aware resource scheduling for llm inference,” in Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2024, pp.
369–384.

[35] Y. Mei, Y. Zhuang, X. Miao, J. Yang, Z. Jia, and R. Vinayak, “Helix:
Distributed serving of large language models via max-flow on hetero-
geneous gpus,” arXiv preprint arXiv:2406.01566, 2024.

[36] X. Miao, C. Shi, J. Duan, X. Xi, D. Lin, B. Cui, and Z. Jia, “Spotserve:
Serving generative large language models on preemptible instances,” in
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
2024, pp. 1112–1127.

[37] Y. Fu, L. Xue, Y. Huang, A.-O. Brabete, D. Ustiugov, Y. Patel, and
L. Mai, “Serverlessllm: Locality-enhanced serverless inference for large
language models,” arXiv preprint arXiv:2401.14351, 2024.

[38] T. Griggs, X. Liu, J. Yu, D. Kim, W.-L. Chiang, A. Cheung, and I. Stoica,
“M\’elange: Cost efficient large language model serving by exploiting
gpu heterogeneity,” arXiv preprint arXiv:2404.14527, 2024.

[39] B. Sun, Z. Huang, H. Zhao, W. Xiao, X. Zhang, Y. Li, and W. Lin,
“Llumnix: Dynamic scheduling for large language model serving,” arXiv
preprint arXiv:2406.03243, 2024.

[40] P. Patel, E. Choukse, C. Zhang, Í. Goiri, B. Warrier, N. Mahalingam, and
R. Bianchini, “Characterizing power management opportunities for llms
in the cloud,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, 2024, pp. 207–222.

[41] Z. Yang, Y. Yang, C. Zhao, Q. Guo, W. He, and W. Ji, “Perllm:
Personalized inference scheduling with edge-cloud collaboration for
diverse llm services,” arXiv preprint arXiv:2405.14636, 2024.

[42] X. Miao, G. Oliaro, X. Cheng, M. Wu, C. Unger, and Z. Jia, “Flexllm:
A system for co-serving large language model inference and parameter-
efficient finetuning,” arXiv preprint arXiv:2402.18789, 2024.

[43] J. Liu, Z. Wu, J.-W. Chung, F. Lai, M. Lee, and M. Chowdhury,
“Andes: Defining and enhancing quality-of-experience in llm-based text
streaming services,” arXiv preprint arXiv:2404.16283, 2024.

[44] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[45] K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston, “Retrieval
augmentation reduces hallucination in conversation,” arXiv preprint
arXiv:2104.07567, 2021.

[46] Y. Zhu, J.-C. Gu, C. Sikora, H. Ko, Y. Liu, C.-C. Lin, L. Shu,
L. Luo, L. Meng, B. Liu et al., “Accelerating inference of retrieval-
augmented generation via sparse context selection,” arXiv preprint
arXiv:2405.16178, 2024.

[47] C. Jin, Z. Zhang, X. Jiang, F. Liu, X. Liu, X. Liu, and X. Jin, “Ragcache:
Efficient knowledge caching for retrieval-augmented generation,” arXiv
preprint arXiv:2404.12457, 2024.

[48] J. Yao, H. Li, Y. Liu, S. Ray, Y. Cheng, Q. Zhang, K. Du, S. Lu, and
J. Jiang, “Cacheblend: Fast large language model serving with cached
knowledge fusion,” arXiv preprint arXiv:2405.16444, 2024.

[49] J. Li, Y. Jiang, Y. Zhu, C. Wang, and H. Xu, “Accelerating distributed
{MoE} training and inference with lina,” in 2023 USENIX Annual
Technical Conference (USENIX ATC 23), 2023, pp. 945–959.

[50] J. Yao, Q. Anthony, A. Shafi, H. Subramoni, and D. K. D. Panda,
“Exploiting inter-layer expert affinity for accelerating mixture-of-experts
model inference,” in 2024 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2024, pp. 915–925.

[51] Z. Du, S. Li, Y. Wu, X. Jiang, J. Sun, Q. Zheng, Y. Wu, A. Li, H. Li,
and Y. Chen, “Sida: Sparsity-inspired data-aware serving for efficient
and scalable large mixture-of-experts models,” Proceedings of Machine
Learning and Systems, vol. 6, pp. 224–238, 2024.

[52] L. Xue, Y. Fu, Z. Lu, L. Mai, and M. Marina, “Moe-infinity: Activation-
aware expert offloading for efficient moe serving,” arXiv preprint
arXiv:2401.14361, 2024.

[53] K. Kamahori, Y. Gu, K. Zhu, and B. Kasikci, “Fiddler: Cpu-gpu
orchestration for fast inference of mixture-of-experts models,” arXiv
preprint arXiv:2402.07033, 2024.

[54] H. Huang, N. Ardalani, A. Sun, L. Ke, H.-H. S. Lee, A. Sridhar,
S. Bhosale, C.-J. Wu, and B. Lee, “Towards moe deployment: Mitigating
inefficiencies in mixture-of-expert (moe) inference,” arXiv preprint
arXiv:2303.06182, 2023.

[55] Y. Sheng, S. Cao, D. Li, B. Zhu, Z. Li, D. Zhuo, J. E. Gonzalez, and
I. Stoica, “Fairness in serving large language models,” arXiv preprint
arXiv:2401.00588, 2023.

[56] B. Li, Y. Jiang, V. Gadepally, and D. Tiwari, “Toward sustainable genai
using generation directives for carbon-friendly large language model
inference,” arXiv preprint arXiv:2403.12900, 2024.

[57] K. Hong, G. Dai, J. Xu, Q. Mao, X. Li, J. Liu, Y. Dong, Y. Wang
et al., “Flashdecoding++: Faster large language model inference with
asynchronization, flat gemm optimization, and heuristics,” Proceedings
of Machine Learning and Systems, vol. 6, pp. 148–161, 2024.

[58] C. Lin, Z. Han, C. Zhang, Y. Yang, F. Yang, C. Chen, and L. Qiu, “Parrot:
Efficient serving of llm-based applications with semantic variable,” arXiv
preprint arXiv:2405.19888, 2024.

[59] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao,
“Flashattention-3: Fast and accurate attention with asynchrony and low-
precision,” arXiv preprint arXiv:2407.08608, 2024.

[60] L. Chen, M. Zaharia, and J. Zou, “Frugalgpt: How to use large language
models while reducing cost and improving performance,” arXiv preprint
arXiv:2305.05176, 2023.

[61] X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, Z. Zhang, R. Y. Y.
Wong, A. Zhu, L. Yang, X. Shi et al., “Specinfer: Accelerating large
language model serving with tree-based speculative inference and ver-
ification,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, 2024, pp. 932–949.

[62] I. Ong, A. Almahairi, V. Wu, W.-L. Chiang, T. Wu, J. E. Gonzalez,
M. W. Kadous, and I. Stoica, “Routellm: Learning to route llms with
preference data,” arXiv preprint arXiv:2406.18665, 2024.

