

©2024 IEEE

The Genomic Computing Revolution: Defining the
Next Decades of Accelerating Genomics

Harisankar Sadasivan
AI Group

Advanced Micro Devices Inc.
Bellevue, WA, USA
hsadasiv@amd.com

Gagandeep Singh
Research and Development

Advanced Micro Devices Inc.
Zug, Switzerland

Gagandeep.Singh@amd.com

 Jeff Nivala
Computer Science and

 Engineering
University of Washington

Seattle, WA, USA
jmdn@cs.washington.edu

Sriranjani Sitaraman

HPC Solutions, DCGPU
Advanced Micro Devices Inc.

Austin, TX, USA
gina.sitaraman@amd.com

Artur Klauser
Seattle, WA, USA

Artur.Klauser@computer.org

Alberto Zeni
AI Group- Silicon

Advanced Micro Devices Inc.
Dublin, Ireland

Alberto.Zeni@amd.com

Bob Robey
HPC Solutions, DCGPU

Advanced Micro Devices Inc.
Los Alamos, NM, USA
 Bob.Robey@amd.com

Juergen Hench
Institute for Pathology and Medical

Genetics
University Hospital Basel

Basel, Switzerland
Juergen.Hench@usb.ch

Sarah Beecroft

Pawsey Supercomputing Research
Centre

Perth, WA, Australia
Sarah.Beecroft@pawsey.com.au

Onur Mutlu

Information Technology and
Electrical Engineering

ETH Zürich
Zürich, Switzerland

onur.mutlu@inf.ethz.ch

Yatish Turakhia
Electrical and Computer

Engineering
University of California

 San Diego, USA
yturakhia@ucsd.edu

Satish Narayanasamy

Computer Science and Engineering
 University of Michigan Ann Arbor

 MI, USA
nsatish@umich.edu

Kristof Denolf

Research and Development
Advanced Micro Devices Inc.

Longmont, CO, USA
kristof.denolf@amd.com

Abstract—The rapid growth of genomic data has positioned

genomics to become one of the world's most storage-intensive and

computationally demanding fields. This review paper provides a

comprehensive analysis of emerging trends in software and

hardware for genomics, addressing a critical gap in the current

literature. We categorize and examine key algorithms in genomic

sequencing workflows, including sequence data indexing, retrieval

and pile-up, dynamic programming, and machine learning. We

analyze how computational and memory requirements scale with

input sizes for each category, offering insights into potential

bottlenecks and optimization opportunities. Our review

synthesizes recent advancements in hardware-software co-design,

compression schemes, and acceleration techniques for genomic

data processing. We propose graphics processing units (GPUs) as

a promising first step for deploying genomics workflows due to

their high throughput, memory bandwidth, and programmability.

By providing a holistic perspective on the computational

challenges in genomics, this paper attempts to set a promising

direction for future researchers to work collectively to optimize all

the components of genomic data processing workflows. Our work

aims to foster more targeted and effective advancements in the

field, potentially leading to significant improvements in the

efficiency and scalability of genomic analyses. We also discuss

performance portability as a second step to meet the diverse

requirements in point-of-care workflows.

Keywords—Dynamic Time Warping, Dynamic Programming,

Genomics, GPU, Illumina, MinION, Machine Learning, Nanopore,

PacBio, Illumina

I. INTRODUCTION

As we navigate through the 21st century, genomics is
undergoing a significant transformation. Once primarily a
research domain, genomics is now emerging as a critical
component of healthcare [1]-[3], [80], thanks to the decreasing
costs of sequencing [75] and its increasing relevance in disease
diagnosis, treatment, and prevention. Sequencing data is now
used in various applications, including cancer, rare genetic
diseases, microbiome, metagenomics, epidemiology, species
conservation, evolutionary biology, crop genomics, and
population genomics [87]. This evolution, accompanied by new
funding avenues [109] and larger participant cohorts, is leading
to a rapid surge in genomic data that demands substantial
storage capacity [4], [6], [48], [103]. Further, with the break-
out of SARS-CoV-2, we saw an explosion in the amount of
sequencing data generated [74] that overwhelmed existing
bioinformatics infrastructures [89]. Realizing the importance of
genomics, the US Government has categorized biotechnologies
(of which genomics is a part) and advanced computing as two
of the few critical and emerging technologies (CET) significant
to national security [5].

The Global Alliance for Genomics and Health (GA4GH)
[6], [48] anticipates that by 2025, approximately 60 million
human genomes will have been sequenced globally, with
healthcare accounting for the majority. An experiment to
sequence a whole human genome generates approximately 30
times more data than the human diploid (double-stranded)
DNA, depending on the sequencing depth (coverage) required
to account for sequencing errors. While theoretically, a single
diploid genome of 6 billion bases could be stored using 1.5 GB
`requirements are significantly higher. When combined with

various types of metadata, such as sequence names and quality
scores, the annual data storage requirement could range
between 2 to 40 exabytes [6].

When compared to other data-intensive fields — astronomy
generating 1 exabyte/year, particle physics producing over 75
petabytes/year, and YouTube creating 1-2 exabytes/year —
genomics is expected to surpass these historical data generators
[4], [6]. Consequently, genomics is on the verge of becoming
one of the world’s most storage-intensive workloads, posing a
significant compute, storage, and input/output (I/O) challenge.
This impending data avalanche underscores the pressing need
for innovative solutions to efficiently manage, store, and
analyze genomic data.

Addressing the storage demands of the vast volume of
genomic data necessitates innovative solutions. One such
approach involves the application of genomic data compression
schemes that leverage the similarity that many genomic
sequences share due to evolutionary relationships [7]-[9], [90],
[91], [101] and are specifically tailored for high-performance
computing (HPC) environments. These schemes offer a
potential solution to decrease the storage requirements.

Additionally, denser data storage mediums, such as DNA-
based storage, could be explored. This approach, however, will
necessitate further research to enhance the computational
efficiency (reliability and latency) of molecular read/write
operations [25], [26], [77], [102]. An intriguing consideration
is the point at which it may be more practical to discard the
digital genomic sequencing data and preserve the original DNA
of the genome [102]. Given advancements in DNA storage
technology, retaining the physical DNA could serve as a more
efficient method of storing genomic information, allowing for
future sequencing and analysis as needed while significantly
reducing digital storage demands.

Another strategy is limiting the generation of redundant
data. This could be achieved by implementing filtering
mechanisms or adopting selective sequencing techniques [14],
[22], [27]-[30]. However, this approach presents its own
challenges, particularly given the high throughput of real-time
sequencers like Oxford Nanopore Technologies (ONT), which
require substantial computational power to make real-time
decisions while sequencing. We estimate that the largest
sequencers from PacBio and ONT would generate raw data on
the order of several Giga-bytes per second. It is also worth
noting that sometimes for ONT, this huge raw data dump is
preserved to retain metadata on methylation, acetylation, and
other base modifications depending on the application. This
data deluge is reduced by one to three orders of magnitude in
size during the basecalling step, depending on the sequencing
technology used. Keeping up with this throughput in real-time
is challenging for both the software [13], [28], [29] and
hardware [13], [104].

Addressing these computational challenges is no easy task.
As shown in Fig. 1, genomic data often undergoes a series of
algorithmic processes to denoise the signal and reach a

1 Image is adapted from [80] with license:
https://creativecommons.org/licenses/by/4.0/. Please note that the output file
formats of the PacBio sequencer and basecaller are modified for correctness.

consensus on its representation [19]. These processes
frequently employ techniques rooted in classical signal
processing, index lookups, dynamic programming (DP),
statistical analysis, and, more recently, machine learning (ML),
including the use of transformer models [18], [19]. Recently,
several attempts have been made to understand these algorithms
at a higher level by building benchmark suites for different
hardware [18], [19]. While there have been numerous attempts
[10]-[17], [20]-[24], [27]-[30], [59], [60], [82], [103]-[108] to
accelerate these individual components, there is no clear
direction set on the hardware of choice as the independent
development and constant evolution of these components
present a significant challenge. We propose GPUs as an initial
platform of choice for deploying genomics workflows because
of their high throughput (100s of TFLOPs), memory bandwidth
(several TB/s), and, more importantly, programmability.
Moreover, many components in genomics processing
workflows have been independently ported to GPUs [23], [57],
[62], [65], [86], [105].

Fig. 1: An overview of the genome sequencing and processing workflow
as adapted from [80]. 1

Although GPUs may currently provide a compelling
platform, we extend our discussion to performance portability

frameworks, acknowledging that point-of-care testing (POCT)
genomics workflows present a unique set of challenges [31]-
[33], [79] that are distinct from the traditional HPC and, hence,
may have a different set of preferences. Data privacy [32]
concerns in some government jurisdictions necessitate local
processing, while wet lab environments impose strict
limitations on size [31], heat generation [33], and noise [79].
These workflows also require high reliability with minimal
downtimes. Edge computing architectures address these
challenges by bringing computation closer to data sources [88].
Limited storage and bandwidth underscore the need for
efficient on-the-fly data compression and decompression,
demanding specialized software and hardware support. These
requirements are shaping the development of tailored solutions
for decentralized genomic data processing, balancing the needs
for rapid analysis, data security [34], and operational
constraints in clinical settings. In the future, as collaborative
genome analysis using privacy-preserving techniques like
confidential computing for genomics [76] becomes more
prevalent, edge computing on secure platforms [78] may
become the standard. This could allow for more widespread and
secure genomic data sharing and analysis while maintaining
strict privacy protections.

Having established the diverse demands driving the
genomics compute and storage tidal wave, we look ahead to
guide future genomics workflow development efforts in
choosing hardware (e.g., GPUs) that can not only meet the high
compute and memory demands but also enable easy
programmability and performance portability. We discuss how
some of these algorithms may be mapped onto the GPUs.

II. ALGORITHMS IN SEQUENCING

We categorize the most important algorithms that are used
in genomics workflows into three categories and explain how
the memory and compute requirements scale with input sizes
for each of them.

A. Sequence Data Indexing, Retrieval and Pile-up

In genomics, efficient sequence search is a critical
operation, and two important techniques for k-mer lookup are
hash table lookup [35], [36] and full-text index in minute space
(FM) index [37]-[39] lookup. Hash table lookup is commonly
used for quick access to fixed-length k-mer occurrences. In this
method, a hash function maps each reference k-mer to a unique
index in a hash table. The hash table stores the k-mers as keys
and their corresponding positions or counts as values. During
lookup, the hash function is applied to the query k-mer to
determine its hash value and retrieve the associated information
from the hash table.

De Bruijn graph traversal [40]-[46], a common operation in
genome assembly and variant calling, also frequently employs
lookup tables. The bandwidth and compute requirements for the
De Bruijn graph traversal scale with the size of the input data
and the complexity of the graph. As the number of k-mers
increases, both the memory footprint of the graph and the
computational cost of traversing it grow. The branching factor
of the graph, which is influenced by factors such as sequencing
errors and genomic variations, can significantly impact the
computational complexity of graph traversal algorithms.

Parallel k-mer extraction and counting, compact k-mer
representations, sparse matrix representations, and parallel
graph traversals are some of the techniques used to accelerate
De Bruijn graphs on GPUs.

However, hash tables can suffer from collisions, and
irregular access patterns can lead to cache misses, impacting
performance [47]. To address these issues, learned indexes like
the recursive model index (RMI) have been proposed as a
potential solution [47]. RMI employs a two-layer structure: the
root node determines which leaf node in the second layer a
query maps to, while in the second layer, subsets of k-mers are
sorted (an important software preprocessing step) and stored in
leaf nodes to optimize lookup times. In case of mispredictions,
last-mile lookup is often fast. The bandwidth and compute
requirements for RMI scale with the index size. As the number
of k-mers increases, both the memory footprint and the
computational complexity of traversing the index grow.
However, the hierarchical nature of RMI can help mitigate
some of this scaling, as it allows for more efficient navigation
of large datasets than traditional hash tables. Although RMI for
seeding (finding short exact k-mer matches) is currently
implemented on CPUs [47], we observe that it has the potential
to be effectively parallelized on GPUs using techniques such as
privatization and constant memory caching. Additionally,
GPUs, with their wider buses and use of high bandwidth
memory (HBM), offer higher memory bandwidths [110] that
can benefit this memory-bound workload.

FM index lookup is another technique preferred for efficient
substring search operations in large genomic sequences which
is based on the Burrows-Wheeler transform (BWT). This
method involves constructing the FM index from the reference
sequence and then searching for a query k-mer within the index.
The FM index offers advantages in terms of space efficiency
and the ability to perform inexact matching. However, FM
index can be more computationally intensive because
construction and querying are memory-bound due to pseudo-
random accesses. Several works have explored techniques to
reduce memory accesses using compact FM indexes, K-step
FM index lookups, and thread cooperative approaches [49].

Pile-up is a critical pre-processing operation in variant
calling [63], [64], [66], and consensus generation. It involves
aligning multiple sequenced reads to a reference genome and
then analyzing the aligned bases at each genomic position,
generating counts for different bases, insertions, and deletions.
Its time complexity is O(LD), where L is the length of the
genomic region, and D is the sequencing depth. Memory
requirements are substantial, with a space complexity of O(L +
LD), often increased by additional optimization structures.

A key challenge in pile-up operations is managing irregular
memory access patterns, particularly problematic on GPUs
where memory coalescing is crucial for performance. Reads
stored in compressed formats spanning different memory pages
can lead to cache misses and reduced efficiency.

To address these issues, several optimization strategies have
been proposed:

● Binning [66] reads by genomic position to improve
memory locality

● Employing compression-aware algorithms [72] to
reduce memory bandwidth requirements

● Utilizing pre-computed lookup tables for common
operations [111]

● Using custom-designed hardware on FPGAs [113-
114] and ASICs [111-112]

● Near-data [117-118] and in-memory processing [115-
116] techniques which often require modifications to
the DRAM die

● Leveraging parallel processing on GPUs [66]

We note that index table lookup and pileup are typically
memory-bound and could benefit from cache-friendly data
structures and access patterns, larger caches (shared memory,
constant memory), and hardware-supported asynchronous
cache prefetching, in addition to all the software optimizations
discussed.

B. Dynamic Programming (DP)

DP [92] is a powerful computational technique that can
solve complex problems by breaking them down into simpler
subproblems. This paradigm is often exploited in
bioinformatics for sequence alignment, gene finding [35],
variant calling [44]-[46], phylogenetics, and RNA structure
prediction [92]. Here, we will discuss the application of 1-D
and 2-D DP in various bioinformatics algorithms. In
bioinformatics, 1-D DP is often used in the seed chaining [35],
[43], [45] process, a common step in genome alignment. Its
goal is to find the optimal chain of seeds, which are exact
matches between two sequences, which can then be used as a
starting point for sequence alignment. This process' compute
and memory complexity varies from nlog(n) to n2, depending
on the specific chaining algorithm [47]. However, the workload
size is often relatively irregular, making high hardware
utilization challenging. Further, algorithmic transformations
may be required to reduce divergent memory access and expose
more parallelism in the chaining computation [23], [24].

In 2-D DP algorithms, developers often exploit a wavefront
parallelism along the diagonal of the matrix used to compute
the algorithms. For Smith-Waterman (SW) [51], [52] and
Needleman-Wunsch (NW) [50] algorithms, this technique is
used for base-level alignment of sequences; this involves filling
a matrix of size m x n (where m and n are the lengths of the two
aligned sequences). Dynamic time warping (DTW) [14], [22],
on the other hand, is used to align raw signals, and pair-hidden
Markov models (pair-HMM) [41] are used in probabilistic
sequence alignment. For SW, NW, DTW, and pair-HMM, the
time complexity is O(mn), and the space complexity is O(mn),
where m and n are the lengths of the sequences. Partial Order
alignment [46], [53], [54] used for multiple sequence alignment
has a time and space complexity of O(mn), where n is the
number of sequences and m is the total length of all sequences.
The bit-parallel Myers algorithm [55] used for approximate
string matching has a time complexity of O(mn/w), where w is
the word size of the machine.

Wavefront alignment (WFA) [56] uses 2-D DP with a time
complexity of O(ns) using O(s2) memory, where n is the read
length and s is the alignment score. WFA is similar to Myers
but only computes a minimum number of DP cells along the
diagonal of the matrix using an adaptive band. Its computation

achieves the same accuracy as other 2-D alignment algorithms,
while its runtime is highly dependent on the sequences'
similarity.

Adaptive banded event alignment (ABEA) [57] compares
raw signals to a reference genome and employs an adaptive
band to capture long gaps in raw signals. ABEA also uses a
different recurrence algorithm called Suzuki-Kasahara (SK)
[58], which follows the same paradigm as SW and NW but with
the added benefit of decreasing register usage.

DP can be made compute-bound on GPUs by employing
techniques to fetch fewer data for the same amount of compute.
Prior works have explored various software optimizations such
as shared memory usage, cache-friendly data structures [60],
bit-parallel compute optimizations, using heuristics to reduce
search space [57], and various fine-grained (wavefront-level)
and coarse-grained (block-level) parallelism strategies [59].

On the hardware front, we note that improved hardware
support for wavefront register shuffles (for inter-thread
communication), larger and distributed shared memory
buffering between blocks, and instructions [83] for reduction
operations like min, max, add, etc., could potentially improve
the performance of DP-based workloads on GPUs.

C. Machine Learning (AML)

The integration of ML, particularly deep learning
techniques, has recently emerged as a powerful tool in
genomics workflows. Transformers [61], a type of neural
network architecture originally designed for natural language
processing, shows remarkable potential in various genomic
applications and empowered genomic foundation models [93],
[94].

One prominent application is in basecalling, the process of
converting raw electrical signals from nanopore sequencing
into DNA sequences. Basecalling is the bottleneck step in
sequencing workflows [13], and conventional methods often
struggle with accuracy, especially in homopolymer regions
[67]. ML-based approaches, such as ONT's Dorado [62]
basecaller, which uses a modified transformer architecture,
have significantly improved accuracy and speed [81]. The
compute requirements for these models scale with the input
signal length and the model size, typically O(n2), for self-
attention operations where n is the sequence length.

In variant calling, deep learning models [63]-[66] are being
employed to improve the accuracy of detecting genomic
variations. For instance, DeepVariant [65] uses convolutional
neural networks (CNNs) to analyze pileup images of aligned
reads. The compute and memory requirements for these models
scale with the number of candidate variant sites and the depth
of sequencing coverage.

The use of these ML models introduces new computational
challenges, especially for the fixed compute resources available
onboard a sequencing instrument. They often require
significant memory bandwidth for weight retrieval and
intermediate activations. The compute requirements are
substantial, with matrix multiplications dominating the
workload. However, these operations are highly parallelizable,
making GPUs well-suited for their acceleration. GPU backend

ML libraries for generalized matrix-matrix multiplication
(GEMMs) [68], [69] are optimized for better cache blocking
using shared-memory-optimized hierarchical GEMM
implementations and stream-k for uniform work partitioning.
While the prefill (prompt processing) phase uses compute-
bound GEMMs, the autoregressive decode (token generation)
phase uses memory-bound generalized matrix-vector
multiplication (GEMV). The decode phase may be made
compute-bound using several strategies, such as paged-
attention (using vLLMs) [70] and grouped query attention
(GQA) [71].

As model sizes grow, the memory footprint becomes a
critical factor. For example, a typical transformer model for
basecalling might require several gigabytes of memory for
weights alone. This scales with the square of the model's hidden
dimension size. The input sequence length also affects memory
usage, as attention mechanisms typically require O(n2) memory
for sequences of length n.

In terms of compute scaling, transformer models generally
have a time complexity of O(n2d), where n is the sequence
length and d is the hidden dimension size. This quadratic
scaling with sequence length can become problematic for long
reads, necessitating techniques like sliding window attention or
linear attention variants.

Moreover, current basecallers use high-precision datatypes
(e.g., 32 bits) to represent each neural network layer present in
a basecaller. This leads to high bandwidth and processing
demands [84]. Thus, current basecallers with high arithmetic
precision have inefficient hardware implementations.

The integration of these ML models into genomics pipelines
presents both opportunities and challenges. While they offer
improved accuracy and the potential to uncover complex
patterns, they also introduce significant computational
demands. Token generation phase and CNNs with small filter
masks (as in Deepvariant) can benefit from better hardware
support for grouped GEMV multiplication in GPU’s
tensor/matrix cores and better cache prefetching mechanisms.
Hardware and software support for newly emerging low-
precision micro-scaling data formats could help processing
efficiency as well [85]. Additionally, sparsity support in
software and hardware could help improve any data movement
bottlenecks.

III. PERFORMANCE PORTABILITY

The diverse requirements at the point-of-care testing
(POCT) compared to the traditional HPC for genomics
necessitate a move towards performance portability. While
software development on GPUs as the first step offers
significant performance improvements for many genomics
algorithms, the field can benefit from solutions adaptable to
various hardware architectures. In this context, it's worth
discussing the role of domain-specific languages (DSLs) [73],
[99] and software libraries [96]-[98] which have made
significant contributions in fields like machine learning. They
enable backend compiler optimizations and high-level
synthesis (HLS) frameworks [100] for a broad range of
hardware accelerators. Similar approaches are conceivable for

genomic workloads, particularly for computationally intensive
tasks like dynamic programming algorithms [95].

As the second step, to enable edge processing, we propose
using a CPU-GPU SoC or using the DSL SYCL [73] to move
to FPGAs, as FPGAs meet most of the requirements at the edge.
We propose a two-step approach to achieve performance
portability in genomics workflows, starting with GPUs.

The first step involves optimizing genomics workflows for
GPUs. GPUs offer several advantages. GPUs provide massive
parallelism and high memory bandwidth, offering significant
speedups for all the various components in genomics
workflows. GPUs are easily programmable, and many
individual components in the genomics workflow are already
ported to GPUs [23], [57], [62], [65], [86]. Key optimization
strategies for GPUs include efficient data streaming techniques
to handle large genomic datasets, coalesced memory access and
shared memory utilization, dynamic work distribution, adaptive
load balancing, and redesigning algorithms to expose more
parallelism. Further, adapting algorithms for GPU execution
often reveals opportunities for parallelization and optimization
that might not be apparent in CPU-only implementations.

Genomics-specific operations in point-of-care testing
(POCT) have strict requirements for low energy consumption,
heat emission, and lab space utilization. As a solution to this,
running the GPU workflows on edge computing solutions
consisting of CPU-GPU SoCs (with unified memory on board)
is an easy option. Alternatively, once GPU optimizations are in
place, developers could leverage DSLs like SYCL [73] to
extend their implementations to FPGAs. SYCL is an open
standard that enables single-source heterogeneous
programming for various accelerators, including FPGAs. It
allows developers to write code once and target multiple
platforms. Using SYCL to run on FPGAs offers several
benefits. Much of the GPU-optimized code can be reused,
significantly reducing development time. SYCL provides high-
level abstractions that can be efficiently mapped to FPGA
resources. Additionally, FPGAs excel at custom datapath
creation for genomics-specific operations in point-of-care
testing (POCT).

However, this approach also presents challenges. While
SYCL provides portability, achieving optimal performance on
FPGAs typically requires architecture-specific optimizations.
FPGA implementations need careful consideration of resource
usage (look-up tables, digital signal processing blocks, memory
blocks), which differs from GPU optimization. Moreover,
FPGA synthesis and place-and-route processes can be time-
consuming compared to GPU compilation, which may impact
development cycles.

By following this two-step approach, genomics researchers
and developers can create high-performance, portable
implementations of their workflows. This strategy allows them
to leverage the immediate benefits of GPU acceleration while
paving the way for future adaptability to FPGAs and other
emerging architectures. As the field of genomics continues to
evolve, such performance-portable solutions will be crucial in
ensuring that computational methods can keep pace with the
growing demands of genomic data analysis.

IV. PRIOR WORK

Extensive research has been conducted on various aspects
of genomic data processing and storage. Significant
advancements have been made in utilizing DNA as a storage
medium [25], [26], [77], developing selective sequencing
technologies [14], [22], [27]-[30], and creating efficient
compression schemes [7]-[9] for genomic data storage.
Concurrently, numerous studies have focused on hardware-
software co-design [10]-[17], [20], [21], [82], [104], [106], in-
memory or near-data processing [115-118] and software-only
[22], [24], [27]-[30], [59], [60], [107], [108] optimizations to
accelerate individual components within genome processing
workflows.

Recent literature has also seen the emergence of genomics
benchmarks [18], [19] and their evaluation on diverse hardware
platforms. However, a critical gap remains in the existing body
of work. There is a notable absence of comprehensive studies
that synthesize the compute and memory requirements across
the spectrum of genomic workloads. This lack of a holistic
perspective hinders the ability to identify overarching trends
and establish a unified direction for optimizing various
components of genomic processing pipelines.

The integration of ML, particularly deep learning
techniques and transformers, into genomics workflows
introduces new computational challenges that have not been
fully addressed in the context of end-to-end genomic analysis
pipelines. Our work addresses this gap by providing a
systematic analysis of the computational and memory demands
of these workloads. We propose using GPUs as the primary
platform for genomics workflows, followed by a transition to
performance-portable solutions, representing a novel strategy
that aims to leverage immediate benefits while preparing for the
evolving landscape of computing hardware in genomics.

V. DISCUSSION

The exponential growth of genomic data necessitates a shift
towards more powerful and flexible computing solutions. Our
review emphasizes the importance of starting with GPU-CPU
implementations for genomics workflows before expanding to
broader performance portability solutions. GPU-CPU
implementations offer immediate advantages for genomics
workflows, providing significant performance improvements
due to massive parallelism and high memory bandwidth. This
approach offers immediate speedups for computationally
intensive tasks and reveals optimization opportunities that
might not be apparent in CPU-only implementations. The
maturity of the GPU software ecosystem and growing support
for GPU computing in bioinformatics tools provide a solid
foundation for GPU-based genomics workflows. However,
GPU implementations face challenges such as memory
management, irregular memory access patterns, and load
balancing. These can be addressed through unified CPU-GPU
memory, efficient data streaming techniques, optimized data
structures, and dynamic work distribution strategies.

While GPU-CPU implementations are a strong starting
point, the diverse landscape of computing hardware in
genomics, especially at the POCT, necessitates a move toward
performance portability. Frameworks such as SYCL offer

promising solutions, providing high-level abstractions that map
efficiently to various hardware architectures. These
frameworks allow code to be written once and run on multiple
platforms, reducing development and maintenance efforts.
Transitioning to performance-portable solutions presents its
own challenges, including potential performance overhead and
the need for developers to understand both genomics and
performance-portable programming.

In conclusion, starting with GPU-CPU implementations
provides a practical approach to accelerating genomics
workflows, while the transition to performance-portable
solutions represents a crucial next step. This evolution will
enable the genomics community to utilize a wide range of
computing architectures efficiently, accelerating genomic
research and its clinical applications.

VI. CONCLUSION

The field of genomics stands at a critical juncture, facing
unprecedented growth in data volume and analysis complexity.
This review has outlined emerging trends in software and
hardware for genomics, emphasizing the urgent need for
innovative computational solutions. We have examined key
algorithms in genomic sequencing workflows and provided
insights into potential bottlenecks and optimization
opportunities. GPU computing has emerged as a promising
approach to accelerate these workflows, offering significant
performance gains. The transition from CPU-centric to GPU-
accelerated implementations is a crucial first step, but the
diverse and evolving hardware landscape necessitates further
evolution toward performance portability. Frameworks like
SYCL offer promising solutions to achieve this goal.
Advancements in edge and confidential computing, combined
with ongoing efforts in data compression and novel storage
solutions like DNA-based storage, will shape the future of
genomics. The genomics community can unlock new
possibilities in personalized medicine and disease research by
embracing HPC, performance portability, and emerging
technologies like ML.

[1] M. van Lanschot, L. Bosch, M. de Wit, B. Carvalho, G. Meijer, “Early

detection: The impact of genomics", Virchows Archiv, vol. 471, no. 2, pp.
165–173, 2017.

[2] C. H. June, R. S. O’Connor, O. U. Kawalekar, S. Ghassemi, M. C. Milone,
“Car t cell immunotherapy for human cancer,” Science, vol. 359, no.
6382, pp. 1361–1365, 2018.

[3] E. Zeggini, A. L. Gloyn, A. C. Barton, L. V. Wain, “Translational
genomics and precision medicine: Moving from the lab to the clinic,”
Science, vol. 365, no. 6460, pp. 1409–1413, 2019.

[4] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron,
R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, "Big data:
astronomical or genomical?," in PLoS Biology, vol. 13, no. 7, p.
e1002195, Jul. 2015.

[5] “Critical and emerging technologies list update a report by the fast track
action subcommittee on critical and emerging technologies of the national
science and technology council,” 2022. Available:
https://www.whitehouse.gov/wp-content/uploads/2022/02/02-2022-
Critical-and-Emerging-Technologies-List-Update.pdf

[6] GA4GH. (n.d.). Cram: The genomics compression standard. The Global
Alliance for Genomics and Health. unpublished.

[7] Gamaarachchi, Hasindu, Hiruna Samarakoon, Sasha P. Jenner, James M.
Ferguson, Timothy G. Amos, Jillian M. Hammond, Hassaan Saadat,
Martin A. Smith, Sri Parameswaran, and Ira W. Deveson. "Fast nanopore
sequencing data analysis with SLOW5." Nature biotechnology 40, no. 7
(2022): 1026-1029.

[8] Y. Liu, H. Peng, L. Wong, and J. Li, “High-speed and high-ratio
referential genome compression,” Bioinformatics, vol. 33, no. 21, pp.
3364-3372, 2017.

[9] S. Deorowicz, A. Danek, and S. Grabowski, “Genome compression: a
novel approach for large collections,” Bioinformatics, vol. 29, no. 20, pp.
2572-2578, 2013.

[10] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 199-213, 2018.

[11] A. Nag, C. N. Ramachandra, R. Balasubramonian, R. Stutsman, E.
Giacomin, H. Kambalasubramanyam, and P. Gaillardon, “Gencache:
Leveraging in-cache operators for efficient sequence alignment,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 334-346, 2019.

[12] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw, and
S. Narayanasamy, “GenAx: A genome sequencing accelerator,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pp. 69-82, IEEE, 2018.

[13] T. Dunn, H. Sadasivan, J. Wadden, K. Goliya, K. Chen, D. Blaauw, R.
Das, and S. Narayanasamy, “Squigglefilter: An accelerator for portable
virus detection,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 535-549, 2021.

[14] P. J. Shih, H. Saadat, S. Parameswaran, and H. Gamaarachchi, “Efficient
real-time selective genome sequencing on resource-constrained devices,”
GigaScience, vol. 12, 2023.

[15] T. Robinson, J. Harkin, and P. Shukla, “Hardware acceleration of
genomics data analysis: challenges and opportunities,” Bioinformatics,
vol. 37, no. 13, pp. 1785-1795, 2021.

[16] S. Walia, C. Ye, A. Bera, D. Lodhavia, and Y. Turakhia, “TALCO: Tiling
Genome Sequence Alignment Using Convergence of Traceback
Pointers,” in 2024 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 91-107, IEEE, 2024.

[17] Y. Gu, A. Subramaniyan, T. Dunn, A. Khadem, K.-Y. Chen, S. Paul, M.
Vasimuddin, et al., “GenDP: A Framework of Dynamic Programming
Acceleration for Genome Sequencing Analysis,” in Proceedings of the
50th Annual International Symposium on Computer Architecture, pp. 1-
15, 2023.

[18] L. López-Villellas, R. Langarita-Benítez, A. Badouh, V. Soria-Pardos, Q.
Aguado-Puig, G. López-Paradís, M. Doblas, et al., “GenArchBench: A
genomics benchmark suite for arm HPC processors,” Future Generation
Computer Systems, vol. 157, pp. 313-329, 2024.

[19] A. Subramaniyan, Y. Gu, T. Dunn, S. Paul, M. Vasimuddin, S. Misra, D.
Blaauw, S. Narayanasamy, and R. Das, “Genomicsbench: A benchmark
suite for genomics,” in 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pp. 1-12,
IEEE, 2021.

[20] O. Mutlu and C. Firtina, “Accelerating genome analysis via algorithm-
architecture co-design,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC), pp. 1-4, IEEE, 2023.

[21] D. S. Cali, K. Kanellopoulos, J. Lindegger, Z. Bingöl, G. S. Kalsi, Z. Zuo,
C. Firtina, M. B. Cavlak, J. Kim, N. M. Ghiasi, and G. Singh, “SeGraM:
A universal hardware accelerator for genomic sequence-to-graph and
sequence-to-sequence mapping,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, pp. 638-655, June
2022.

[22] H. Sadasivan, D. Stiffler, A. Tirumala, J. Israeli, and S. Narayanasamy,
“Accelerated dynamic time warping on GPU for selective nanopore
sequencing,” bioRxiv, 2023. unpublished.

[23] J. Dong, X. Liu, H. Sadasivan, S. Sitaraman, and S. Narayanasamy,
“mm2-gb: GPU Accelerated Minimap2 for Long Read DNA Mapping,”
bioRxiv, 2024.

[24] H. Sadasivan, M. Maric, E. Dawson, V. Iyer, J. Israeli, and S.
Narayanasamy, “Accelerating Minimap2 for accurate long read alignment
on GPUs,” Journal of Biotechnology and Biomedicine, vol. 6, no. 1, p.
13, 2023.

[25] Y. Choi, H. J. Bae, A. C. Lee, H. Choi, D. Lee, T. Ryu, J. Hyun, S. Kim,
H. Kim, S. H. Song, and K. Kim, “DNA micro‐disks for the management
of DNA‐based data storage with index and write‐once–read‐many
(WORM) memory features,” Advanced Materials, vol. 32, no. 37, p.
2001249, 2020.

[26] A. Doricchi, C. M. Platnich, A. Gimpel, F. Horn, M. Earle, G.
Lanzavecchia, A. L. Cortajarena, L. M. Liz-Marzán, N. Liu, R. Heckel,
R. N. Grass, R. Krahne, U. F. Keyser, and D. Garoli, “Emerging
approaches to DNA data storage: challenges and prospects,” ACS Nano,
vol. 16, no. 11, pp. 17552-17571, Oct. 2022

[27] S. Loose, S. Malla, and M. Stout, “Real-time selective sequencing using
nanopore technology,” Nature Methods, vol. 13, no. 9, pp. 751-754, 2016.

[28] H. Sadasivan, J. Wadden, K. Goliya, P. Ranjan, R. P. Dickson, D. Blaauw,
R. Das, and S. Narayanasamy, “Rapid real-time squiggle classification for
read until using RawMap,” Archives of Clinical and Biomedical
Research, vol. 7, no. 1, pp. 45-57, Jan. 2023

[29] S. Kovaka, Y. Fan, B. Ni, W. Timp, and M. C. Schatz, “Targeted nanopore
sequencing by real-time mapping of raw electrical signal with
UNCALLED,” Nature Biotechnology, vol. 39, no. 4, pp. 431-441, Apr.
2021C.

[30] Firtina, N. M. Ghiasi, J. Lindegger, G. Singh, M. B. Cavlak, H. Mao, and
O. Mutlu, “RawHash: enabling fast and accurate real-time analysis of raw

nanopore signals for large genomes,” Bioinformatics, vol. 39, no.
Supplement_1, pp. i297-i307, 2023.

[31] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646,
Oct. 2016.

[32] M. Jofre, D. Navarro-Llobet, R. Agulló, J. Puig, G. Gonzalez-Granadillo,
J. Mora Zamorano, and R. Romeu, “Cybersecurity and privacy risk
assessment of point-of-care systems in healthcare—a use case approach,”
Applied Sciences, vol. 11, no. 15, p. 6699, Jul. 2021

[33] H. H. Ng, H. C. Ang, S. Y. Hoe, M. L. Lim, H. E. Tai, R. C. H. Soh, & C.
K.-C. Syn, “Simple DNA extraction of urine samples: Effects of storage
temperature and storage time,” Forensic Science International, 287, pp.
36-39, 2018.

[34] S. Chaterji, J. Koo, N. Li, F. Meyer, A. Grama, & S. Bagchi, “Federation
in genomics pipelines: techniques and challenges,” Briefings in
Bioinformatics, vol. 20, no. 1, pp. 235-244, 2019.

[35] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”
Bioinformatics, vol. 34, no. 18, pp. 3094-3100, Sep. 2018

[36] D. E. Wood and S. L. Salzberg, “Kraken: ultrafast metagenomic sequence
classification using exact alignments,” Genome Biology, vol. 15, Article
number: R46, Mar. 2014

[37] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, p. 357, 2012.

[38] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM,” arXiv preprint arXiv:1303.3997, 20131. unpublished.

[39] D. Kim, L. Song, F. P. Breitwieser, and S. L. Salzberg, “Centrifuge: rapid
and sensitive classification of metagenomic sequences,” Genome
research, vol. 26, no. 12, pp. 1721–1729, 2016.

[40] P. E. C. Compeau, P. A. Pevzner, and G. Tesler, “How to apply de Bruijn
graphs to genome assembly,” Nature Biotechnology, vol. 29, no. 11, pp.
987-991, Nov. 2011.

[41] “Genome analysis toolkit: Variant discovery in high-throughput
sequencing data,” https://software.broadinstitute.org/gatk/.

[42] “Germline short variant discovery (snps + indels). best practices
workflow,”https://software.broadinstitute.org/gatk/best-
practices/workflow?id=11145.

[43] M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner, “Assembly of long,
error-prone reads using repeat graphs,” Nature Biotechnology, vol. 37,
no. 5, pp. 540-546, 2019.

[44] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. Twigg, A. O.Wilkie,
G. McVean, and G. Lunter, “Integrating mapping-, assembly-and
haplotype-based approaches for calling variants in clinical sequencing
applications,” Nature genetics, vol. 46, no. 8, pp. 912–918, 2014

[45] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A.
M. Phillippy, “Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation,” Genome Research, vol.
27, no. 5, pp. 722-736, 2017.

[46] R. Vaser, I. Sović, N. Nagarajan, and M. Šikić, “Fast and accurate de novo
genome assembly from long uncorrected reads,” Genome Research, vol.
27, no. 5, pp. 737-746, 2017.

[47] S. Kalikar, C. Jain, M. Vasimuddin, and S. Misra, “Accelerating
minimap2 for long-read sequencing applications on modern CPUs,”
Nature Computational Science, vol. 2, no. 2, pp. 78-83, 2022.

[48] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney, “Efficient
storage of high throughput DNA sequencing data using reference-based
compression,” Genome Research, vol. 21, no. 5, pp. 734-740, 2011.

[49] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
“Boosting the FM-index on the GPU: Effective techniques to mitigate
random memory access,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 12, no. 5, pp. 1048-1059, 2014.

[50] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443-453, 1970.

[51] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195-
197, 1981.

[52] O. Gotoh, “An improved algorithm for matching biological sequences,”
Journal of Molecular Biology, vol. 162, no. 3, pp. 705-708, 1982.

[53] N. J. Loman, J. Quick, and J. T. Simpson, “A complete bacterial genome
assembled de novo using only nanopore sequencing data,” Nature
Methods, vol. 12, no. 8, pp. 733-735, 2015.

[54] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment
using partial order graphs,” Bioinformatics, vol. 18, no. 3, pp. 452-464,
2002.

[55] G. Myers, “A fast bit-vector algorithm for approximate string matching
based on dynamic programming,” Journal of the ACM (JACM), vol. 46,
no. 3, pp. 395-415, 1999.

[56] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, “Fast gap-affine
pairwise alignment using the wavefront algorithm,” Bioinformatics, vol.
37, no. 4, pp. 456-463, 2021.

[57] H. Gamaarachchi, C. W. Lam, G. Jayatilaka, H. Samarakoon, J. T.
Simpson, M. A. Smith, and S. Parameswaran, “GPU accelerated adaptive

banded event alignment for rapid comparative nanopore signal analysis,”
BMC Bioinformatics, vol. 21, pp. 1-13, 2020.

[58] H. Suzuki and M. Kasahara, “Introducing difference recurrence relations
for faster semi-global alignment of long sequences,” BMC
Bioinformatics, vol. 19, pp. 33-47, 2018.

[59] B. Schmidt and C. Hundt, “cuDTW++: ultra-fast dynamic time warping
on CUDA-enabled GPUs,” in Euro-Par 2020: Parallel Processing: 26th
International Conference on Parallel and Distributed Computing,
Warsaw, Poland, August 24–28, 2020, Proceedings 26, pp. 597-612.
Springer International Publishing, 2020.

[60] L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 127-
135. IEEE, 2019.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems 30, 2017.

[62] Oxford Nanopore Technologies, “Dorado,” 2023. [Online]. Available:
https://github.com/nanoporetech/dorado. [Accessed: 13-Jun-2023].

[63] R. Luo, C.-L. Wong, Y.-S. Wong, C.-I. Tang, C.-M. Liu, C.-M. Leung,
and T.-W. Lam, “Exploring the limit of using a deep neural network on
pileup data for germline variant calling,” Nature Machine Intelligence,
vol. 2, no. 4, pp. 220-227, 2020.

[64] Z. Zheng, S. Li, J. Su, A. W.-S. Leung, T.-W. Lam, and R. Luo,
“Symphonizing pileup and full-alignment for deep learning-based long-
read variant calling,” Nature Computational Science, vol. 2, no. 12, pp.
797-803, 2022.

[65] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku,
D. Newburger, et al., “A universal SNP and small-indel variant caller
using deep neural networks,” Nature Biotechnology, vol. 36, no. 10, pp.
983-987, 2018.

[66] Medaka, (2023). [Online]. Available:
https://github.com/nanoporetech/medaka. (Accessed: 1-Jul-2024).

[67] R. R. Wick, L. M. Judd, and K. E. Holt, “Performance of neural network
basecalling tools for Oxford Nanopore sequencing,” Genome Biology,
vol. 20, pp. 1-10, 2019.

[68] “ROCm/composable_kernel: Composable Kernel: Performance Portable
Programming Model for Machine Learning Tensor Operators,” GitHub,
n.d. [Online]. Available: https://github.com/ROCm/composable_kernel.
[Accessed: 1-Jul-2024].

[69] Nvidia. (n.d.). GitHub - NVIDIA/cutlass: CUDA Templates for Linear
Algebra Subroutines. GitHub. https://github.com/NVIDIA/cutlass/

[70] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. Yu, J. Gonzalez, H.
Zhang, and I. Stoica, “vllm: Easy, fast, and cheap llm serving with
pagedattention,” 2023. [Online]. Available: https://vllm.ai/. [Accessed: 1-
Jul.- 2024].

[71] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S.
Sanghai, “Gqa: Training generalized multi-query transformer models
from multi-head checkpoints,” arXiv preprint arXiv:2305.13245, 2023.
unpublished.

[72] J. K. Bonfield, “CRAM 3.1: advances in the CRAM file format,”
Bioinformatics, vol. 38, no. 6, pp. 1497-1503, 2022.

[73] M. Costanzo, E. Rucci, C. García-Sanchez, M. Naiouf, and M. Prieto-
Matías, “Assessing opportunities of SYCL for biological sequence
alignment on GPU-based systems,” The Journal of Supercomputing, pp.
1-24, 2024.

[74] A. Maxmen, “One million coronavirus sequences: popular genome site
hits mega milestone,” Nature, vol. 593, no. 7857, pp. 21-21, 2021.

[75] J. November, “More than Moore’s mores: computers, genomics, and the
embrace of innovation,” Journal of the History of Biology, vol. 51, no. 4,
pp. 807-840, 2018.

[76] J. Rosenblum, J. Dong, and S. Narayanasamy, “SECRET-GWAS:
Confidential Computing for Population-Scale GWAS,” bioRxiv, 2024.
unpublished.

[77] Organick, L., Ang, S., Chen, YJ. et al. Random access in large-scale DNA
data storage. Nat Biotechnol 36, 242–248 (2018).

[78] “Google Cloud Confidential Computing Powered by AMD,” AMD,
[Online]. Available:
https://www.amd.com/en/products/processors/server/epyc/google-
cloud/confidential-computing.html. [Accessed: 1-Jul-2024].

[79] Occupational Safety and Health Administration (OSHA), Laboratory
Safety Guidance, [Online], Available:
https://www.osha.gov/sites/default/files/publications/OSHA3404laborat
ory-safety-guidance.pdf [Accessed: 1-Jul-2024]

[80] M. Alser, J. Lindegger, C. Firtina, N. Almadhoun, H. Mao, G. Singh, J.
Gomez-Luna, and O. Mutlu, “From molecules to genomic variations:
Accelerating genome analysis via intelligent algorithms and
architectures,” Computational and Structural Biotechnology Journal, vol.
20, pp. 4579-4599, 2022.

[81] “Benchmarking the Oxford Nanopore Technologies basecallers on
AWS,” Amazon Web Services, 24-Nov-2023. [Online]. Available:
https://aws.amazon.com/blogs/hpc/benchmarking-the-oxford-nanopore-
technologies-basecallers-on-aws. [Accessed: 1-Jul.-2024].

[82] T. J. Ham et al., "Genesis: A Hardware Acceleration Framework for
Genomic Data Analysis," 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), Valencia, Spain, 2020,
pp. 254-267

[83] M. Doblas, O. Lostes-Cazorla, Q. Aguado-Puig, N. Cebry, P. Fontova-
Musté, C. F. Batten, S. Marco-Sola, and M. Moretó, “Gmx: Instruction
set extensions for fast, scalable, and efficient genome sequence
alignment,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 1466-1480, 2023.

[84] G. Singh, M. Alser, K. Denolf, C. Firtina, A. Khodamoradi, M. B. Cavlak,
H. Corporaal, and O. Mutlu, “RUBICON: a framework for designing
efficient deep learning-based genomic basecallers,” Genome Biology,
vol. 25, no. 1, p. 49, 2024.

[85] B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi, S. Deng, D.
Choudhary, et al., “Microscaling data formats for deep learning,” arXiv
preprint arXiv:2310.10537, 2023. unpublished.

[86] NVIDIA Parabricks v4.3.0 - NVIDIA Docs,” NVIDIA Docs, [Online].
Available: https://docs.nvidia.com/clara/parabricks/4.3.0/index.html.
[Accessed: 1-Jul.-2024]

[87] N. Kono and K. Arakawa, “Nanopore sequencing: Review of potential
applications in functional genomics,” Development, Growth &
Differentiation, vol. 61, no. 5, pp. 316–326, 2019. [Online]. Available:
https://doi.org/10.1111/dgd.12608

[88] J. Hench, C. Hultschig, J. Brugger, L. Mariani, R. Guzman, J. Soleman,
S. Leu et al., “EpiDiP/NanoDiP: a versatile unsupervised machine
learning edge computing platform for epigenomic tumour diagnostics,”
Acta Neuropathologica Communications, vol. 12, no. 1, p. 51, 2024.

[89] E. B. Hodcroft, N. De Maio, R. Lanfear, D. R. MacCannell, B. Q. Minh,
H. A. Schmidt, A. Stamatakis, N. Goldman, and C. Dessimoz, “Want to
track pandemic variants faster? Fix the bioinformatics bottleneck,”
Nature, vol. 591, no. 7848, pp. 30-33, 2021.

[90] S. Deorowicz, A. Danek, and H. Li, “AGC: compact representation of
assembled genomes with fast queries and updates,” Bioinformatics, vol.
39, no. 3, 2023, Art. no. btad097.

[91] K. Břinda, L. Lima, S. Pignotti, N. Quinones-Olvera, K. Salikhov, R.
Chikhi, G. Kucherov, Z. Iqbal, and M. Baym, “Efficient and Robust
Search of Microbial Genomes via Phylogenetic Compression,” bioRxiv,
2023. unpublished.

[92] S. R. Eddy, "What is dynamic programming?," in Nature Biotechnology,
vol. 22, no. 7, pp. 909-910, 2004.

[93] E. Nguyen, M. Poli, M. G. Durrant, A. W. Thomas, B. Kang, J. Sullivan,
M. Y. Ng, A. Lewis, A. Patel, and A. Lou, "Sequence modeling and
design from molecular to genome scale with evo," bioRxiv, 2024.
unpublished.

[94] E. Nguyen, M. Poli, M. Faizi, A. Thomas, M. Wornow, C. Birch-Sykes,
S. Massaroli, et al., "Hyenadna: Long-range genomic sequence modeling
at single nucleotide resolution," Advances in Neural Information
Processing Systems 36, 2024.

[95] W. J. Dally, Y. Turakhia, and S. Han, "Domain-specific hardware
accelerators," Communications of the ACM, vol. 63, no. 7, pp. 48-57,
2020.

[96] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen et al., "Pytorch: An imperative style, high-performance deep
learning library," Advances in Neural Information Processing Systems,
vol. 32, 2019.

[97] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin et
al., "{TensorFlow}: a system for {Large-Scale} machine learning," in
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pp. 265-283, 2016.

[98] C.R. Trott, D. Lebrun-Grandie, D. Arndt, et al., “Kokkos 3 Programming
Model Extensions for the Exascale Era” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805-817, 1 April 2022, doi:
10.1109/TPDS.2021.3097283.

[99] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S.
Amarasinghe, "Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,"
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 519-530, 2013.

[100] Fahim, Farah, Benjamin Hawks, Christian Herwig, James
Hirschauer, Sergo Jindariani, Nhan Tran, Luca P. Carloni et al. "hls4ml:
An open-source codesign workflow to empower scientific low-power
machine learning devices." arXiv preprint arXiv:2103.05579 (2021).

[101] S. Walia, H. Motwani, K. Smith, R. Corbett-Detig, and Y. Turakhia,
“Compressive Pangenomics Using Mutation-Annotated Networks,”
bioRxiv, 2024. unpublished.

[102] L. Ceze, J. Nivala, and K. Strauss, “Molecular digital data storage
using DNA,” Nature Reviews Genetics, vol. 20, no. 8, pp. 456-466, 2019.

[103] N. M. Ghiasi, J. Park, H. Mustafa, J. Kim, A. Olgun, A. Gollwitzer,
D. S. Cali et al., “GenStore: A High-Performance and Energy-Efficient
In-Storage Computing System for Genome Sequence Analysis,” arXiv
preprint arXiv:2202.10400, 2022. unpublished.

[104] M. Alser, Z. Bingöl, D. S. Cali, J. Kim, S. Ghose, C. Alkan, and O.
Mutlu, “Accelerating genome analysis: A primer on an ongoing journey,”
IEEE Micro, vol. 40, no. 5, pp. 65-75, 2020.

[105] Z. Bingöl, M. Alser, O. Mutlu, O. Ozturk, and C. Alkan,
“GateKeeper-GPU: Fast and accurate pre-alignment filtering in short read
mapping,” IEEE Transactions on Computers, 2024.

[106] G. Singh, M. Alser, D. S. Cali, D. Diamantopoulos, J. Gómez-Luna,
H. Corporaal, and O. Mutlu, “FPGA-based near-memory acceleration of
modern data-intensive applications,” IEEE Micro, vol. 41, no. 4, pp. 39-
48, 2021.

[107] M. Alser, H. Hassan, A. Kumar, O. Mutlu, and C. Alkan, “Shouji: a
fast and efficient pre-alignment filter for sequence alignment,”
Bioinformatics, vol. 35, no. 21, pp. 4255-4263, 2019.

[108] M. Alser, T. Shahroodi, J. Gómez-Luna, C. Alkan, and O. Mutlu,
“SneakySnake: a fast and accurate universal genome pre-alignment filter
for CPUs, GPUs and FPGAs,” Bioinformatics, vol. 36, no. 22-23, pp.
5282-5290, 2020.

[109] J. R. Pohlhaus and R. M. Cook-Deegan, “Genomics research: world
survey of public funding,” BMC Genomics, vol. 9, pp. 1-18, 2008.

[110] A. Smith et al., "11.1 AMD InstinctTM MI300 Series Modular
Chiplet Package–HPC and AI Accelerator for Exa-Class Systems," in
2024 IEEE International Solid-State Circuits Conference (ISSCC), vol.
67, IEEE, 2024, pp. 490-492.

[111] D. Fujiki et al., "GenAx: A genome sequencing accelerator," in
2018 ACM/IEEE 45th Annual International

[112] A. Subramaniyan et al., "Accelerated seeding for genome sequence
alignment with enumerated radix trees," in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 2021, pp.
388-401. Symposium on Computer Architecture (ISCA), 2018, pp. 69-
82.

[113] Y. Turakhia, G. Bejerano, and W. J. Dally, "Darwin: A genomics
co-processor provides up to 15,000 x acceleration on long read assembly,"
ACM SIGPLAN Notices, vol. 53, no. 2, pp. 199-213, 2018.

[114] M. F. Chang et al., "The smem seeding acceleration for dna
sequence alignment," in 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2016, pp. 32-39.

[115] W. Huangfu, S. Li, X. Hu, and Y. Xie, "RADAR: A 3D-ReRAM
based DNA alignment accelerator architecture," in Proceedings of the
55th Annual Design Automation Conference, 2018, pp. 1-6.

[116] R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, "A resistive CAM
processing-in-storage architecture for DNA sequence alignment," IEEE
Micro, vol. 37, no. 4, pp. 20-28, 2017.

[117] V. Zois, D. Gupta, V. J. Tsotras, W. A. Najjar, and J. F. Roy,
"Massively parallel skyline computation for processing-in-memory
architectures," in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, 2018, pp. 1-12.

[118] W. Huangfu et al., "Medal: Scalable dimm based near data
processing accelerator for dna seeding algorithm," in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 587-599.

