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Abstract—The rapid growth of genomic data has positioned 

genomics to become one of the world's most storage-intensive and 

computationally demanding fields. This review paper provides a 

comprehensive analysis of emerging trends in software and 

hardware for genomics, addressing a critical gap in the current 

literature. We categorize and examine key algorithms in genomic 

sequencing workflows, including sequence data indexing, retrieval 

and pile-up, dynamic programming, and machine learning. We 

analyze how computational and memory requirements scale with 

input sizes for each category, offering insights into potential 

bottlenecks and optimization opportunities. Our review 

synthesizes recent advancements in hardware-software co-design, 

compression schemes, and acceleration techniques for genomic 

data processing. We propose graphics processing units (GPUs) as 

a promising first step for deploying genomics workflows due to 

their high throughput, memory bandwidth, and programmability. 

By providing a holistic perspective on the computational 

challenges in genomics, this paper attempts to set a promising 

direction for future researchers to work collectively to optimize all 

the components of genomic data processing workflows. Our work 

aims to foster more targeted and effective advancements in the 

field, potentially leading to significant improvements in the 

efficiency and scalability of genomic analyses. We also discuss 

performance portability as a second step to meet the diverse 

requirements in point-of-care workflows. 

Keywords—Dynamic Time Warping, Dynamic Programming, 

Genomics, GPU,  Illumina, MinION, Machine Learning, Nanopore, 

PacBio, Illumina 

I. INTRODUCTION 

As we navigate through the 21st century, genomics is 
undergoing a significant transformation. Once primarily a 
research domain, genomics is now emerging as a critical 
component of healthcare [1]-[3], [80], thanks to the decreasing 
costs of sequencing [75] and its increasing relevance in disease 
diagnosis, treatment, and prevention. Sequencing data is now 
used in various applications, including cancer, rare genetic 
diseases, microbiome, metagenomics, epidemiology, species 
conservation, evolutionary biology, crop genomics, and 
population genomics [87]. This evolution, accompanied by new 
funding avenues [109] and larger participant cohorts, is leading 
to a rapid surge in genomic data that demands substantial 
storage capacity [4], [6], [48], [103]. Further, with the break-
out of SARS-CoV-2, we saw an explosion in the amount of 
sequencing data generated [74] that overwhelmed existing 
bioinformatics infrastructures [89]. Realizing the importance of 
genomics, the US Government has categorized biotechnologies 
(of which genomics is a part) and advanced computing as two 
of the few critical and emerging technologies (CET) significant 
to national security [5]. 

The Global Alliance for Genomics and Health (GA4GH) 
[6], [48] anticipates that by 2025, approximately 60 million 
human genomes will have been sequenced globally, with 
healthcare accounting for the majority. An experiment to 
sequence a whole human genome generates approximately 30 
times more data than the human diploid (double-stranded) 
DNA, depending on the sequencing depth (coverage) required 
to account for sequencing errors. While theoretically, a single 
diploid genome of 6 billion bases could be stored using 1.5 GB 
`requirements are significantly higher. When combined with 



 

 

various types of metadata, such as sequence names and quality 
scores, the annual data storage requirement could range 
between 2 to 40 exabytes [6]. 

When compared to other data-intensive fields — astronomy 
generating 1 exabyte/year, particle physics producing over 75 
petabytes/year, and YouTube creating 1-2 exabytes/year — 
genomics is expected to surpass these historical data generators 
[4], [6]. Consequently, genomics is on the verge of becoming 
one of the world’s most storage-intensive workloads, posing a 
significant compute, storage, and input/output (I/O) challenge. 
This impending data avalanche underscores the pressing need 
for innovative solutions to efficiently manage, store, and 
analyze genomic data. 

Addressing the storage demands of the vast volume of 
genomic data necessitates innovative solutions. One such 
approach involves the application of genomic data compression 
schemes that leverage the similarity that many genomic 
sequences share due to evolutionary relationships [7]-[9], [90], 
[91], [101] and are specifically tailored for high-performance 
computing (HPC) environments. These schemes offer a 
potential solution to decrease the storage requirements.  

Additionally, denser data storage mediums, such as DNA-
based storage, could be explored. This approach, however, will 
necessitate further research to enhance the computational 
efficiency (reliability and latency) of molecular read/write 
operations [25], [26], [77], [102]. An intriguing consideration 
is the point at which it may be more practical to discard the 
digital genomic sequencing data and preserve the original DNA 
of the genome [102]. Given advancements in DNA storage 
technology, retaining the physical DNA could serve as a more 
efficient method of storing genomic information, allowing for 
future sequencing and analysis as needed while significantly 
reducing digital storage demands. 

Another strategy is limiting the generation of redundant 
data. This could be achieved by implementing filtering 
mechanisms or adopting selective sequencing techniques [14], 
[22], [27]-[30]. However, this approach presents its own 
challenges, particularly given the high throughput of real-time 
sequencers like Oxford Nanopore Technologies (ONT), which 
require substantial computational power to make real-time 
decisions while sequencing. We estimate that the largest 
sequencers from PacBio and ONT would generate raw data on 
the order of several Giga-bytes per second. It is also worth 
noting that sometimes for ONT, this huge raw data dump is 
preserved to retain metadata on methylation, acetylation, and 
other base modifications depending on the application. This 
data deluge is reduced by one to three orders of magnitude in 
size during the basecalling step, depending on the sequencing 
technology used. Keeping up with this throughput in real-time 
is challenging for both the software [13], [28], [29] and 
hardware [13], [104].  

Addressing these computational challenges is no easy task. 
As shown in Fig. 1, genomic data often undergoes a series of 
algorithmic processes to denoise the signal and reach a 

                                                           
1 Image is adapted from [80] with license: 
https://creativecommons.org/licenses/by/4.0/. Please note that the output file 
formats of the PacBio sequencer and basecaller are modified for correctness. 

consensus on its representation [19]. These processes 
frequently employ techniques rooted in classical signal 
processing, index lookups, dynamic programming (DP), 
statistical analysis, and, more recently, machine learning (ML), 
including the use of transformer models [18], [19]. Recently, 
several attempts have been made to understand these algorithms 
at a higher level by building benchmark suites for different 
hardware [18], [19]. While there have been numerous attempts 
[10]-[17], [20]-[24], [27]-[30], [59], [60], [82], [103]-[108] to 
accelerate these individual components, there is no clear 
direction set on the hardware of choice as the independent 
development and constant evolution of these components 
present a significant challenge. We propose GPUs as an initial 
platform of choice for deploying genomics workflows because 
of their high throughput (100s of TFLOPs), memory bandwidth 
(several TB/s), and, more importantly, programmability. 
Moreover, many components in genomics processing 
workflows have been independently ported to GPUs [23], [57], 
[62], [65], [86], [105].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: An overview of the genome sequencing and processing workflow 
as adapted from [80]. 1 

Although GPUs may currently provide a compelling 
platform, we extend our discussion to performance portability 



 

 

frameworks, acknowledging that point-of-care testing (POCT) 
genomics workflows present a unique set of challenges [31]-
[33], [79] that are distinct from the traditional HPC and, hence, 
may have a different set of preferences. Data privacy [32] 
concerns in some government jurisdictions necessitate local 
processing, while wet lab environments impose strict 
limitations on size [31], heat generation [33], and noise [79]. 
These workflows also require high reliability with minimal 
downtimes. Edge computing architectures address these 
challenges by bringing computation closer to data sources [88]. 
Limited storage and bandwidth underscore the need for 
efficient on-the-fly data compression and decompression, 
demanding specialized software and hardware support. These 
requirements are shaping the development of tailored solutions 
for decentralized genomic data processing, balancing the needs 
for rapid analysis, data security [34], and operational 
constraints in clinical settings. In the future, as collaborative 
genome analysis using privacy-preserving techniques like 
confidential computing for genomics [76] becomes more 
prevalent, edge computing on secure platforms [78] may 
become the standard. This could allow for more widespread and 
secure genomic data sharing and analysis while maintaining 
strict privacy protections. 

Having established the diverse demands driving the 
genomics compute and storage tidal wave, we look ahead to 
guide future genomics workflow development efforts in 
choosing hardware (e.g., GPUs) that can not only meet the high 
compute and memory demands but also enable easy 
programmability and performance portability. We discuss how 
some of these algorithms may be mapped onto the GPUs. 

II. ALGORITHMS IN SEQUENCING 

We categorize the most important algorithms that are used 
in genomics workflows into three categories and explain how 
the memory and compute requirements scale with input sizes 
for each of them. 

A. Sequence Data Indexing, Retrieval and Pile-up 

In genomics, efficient sequence search is a critical 
operation, and two important techniques for k-mer lookup are 
hash table lookup [35], [36] and full-text index in minute space 
(FM) index [37]-[39] lookup. Hash table lookup is commonly 
used for quick access to fixed-length k-mer occurrences. In this 
method, a hash function maps each reference k-mer to a unique 
index in a hash table. The hash table stores the k-mers as keys 
and their corresponding positions or counts as values. During 
lookup, the hash function is applied to the query k-mer to 
determine its hash value and retrieve the associated information 
from the hash table. 

De Bruijn graph traversal [40]-[46], a common operation in 
genome assembly and variant calling, also frequently employs 
lookup tables. The bandwidth and compute requirements for the 
De Bruijn graph traversal scale with the size of the input data 
and the complexity of the graph. As the number of k-mers 
increases, both the memory footprint of the graph and the 
computational cost of traversing it grow. The branching factor 
of the graph, which is influenced by factors such as sequencing 
errors and genomic variations, can significantly impact the 
computational complexity of graph traversal algorithms. 

Parallel k-mer extraction and counting, compact k-mer 
representations, sparse matrix representations, and parallel 
graph traversals are some of the techniques used to accelerate 
De Bruijn graphs on GPUs. 

However, hash tables can suffer from collisions, and 
irregular access patterns can lead to cache misses, impacting 
performance [47]. To address these issues, learned indexes like 
the recursive model index (RMI) have been proposed as a 
potential solution [47]. RMI employs a two-layer structure: the 
root node determines which leaf node in the second layer a 
query maps to, while in the second layer, subsets of k-mers are 
sorted (an important software preprocessing step) and stored in 
leaf nodes to optimize lookup times. In case of mispredictions, 
last-mile lookup is often fast. The bandwidth and compute 
requirements for RMI scale with the index size. As the number 
of k-mers increases, both the memory footprint and the 
computational complexity of traversing the index grow. 
However, the hierarchical nature of RMI can help mitigate 
some of this scaling, as it allows for more efficient navigation 
of large datasets than traditional hash tables. Although RMI for 
seeding (finding short exact k-mer matches) is currently 
implemented on CPUs [47], we observe that it has the potential 
to be effectively parallelized on GPUs using techniques such as 
privatization and constant memory caching. Additionally, 
GPUs, with their wider buses and use of high bandwidth 
memory (HBM), offer higher memory bandwidths [110] that 
can benefit this memory-bound workload. 

FM index lookup is another technique preferred for efficient 
substring search operations in large genomic sequences which 
is based on the Burrows-Wheeler transform (BWT). This 
method involves constructing the FM index from the reference 
sequence and then searching for a query k-mer within the index. 
The FM index offers advantages in terms of space efficiency 
and the ability to perform inexact matching. However, FM 
index can be more computationally intensive because 
construction and querying are memory-bound due to pseudo-
random accesses. Several works have explored techniques to 
reduce memory accesses using compact FM indexes, K-step 
FM index lookups, and thread cooperative approaches [49]. 

Pile-up is a critical pre-processing operation in variant 
calling [63], [64], [66], and consensus generation. It involves 
aligning multiple sequenced reads to a reference genome and 
then analyzing the aligned bases at each genomic position, 
generating counts for different bases, insertions, and deletions. 
Its time complexity is O(LD), where L is the length of the 
genomic region, and D is the sequencing depth. Memory 
requirements are substantial, with a space complexity of O(L + 
LD), often increased by additional optimization structures. 

A key challenge in pile-up operations is managing irregular 
memory access patterns, particularly problematic on GPUs 
where memory coalescing is crucial for performance. Reads 
stored in compressed formats spanning different memory pages 
can lead to cache misses and reduced efficiency. 

To address these issues, several optimization strategies have 
been proposed: 

● Binning [66] reads by genomic position to improve 
memory locality 



 

 

● Employing compression-aware algorithms [72] to 
reduce memory bandwidth requirements 

● Utilizing pre-computed lookup tables for common 
operations [111] 

● Using custom-designed hardware on FPGAs [113-
114] and ASICs [111-112] 

● Near-data [117-118] and in-memory processing [115-
116] techniques which often require modifications to 
the DRAM die 

● Leveraging parallel processing on GPUs [66] 

We note that index table lookup and pileup are typically 
memory-bound and could benefit from cache-friendly data 
structures and access patterns, larger caches (shared memory, 
constant memory), and hardware-supported asynchronous 
cache prefetching, in addition to all the software optimizations 
discussed.  

B. Dynamic Programming (DP) 

DP [92] is a powerful computational technique that can 
solve complex problems by breaking them down into simpler 
subproblems. This paradigm is often exploited in 
bioinformatics for sequence alignment, gene finding [35], 
variant calling [44]-[46], phylogenetics, and RNA structure 
prediction [92]. Here, we will discuss the application of 1-D 
and 2-D DP in various bioinformatics algorithms. In 
bioinformatics, 1-D DP is often used in the seed chaining [35], 
[43], [45] process, a common step in genome alignment. Its 
goal is to find the optimal chain of seeds, which are exact 
matches between two sequences, which can then be used as a 
starting point for sequence alignment. This process' compute 
and memory complexity varies from nlog(n) to n2, depending 
on the specific chaining algorithm [47]. However, the workload 
size is often relatively irregular, making high hardware 
utilization challenging. Further, algorithmic transformations 
may be required to reduce divergent memory access and expose 
more parallelism in the chaining computation [23], [24]. 

In 2-D DP algorithms, developers often exploit a wavefront 
parallelism along the diagonal of the matrix used to compute 
the algorithms. For Smith-Waterman (SW) [51], [52] and 
Needleman-Wunsch (NW) [50] algorithms, this technique is 
used for base-level alignment of sequences; this involves filling 
a matrix of size m x n (where m and n are the lengths of the two 
aligned sequences). Dynamic time warping (DTW) [14], [22], 
on the other hand, is used to align raw signals, and pair-hidden 
Markov models (pair-HMM) [41] are used in probabilistic 
sequence alignment. For SW, NW, DTW, and pair-HMM, the 
time complexity is O(mn), and the space complexity is O(mn), 
where m and n are the lengths of the sequences. Partial Order 
alignment [46], [53], [54] used for multiple sequence alignment 
has a time and space complexity of O(mn), where n is the 
number of sequences and m is the total length of all sequences. 
The bit-parallel Myers algorithm [55] used for approximate 
string matching has a time complexity of O(mn/w), where w is 
the word size of the machine. 

Wavefront alignment (WFA) [56] uses 2-D DP with a time 
complexity of O(ns) using O(s2) memory, where n is the read 
length and s is the alignment score. WFA is similar to Myers 
but only computes a minimum number of DP cells along the 
diagonal of the matrix using an adaptive band. Its computation 

achieves the same accuracy as other 2-D alignment algorithms, 
while its runtime is highly dependent on the sequences' 
similarity. 

Adaptive banded event alignment (ABEA) [57] compares 
raw signals to a reference genome and employs an adaptive 
band to capture long gaps in raw signals. ABEA also uses a 
different recurrence algorithm called Suzuki-Kasahara (SK) 
[58], which follows the same paradigm as SW and NW but with 
the added benefit of decreasing register usage. 

DP can be made compute-bound on GPUs by employing 
techniques to fetch fewer data for the same amount of compute.  
Prior works have explored various software optimizations such 
as shared memory usage, cache-friendly data structures [60], 
bit-parallel compute optimizations, using heuristics to reduce 
search space [57], and various fine-grained (wavefront-level) 
and coarse-grained (block-level) parallelism strategies [59]. 

On the hardware front, we note that improved hardware 
support for wavefront register shuffles (for inter-thread 
communication), larger and distributed shared memory 
buffering between blocks, and instructions [83] for reduction 
operations like min, max, add, etc., could potentially improve 
the performance of DP-based workloads on GPUs. 

C. Machine Learning (AML) 

The integration of ML, particularly deep learning 
techniques, has recently emerged as a powerful tool in 
genomics workflows. Transformers [61], a type of neural 
network architecture originally designed for natural language 
processing, shows remarkable potential in various genomic 
applications and empowered genomic foundation models [93], 
[94]. 

One prominent application is in basecalling, the process of 
converting raw electrical signals from nanopore sequencing 
into DNA sequences. Basecalling is the bottleneck step in 
sequencing workflows [13], and conventional methods often 
struggle with accuracy, especially in homopolymer regions 
[67]. ML-based approaches, such as ONT's Dorado [62] 
basecaller, which uses a modified transformer architecture, 
have significantly improved accuracy and speed [81]. The 
compute requirements for these models scale with the input 
signal length and the model size, typically O(n2), for self-
attention operations where n is the sequence length. 

In variant calling, deep learning models [63]-[66] are being 
employed to improve the accuracy of detecting genomic 
variations. For instance, DeepVariant [65] uses convolutional 
neural networks (CNNs) to analyze pileup images of aligned 
reads. The compute and memory requirements for these models 
scale with the number of candidate variant sites and the depth 
of sequencing coverage. 

The use of these ML models introduces new computational 
challenges, especially for the fixed compute resources available 
onboard a sequencing instrument. They often require 
significant memory bandwidth for weight retrieval and 
intermediate activations. The compute requirements are 
substantial, with matrix multiplications dominating the 
workload. However, these operations are highly parallelizable, 
making GPUs well-suited for their acceleration. GPU backend 



 

 

ML libraries for generalized matrix-matrix multiplication 
(GEMMs) [68], [69] are optimized for better cache blocking 
using shared-memory-optimized hierarchical GEMM 
implementations and stream-k for uniform work partitioning. 
While the prefill (prompt processing) phase uses compute-
bound GEMMs, the autoregressive decode (token generation) 
phase uses memory-bound generalized matrix-vector 
multiplication (GEMV). The decode phase may be made 
compute-bound using several strategies, such as paged-
attention (using vLLMs) [70] and grouped query attention 
(GQA) [71]. 

As model sizes grow, the memory footprint becomes a 
critical factor. For example, a typical transformer model for 
basecalling might require several gigabytes of memory for 
weights alone. This scales with the square of the model's hidden 
dimension size. The input sequence length also affects memory 
usage, as attention mechanisms typically require O(n2) memory 
for sequences of length n. 

In terms of compute scaling, transformer models generally 
have a time complexity of O(n2d), where n is the sequence 
length and d is the hidden dimension size. This quadratic 
scaling with sequence length can become problematic for long 
reads, necessitating techniques like sliding window attention or 
linear attention variants.  

Moreover, current basecallers use high-precision datatypes 
(e.g., 32 bits) to represent each neural network layer present in 
a basecaller. This leads to high bandwidth and processing 
demands [84]. Thus, current basecallers with high arithmetic 
precision have inefficient hardware implementations.  

The integration of these ML models into genomics pipelines 
presents both opportunities and challenges. While they offer 
improved accuracy and the potential to uncover complex 
patterns, they also introduce significant computational 
demands. Token generation phase and CNNs with small filter 
masks (as in Deepvariant) can benefit from better hardware 
support for grouped GEMV multiplication in GPU’s 
tensor/matrix cores and better cache prefetching mechanisms. 
Hardware and software support for newly emerging low-
precision micro-scaling data formats could help processing 
efficiency as well [85]. Additionally, sparsity support in 
software and hardware could help improve any data movement 
bottlenecks. 

III. PERFORMANCE PORTABILITY 

The diverse requirements at the point-of-care testing 
(POCT) compared to the traditional HPC for genomics 
necessitate a move towards performance portability. While 
software development on GPUs as the first step offers 
significant performance improvements for many genomics 
algorithms, the field can benefit from solutions adaptable to 
various hardware architectures. In this context, it's worth 
discussing the role of domain-specific languages (DSLs) [73], 
[99] and software libraries [96]-[98] which have made 
significant contributions in fields like machine learning. They 
enable backend compiler optimizations and high-level 
synthesis (HLS) frameworks [100] for a broad range of 
hardware accelerators. Similar approaches are conceivable for 

genomic workloads, particularly for computationally intensive 
tasks like dynamic programming algorithms [95]. 

As the second step, to enable edge processing, we propose 
using a CPU-GPU SoC or using the DSL SYCL [73] to move 
to FPGAs, as FPGAs meet most of the requirements at the edge. 
We propose a two-step approach to achieve performance 
portability in genomics workflows, starting with GPUs. 

The first step involves optimizing genomics workflows for 
GPUs. GPUs offer several advantages. GPUs provide massive 
parallelism and high memory bandwidth, offering significant 
speedups for all the various components in genomics 
workflows. GPUs are easily programmable, and many 
individual components in the genomics workflow are already 
ported to GPUs [23], [57], [62], [65], [86]. Key optimization 
strategies for GPUs include efficient data streaming techniques 
to handle large genomic datasets, coalesced memory access and 
shared memory utilization, dynamic work distribution, adaptive 
load balancing, and redesigning algorithms to expose more 
parallelism. Further, adapting algorithms for GPU execution 
often reveals opportunities for parallelization and optimization 
that might not be apparent in CPU-only implementations.  

Genomics-specific operations in point-of-care testing 
(POCT) have strict requirements for low energy consumption, 
heat emission, and lab space utilization. As a solution to this, 
running the GPU workflows on edge computing solutions 
consisting of CPU-GPU SoCs (with unified memory on board) 
is an easy option. Alternatively, once GPU optimizations are in 
place, developers could leverage DSLs like SYCL [73] to 
extend their implementations to FPGAs. SYCL is an open 
standard that enables single-source heterogeneous 
programming for various accelerators, including FPGAs. It 
allows developers to write code once and target multiple 
platforms. Using SYCL to run on FPGAs offers several 
benefits. Much of the GPU-optimized code can be reused, 
significantly reducing development time. SYCL provides high-
level abstractions that can be efficiently mapped to FPGA 
resources. Additionally, FPGAs excel at custom datapath 
creation for genomics-specific operations in point-of-care 
testing (POCT). 

However, this approach also presents challenges. While 
SYCL provides portability, achieving optimal performance on 
FPGAs typically requires architecture-specific optimizations. 
FPGA implementations need careful consideration of resource 
usage (look-up tables, digital signal processing blocks, memory 
blocks), which differs from GPU optimization. Moreover, 
FPGA synthesis and place-and-route processes can be time-
consuming compared to GPU compilation, which may impact 
development cycles. 

By following this two-step approach, genomics researchers 
and developers can create high-performance, portable 
implementations of their workflows. This strategy allows them 
to leverage the immediate benefits of GPU acceleration while 
paving the way for future adaptability to FPGAs and other 
emerging architectures. As the field of genomics continues to 
evolve, such performance-portable solutions will be crucial in 
ensuring that computational methods can keep pace with the 
growing demands of genomic data analysis. 



 

 

IV. PRIOR WORK 

Extensive research has been conducted on various aspects 
of genomic data processing and storage. Significant 
advancements have been made in utilizing DNA as a storage 
medium [25], [26], [77], developing selective sequencing 
technologies [14], [22], [27]-[30], and creating efficient 
compression schemes [7]-[9] for genomic data storage. 
Concurrently, numerous studies have focused on hardware-
software co-design [10]-[17], [20], [21], [82], [104], [106], in-
memory or near-data processing [115-118] and software-only 
[22], [24], [27]-[30], [59], [60], [107], [108] optimizations to 
accelerate individual components within genome processing 
workflows. 

Recent literature has also seen the emergence of genomics 
benchmarks [18], [19] and their evaluation on diverse hardware 
platforms. However, a critical gap remains in the existing body 
of work. There is a notable absence of comprehensive studies 
that synthesize the compute and memory requirements across 
the spectrum of genomic workloads. This lack of a holistic 
perspective hinders the ability to identify overarching trends 
and establish a unified direction for optimizing various 
components of genomic processing pipelines. 

The integration of ML, particularly deep learning 
techniques and transformers, into genomics workflows 
introduces new computational challenges that have not been 
fully addressed in the context of end-to-end genomic analysis 
pipelines. Our work addresses this gap by providing a 
systematic analysis of the computational and memory demands 
of these workloads. We propose using GPUs as the primary 
platform for genomics workflows, followed by a transition to 
performance-portable solutions, representing a novel strategy 
that aims to leverage immediate benefits while preparing for the 
evolving landscape of computing hardware in genomics. 

V. DISCUSSION 

The exponential growth of genomic data necessitates a shift 
towards more powerful and flexible computing solutions. Our 
review emphasizes the importance of starting with GPU-CPU 
implementations for genomics workflows before expanding to 
broader performance portability solutions. GPU-CPU 
implementations offer immediate advantages for genomics 
workflows, providing significant performance improvements 
due to massive parallelism and high memory bandwidth. This 
approach offers immediate speedups for computationally 
intensive tasks and reveals optimization opportunities that 
might not be apparent in CPU-only implementations. The 
maturity of the GPU software ecosystem and growing support 
for GPU computing in bioinformatics tools provide a solid 
foundation for GPU-based genomics workflows. However, 
GPU implementations face challenges such as memory 
management, irregular memory access patterns, and load 
balancing. These can be addressed through unified CPU-GPU 
memory, efficient data streaming techniques, optimized data 
structures, and dynamic work distribution strategies. 

While GPU-CPU implementations are a strong starting 
point, the diverse landscape of computing hardware in 
genomics, especially at the POCT, necessitates a move toward 
performance portability. Frameworks such as SYCL offer 

promising solutions, providing high-level abstractions that map 
efficiently to various hardware architectures. These 
frameworks allow code to be written once and run on multiple 
platforms, reducing development and maintenance efforts. 
Transitioning to performance-portable solutions presents its 
own challenges, including potential performance overhead and 
the need for developers to understand both genomics and 
performance-portable programming. 

In conclusion, starting with GPU-CPU implementations 
provides a practical approach to accelerating genomics 
workflows, while the transition to performance-portable 
solutions represents a crucial next step. This evolution will 
enable the genomics community to utilize a wide range of 
computing architectures efficiently, accelerating genomic 
research and its clinical applications. 

VI. CONCLUSION 

The field of genomics stands at a critical juncture, facing 
unprecedented growth in data volume and analysis complexity. 
This review has outlined emerging trends in software and 
hardware for genomics, emphasizing the urgent need for 
innovative computational solutions. We have examined key 
algorithms in genomic sequencing workflows and provided 
insights into potential bottlenecks and optimization 
opportunities. GPU computing has emerged as a promising 
approach to accelerate these workflows, offering significant 
performance gains. The transition from CPU-centric to GPU-
accelerated implementations is a crucial first step, but the 
diverse and evolving hardware landscape necessitates further 
evolution toward performance portability. Frameworks like 
SYCL offer promising solutions to achieve this goal. 
Advancements in edge and confidential computing, combined 
with ongoing efforts in data compression and novel storage 
solutions like DNA-based storage, will shape the future of 
genomics. The genomics community can unlock new 
possibilities in personalized medicine and disease research by 
embracing HPC, performance portability, and emerging 
technologies like ML.  
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