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Abstract—Spectral clustering and kernel k-means are ubiq-
uitous methods for dividing non-linearly separable data into
distinct groups. Spectral methods, while effective in partitioning
non-convex spaces, are computationally intensive as they involve
eigenvector computations. Conversely, kernel k-means maps data
to higher dimensions and circumvents the need for this costly
computation, with a weighted variant of it being mathemati-
cally equivalent to spectral clustering. This work extends this
equivalence to diffusion based spectral methods and introduces
the Multilevel Diffusion Clustering (MDC) algorithm. MDC
leverages diffusion principles to minimize the normalized cut, adds
flexibility through a diffusion parameter, and retrieves high-quality
partitions in a multilevel fashion without computing eigenpairs.
Our numerical examples and comparative results with modern
multilevel graph clustering packages reveal that the proposed
method can improve the clustering of graphs both in terms of
balanced cut criteria and classification accuracy.

Index Terms—Graph clustering, kernel k-means, spectral
clustering, multilevel framework

I. INTRODUCTION

Clustering data into distinct subsets with strong internal and
weak external connections of roughly equal size is widespread
in scientific fields that investigate interaction and interconnect-
edness. Over the years, numerous algorithms and techniques
have been introduced, including spectral clustering [1] and
kernel k-means [2], both designed to address non-linearly
separable data. By utilizing the eigenvectors of a similarity
matrix, spectral methods excel in partitioning in non-convex
sample spaces through the optimization of graph cut objectives
like the normalized cut [3]. Kernel k-means, on the other hand,
can identify clusters by implicitly mapping data to higher
dimensions, without the need for the computationally intensive
process of calculating eigenpairs [4]. In [5], the authors
establish a mathematical equivalence between a weighted form
of the kernel k-means (WKKM) and general weighted graph
clustering objectives, thus allowing WKKM to be used as an
alternative to spectral methods. Leveraging this equivalence,
a multilevel clustering algorithm was developed in [6] that
progressively constructs coarser graphs, performs the initial
partitioning on the coarsest instance using the Kernighan-Lin
(KL) algorithm [7], and refines the partition at each subsequent
level using WKKM.

Our work aims to build on these advancements by integrating
concepts from a diffusion model-based spectral clustering
approach, introduced in [8] for partitioning protein-protein in-
teraction (PPI) networks, into the multilevel WKKM algorithm.
Our method, called Multilevel Diffusion Clustering (MDC),

leverages diffusion principles to minimize the normalized
cut, while avoiding the eigenvector calculations inherent in
diffusion model-based spectral clustering. Additionally, our
method adds flexibility to the multilevel WKKM algorithm
by allowing for the variation of a diffusion parameter β that
controls partition quality. We achieve this through two main
steps: first, by replacing the KL algorithm at the coarsest level
with diffusion model-based spectral clustering, ensuring a high
quality initial partitioning at the coarsest level. Second, we
define a new kernel for WKKM partitioning at the subsequent
levels that incorporates diffusion principles in its formulation.
At each level, different values of the parameter β generate
various candidate partitions, with the one achieving the lowest
normalized cut being selected and used for projection and
refinement at the next level.

II. BACKGROUND ON GRAPH CLUSTERING

We recap in this section fundamental concepts of graph
clustering. In Subsection II-A we introduce the matrices that
characterize a graph, and in II-B the metrics that define a
balanced partitioning. Then, in Subsection II-C we briefly
revisit spectral graph clustering, and in II-D how diffusion
principles can be incorporated in its formulation. Last, in II-E
we present how a weighted kernel k-means algorithm can
replace the eigenvector computations of spectral methods.

A. Graph notation

Let a set of n data points x1, . . . ,xn and a measure of
similarities sij between all pairs of points xi and xj . An
effective method for representing the data and their similarities
is to define an undirected graph G = (V,E) with a vertex set
V = {v1, . . . , vn} where each vertex vi represents a data point
xi, and an edge set E where each edge eij ∈ E represents a
relationship between two vertices vi and vj .
The weighted adjacency matrix W ∈ Rn×n of the graph stores
the nonnegative, real-valued weights wij ≥ 0 of the edge eij .
The weight wij represents the similarity between vertices vi
and vj ; thus, wij = 0 indicates that there is no edge connecting
the vertices vi and vj . This notion of similarity is commonly
computed via a Gaussian kernel measuring distances between
the data points [1], or via constrained inverse covariance matrix
estimation [9]. In the case of a simple, undirected graph we
consider that there are no self-loops, i.e., wii = 0, and that the
adjacency matrix is symmetric with wij = wji.



The link function links(A,B) is defined as the sum of the
edge weights between vertices in a subset A ∈ V and another
subset B ∈ V by

links(A,B) =
∑

vi∈A,vj∈B

wij . (1)

The degree di of a vertex vi refers to the sum of the weights
of edges connecting vi to the other vertices

di = links(vi,V) =

n∑
j

wij . (2)

Then, the degree matrix D ∈ Rn×n is defined as a diagonal
matrix with the degrees of all vertices d1, . . . , dn in its diagonal.

B. Balanced graph clustering

The goal of clustering is to partition a graph into k disjoint
clusters π1, . . . , πk such that the edges between groups have
the lowest possible weights, while the edges within groups
have the highest possible weights. To this end, the normalized
association (NAssoc) and the normalized cut (NCut) [3] are
widely adopted discrete graph clustering objectives, defined as

NAssoc({π}kc=1) = max
π1,...,πk

k∑
c=1

links(πc, πc)∑
vi∈πc

di
, (3)

NCut({π}kc=1) = min
π1,...,πk

k∑
c=1

links(πc,V \ πc)∑
vi∈πc

di
. (4)

NAssoc measures the ratio between intracluster connectivity
and the cluster’s overall connectivity, while NCut places the
intercluster connectivity in the numerator. Thus, maximizing
the NAssoc objective is equivalent to minimizing NCut [6],
[10]. Spectral methods that utilize the eigenvectors of matrices
derived from W can be employed to optimize these discrete
graph cut objectives.

C. Spectral graph clustering

Spectral clustering algorithms approximate solutions to
graph partitioning problems by computing the eigenvectors of
the symmetric positive semi-definite Laplacian matrix, which
captures the connectivity and the edge weights of the graph.
The Laplacian matrix of G is defined as L = D − W. By
analyzing the eigenvalues and eigenvectors of L, spectral
methods optimize the discrete objectives described in the
Subsection II-B. Distance-based clustering algorithms like k-
means can be applied on the eigenvectors corresponding to the
k smallest eigenvalues to produce a discrete k-way partitioning
of G. Note that vertices with large degrees di exert a larger
influence on the eigenvector components and impact spectral
graph analysis techniques such as clustering and centrality
measures [11]. To mitigate this, normalization balances the
influence of each vertex through

Lnorm = I−D−1/2WD−1/2, (5)

where I ∈ Rn×n is the identity matrix.

D. Diffusion matrix-based spectral clustering

The spectral analysis of the graph Laplacian can be realized
as a diffusion-based probabilistic model [8]. From a probabilis-
tic point of view, we consider a particle traveling between graph
vertices in the entire vertex set V [12]. The matrix Ω ∈ Rn×n

is the transition matrix, where each entry Ωij represents the
probability of transitioning from vertex i to j. To incorporate
the stationary distribution and the properties of the walk, Ω
can be defined as Ω = D−βW [8] where β is a parameter
influencing the vertex degrees, and the diffusion matrix as

Γ = ∆−Ω, (6)

where ∆ is a diagonal matrix given by

∆ij = δij

n∑
l=1

Ωil (7)

and

δij =

{
1, if i = j,
0, otherwise.

(8)

The diffusion matrix can be symmetrized by

Γsym = ∆−D−β/2WD−β/2. (9)

Spectral analysis of Γsym and k-means on its eigenvectors can
be utilized to efficiently identify the clusters of a graph.

E. Weighted kernel k-means

The weighted kernel k-means algorithm [13] seeks to find
clusters π1, π2, . . . , πk by minimizing the distance

D({π}kc=1) =

k∑
c=1

∑
xi∈πc

di∥ϕ(xi)−mc∥2, (10)

where mc is the centroid of cluster πc, defined as

mc =

∑
xi∈πc

diϕ(xi)∑
xi∈πc

di
, (11)

and ϕ is a function mapping data points to a higher-dimensional
feature space allowing for nonlinear separators. The squared
distance ∥ϕ(xi) −mc∥2 can be expressed in terms of inner
products

⟨ϕ(xi), ϕ(xi)⟩ − 2

∑
xj∈πc

dj ⟨ϕ(xi), ϕ(xj)⟩∑
xj∈πc

dj

+

∑
xj ,xl∈πc

djdl ⟨ϕ(xj), ϕ(xl)⟩
(
∑

xj∈πc
dj)2

.

(12)

Given a kernel matrix K ∈ Rn×n, where Kij =
⟨ϕ(xi), ϕ(xj)⟩, kernel methods allow us to compute distances
between data points xi and xj in the feature space, represented
by ϕ(xi) and ϕ(xj), without directly evaluating these feature
space representations [14]. Thus, (12) can be rewritten as

Kii − 2

∑
xj∈πc

djKij∑
xj∈πc

dj
+

∑
xj ,xl∈πc

djdlKjl

(
∑

xj∈πc
dj)2

. (13)



Note that any positive semidefinite matrix can be considered
as a kernel matrix, as demonstrated in [15].

The maximization of NAssoc (3) can be expressed as

max

{
k∑

c=1

links(πc, πc)∑
vi∈πc

di
=

k∑
c=1

x̃T
c Wx̃c

}
, (14)

where xc ∈ {0, 1}n is an indicator vector for partition πc and
x̃c = xc/(x

T
c Dxc)

1/2. Equivalently, the NCut objective (4)
can be reformulated as

min

{
k∑

c=1

links(πc,V \ πc)∑
vi∈πc

di
=

k∑
c=1

x̃T
c Lx̃c,

}
. (15)

Setting Y = D1/2X̃, the optimization of NAssoc (3) can be
expressed as a trace maximization problem [6]:

max
Y

tr(YTD−1/2WD−1/2Y), (16)

and that of NCut as

min
Y

tr(YTD−1/2LD−1/2Y). (17)

Since W = D−L, the ratio association can be reformulated
as a normalized cut problem:

(16)︷ ︸︸ ︷
tr(YTD−1/2(D− L)D−1/2Y)

= k − tr(YTD−1/2LD−1/2Y)︸ ︷︷ ︸
(17)

.
(18)

Thus, optimizing (4) is equivalent to optimizing (3). Con-
sidering D−1WD−1 as a kernel matrix K, the association
problem (16) can be formulated as the weighted kernel k-means
(WKKM) problem [4], [6] formulated in (13):

max
Y

tr(YTD1/2KD1/2Y). (19)

III. THE MULTILEVEL DIFFUSION MODEL-BASED
CLUSTERING

We introduce a multilevel clustering method that leverages
the diffusion principles presented in Section II-D to enhance
the robustness and accuracy of the results produced by the
multilevel weighted kernel k-means algorithm. At the coarsest
level, spectral clustering of the diffusion Laplacian is employed,
while at the subsequent levels of the uncoarsening phase, a
new formulation of the weighted kernel of Section II-E is
introduced. The key components of our Multilevel Diffusion
Clustering (MDC) algorithm are illustrated in Figure 1.

A. The multilevel approach

Multilevel graph partitioning methods reduce partitioning
times by progressively decreasing the size of the original graph
G0. Vertices and edges are collapsed into smaller instances
G1, G2, . . . , Gm, preserving the original structure with |V0| >
|V1| > · · · > |Vm|. After coarsening to the final level Gm, a
balanced partition Pm is computed and then projected onto finer
graph instances Gm−1, Gm−2, . . . , G1, G0 until it is projected
onto the original graph G0 with the complete set of edges and

Fig. 1: Overview of the multilevel diffusion clustering (MDC). We incorporate
diffusion principles at both the coarsest level with spectral clustering of Lβm

and at subsequent levels with a new kernel formulation.

nodes. During the uncoarsening phase, intermediate partitions
Pm−1, Pm−2, . . . , P1, P0 are refined to minimize cuts. The
multilevel framework used in MDC is similar to that of METIS
[16], [17], with differences in the partitioning and refinement
strategies, as described in Subsections III-B and III-C.

1) Coarsening phase: A coarser graph Gi+1 is constructed
by merging nodes in Gi into supernodes in Gi+1. The edges
emerging from a supernode are assigned weights that are the
sum of the weights of the original collapsed edges [18]. Heavy
edge matching is an efficient method for generating coarser
graphs [17]. It involves randomly visiting vertices, selecting the
adjacent node with the highest edge weight, and then merging
these nodes into a single supernode. The size of the coarsest
graph is set according to the default METIS [16] criterion
defined as |Vm| = max (|V0|/40 ∗ log2 k, 20 ∗ k).

2) Uncoarsening phase: Once the partition Pm is computed
on the coarsest graph Gm, it is successively projected back
through each intermediate level, up to the original graph G0.
Initially, each vertex in the finer graph Gi−1 is assigned to a
unique cluster, as Gi−1 is composed of distinct subsets of the
vertices from the coarser graph Gi. With the increasing number
of vertices, it becomes essential to re-evaluate and adjust these
cluster assignments on the finer graph Gi−1, ensuring that the
partitioning remains optimal as the graph increases in size. To
this end, a modified version of the WKKM algorithm, discussed
in detail in Subsection III-C, leverages the information from
the partition projected from the coarser level.

B. Diffusion model-based spectral clustering of the coarsest
graph

At the coarsest level m, the graph Laplacian matrix of
the reduced graph is constructed, and a Rayleigh quotient
optimization problem is solved to compute the eigenvectors
associated with the k-smallest eigenvalues [19]. We incorporate
the approach of diffusion model-based spectral clustering



(ADMSC) [8] into the formulation of the Laplacian at the
coarsest level of our method:

Lβm
= I−D−βm/2WD−βm/2. (20)

ADMSC introduces a power factor, referred to as βm at this
coarsest level, which adjusts the Laplacian matrix to account
for network heterogeneity, thereby influencing the resulting
clusters. We utilize the STAG [20] library to compute the
eigenvectors associated with the k-smallest eigenvalues of Lβm

,
and apply k-means on them to obtain k discrete clusters. The
reduced size of this eigenproblem at the coarsest level allows
for multiple runs with different values of βm ∈ [0, 2], following
the approach of [8]. Varying the βm value generates multiple
candidate partitions, from which we select the partition with
the lowest NCut. This ensures a high-quality initial partition
for the subsequent uncoarsening phases, where the graph is
progressively refined. Note that eigenvector computations are
only performed at this coarsest level due to the small size of
the graph at this stage.

C. Diffusion-based WKKM clustering of the intermediate
graphs

In the uncoarsening levels, we leverage the effectiveness of
diffusion model-based spectral clustering and the equivalence
between spectral analysis and WKKM to obtain high quality
partitions. A fundamental linear algebra result [21], [22] states
that trace maximization problems in the form of (16), with
a relaxation allowing Y = ŨQ where Q is an arbitrary
orthogonal k×k matrix, are solved by selecting Ũ as the n×k
matrix containing eigenvectors associated to the k-smallest
eigenvalues of D1/2KD1/2 as columns. This establishes
an equivalence between spectral clustering and kernel k-
means, thus allowing the substitution of the computationally
intensive task of computing graph Laplacian eigenvectors by
the computationally cheaper WKKM method.

Our MDC algorithm introduces the adjustable parameter
from (6), extending the equivalence between WKKM and
diffusion spectral clustering. Specifically, clustering using the
symmetrized diffusion matrix (9) is achieved by configuring
the kernel K to

D1/2KD1/2 = ∆−D−β/2WD−β/2

K = D−1/2(∆−D−β/2WD−β/2)D−1/2

K = D−1/2∆D−1/2 −D−αWD−α,

(21)

where α = 1
2 (1+β), and β is the parameter that influences the

diffusion process. The trace maximization of (16) is performed
as an equivalent spectral clustering method for the diffusion
Laplacian described in (9). The parameter β allows for multiple
runs with different values at each level of the uncoarsening
process. As in Section III-B, by systematically varying β and
evaluating the resulting candidate partitions, the optimal values
of β ∈ [0, 2] that yield the smallest NCut are identified. The
best partition is then retained to be used as the initial partition
for the next uncoarsening level.

From a diffusion perspective, introducing β as a power factor
enables the adjustment of the diffusion matrix Γ by weighting

the transition matrix Ω according to the degree matrix. By
tuning β in (9), the diffusion process can emphasize either
short-range or long-range connections. Higher β values reduce
the influence of high-degree nodes, enhancing local clustering
and emphasizing short-range connections. Lower β values
increase the influence of high-degree nodes, capturing larger
structures and emphasizing long-range connections [8], [23].
This adjustable parameter allows the algorithm to be fine-tuned
to the specific properties of the graph and ensures optimal
graph cuts across a range of different graphical structures.

Moreover, (21) incorporates the diffusion characteristics
directly into every level of the uncoarsening phase of the
multilevel approach described in Section III-A, aligning the
kernel matrix K closely with the properties of the diffusion
Laplacians of the graphs Gm−1, Gm−2, . . . , G1, G0. The flex-
ibility introduced by the parameter β reduces the cut edges
across all partitions Pm−1, Pm−2, . . . , P1, P0, maintaining the
computational benefits of WKKM while improving partitions
quality. From a computational perspective, it necessitates the
calculation of the distance from point xi to the centroid of the
cluster πc, as expressed in (13). This requires determining the
individual entries of the kernel matrix K, defined element-wise
as

Kij = d−β
i − d−α

i wijd
−α
i . (22)

Note that Kii in (13) is a constant and can be excluded from
the optimization process. Consequently, the first term d−β

i does
not affect the distance computation and can also be omitted.

D. A multilevel diffusion clustering (MDC) algorithm

This section details the two core algorithms employed in
our methodology: the spectral clustering of the coarsest graph
through the diffusion Laplacian, and the multilevel diffusion
clustering of the subsequent graphs. Diffusion principles are
introduced via the perturbation parameters βm for the first
algorithm and β for the second. For different values of βm,
Algorithm 1 performs spectral clustering on the coarsest
graph Gm. It computes the graph Laplacian Lβm (line 3) and
performs eigenvalue decomposition to obtain the eigenvectors
Ũ corresponding to the k-smallest eigenvalues (lines 4 and 5).
These eigenvectors are then clustered with k-means to produce
k discrete partitions (line 6), and the ones with the smallest
NCut are returned (lines 7 – 10).

Algorithm 2 applies diffusion clustering to the subsequent
graphs Gl. It computes the diffusion weighted kernel K (line 3),
and performs WKKM (lines 5 – 9). The objective is to
iteratively improve the partitions resulting from the coarser
graph Gl+1 for different values of β, and to project the
partitions that minimize NCut at each level l to the next
level l − 1 (lines 10 – 13). In both algorithms, the β iteration
loop is parallelizable within the same level, as the iterations
operate independently of each other.

E. Computational complexity

The main computationally intensive tasks of Algorithm 1
lie in lines 4 and lines 6, involving the spectral decomposition
and the k-means clustering. STAG [20] computes eigenpairs



Algorithm 1 Diffusion spectral clustering of the coarsest graph
Input: k : number of clusters,

W(m) : weighted adj. matrix of the graph Gm

Output: π
(m)
1 , . . . , π

(m)
k : partitioning of Gm

1: Compute di of each vertex vi ∈ Vm // acc. to (2)
2: for βm = 0,∆βm, . . . , 2 do
3: Compute the graph Laplacian Lβm

// acc. to (20)
4: Perform eigenvalue decomposition: Lβm

= UΣUT

5: Extract Ũ: the k columns of U corresponding to the
k-smallest eigenvalues

6: Apply k-means on the rows of Ũ
7: Compute current NCut // acc. to (4)
8: if Current NCut < previous NCut then
9: Update clusters π

(m)
1 , . . . , π

(m)
k

10: return Clusters π
(m)
1 , . . . , π

(m)
k

Algorithm 2 Multilevel diffusion based clustering of the
subsequent graphs

Input: k : number of clusters,
W(l) : weighted adj. matrix of the graph Gl

with l ∈ {m− 1,m− 2, . . . , 1, 0}
π
(l+1)
1 , . . . , π

(l+1)
k : partitioning of Gl+1

Output: π
(l)
1 , . . . , π

(l)
k : partitioning of Gl

1: Compute di of each vertex vi ∈ Gl // acc. to (2)
2: for β = 0,∆β, . . . , 2 do
3: Compute the kernel K // acc. to (22)
4: Initialize the k clusters: π(l)

1 , . . . , π
(l)
k

5: repeat
6: for each point x do
7: Find the new cluster index as

j∗(x) = argminj

{
||ϕ(x)−mj ||2

}
// acc. to (13)

8: Update the cluster as π
(l)
j = {x : j∗(x) = j}

9: until Convergence of objective // acc. to (16)
10: Compute current NCut // acc. to (4)
11: if Current NCut < previous NCut then
12: Update clusters π

(l)
1 , . . . , π

(l)
k

13: return Clusters π
(l)
1 , . . . , π

(l)
k

using the Lanczos method [24], typically performing O(dmn2
m)

operations [22], where dm is the average number of non-
zero elements in a row of the Laplacian Lβm

, and nm is
the number of vertices in the coarsest graph Gm. The k-means
algorithm has a complexity of O(τmk2nm), where k is the
number of clusters, and τm is the number of iterations. Since
these operations are computed v times for different βm, the
total complexity of Algorithm 1 is O(v(dn2 + τk2n)m).

Algorithm 2’s bottlenecks are the kernel computation in
line 3 and the distance evaluation in lines 5 – 9. each with a
complexity of O(n2

l ) when the kernel K is dense, where nl

is the number of vertices in the intermediate graph Gl. For v
values of β and τl iterations, the total complexity of Algorithm 2
is O(v(dn + τn2)l). Thus, MDC’s overall complexity is
O(v(dn2 + τk2n)m + v(dn + τn2)l), which simplifies to

O(vτn2) given that k ≪ nm < nl < n = |V|, where τ is the
maximum number of iterations at the finest level l = 0. In
comparison, Graclus has an asymptotic complexity of O(τn2),
which is of the same order as MDC’s complexity. Directly
applying the Lanczos method to compute the eigenvectors of
the input graph Laplacian results in a complexity of O(dn2),
where d is the average number of non-zero elements per row.
For dense matrices, where d → n, this increases to O(n3).

IV. NUMERICAL RESULTS

We demonstrate in this section the effectiveness of the
multilevel diffusion based spectral graph clustering framework,
as summarized in Algorithms 1 and 2. In Subsection IV-A,
we describe the setup of the numerical experiments and the
methods considered in our comparative studies. Results on
synthetic data are presented in Subsection IV-B and on real-
world graphs in Subsection IV-C.

A. Experimental setup

We report results about the quality of the cut in terms of
normalized cut (NCut) (4) and modularity Q which describes
the number of edges belonging to clusters, minus the anticipated
number in an equivalent graph with a random distribution of
edges [25]. Accuracy is measured in terms of normalized
mutual information, NMI ∈ [0, 1], and variation of informa-
tion [26], VI ∈ [0, log n]. Both metrics are invariant to the
permutations of the label values, ensuring that the absolute
values of the labels do not affect the scores. NMI values close
to 1 and VI values near 0 indicate better alignment with the
true labels [26]. We utilize Julia (1.7.2) notebooks to interface
with our C++ implementation, The diffusion parameter for the
Laplacian Lβm

(20) and for the kernel K (21) at the subsequent
levels varies within the range [0, 2], with increments of 0.1.

Our method is compared against two state-of-the-art multi-
level clustering frameworks1:

1) Graclus [6]: Optimization of weighted graph clustering ob-
jectives with a weighted kernel k-means, using Kernighan-
Lin [7] for the initial clustering. Our algorithm builds
upon the code release of this method.

2) KaFFPa - Karlsruhe Fast Flow Partitioner [27]: A multi-
level algorithm within KaHIP that uses techniques such
as max-flow min-cut, local improvement and multi-try
Fidducia-Mattheyses [28]. We use KaFFPa ”social” [29]
for optimal partitioning of irregular graphs.

B. Experiments with synthetic data

We consider a popular benchmark set of artificial datasets to
demonstrate the behavior of our MDC algorithm across scenar-
ios of varying difficulty. The Lancichinetti–Fortunato–Radicchi
(LFR) datasets [30] are based on a stochastic block model
where node degrees and community sizes follow power-law
distributions. A parameter ξ, referred to as noise component,
controls the fraction of a node’s neighbors that are outside
its community. Following the approach of [31], we select ξ

1The Graclus code is available at: https://www.cs.utexas.edu/∼dml/Software/
graclus.html, and the KaHIP code at: https://github.com/KaHIP/KaHIP.
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Fig. 2: Clustering the LFR datasets for an increasing noise component ξ. (a) NCut values. (b) Modularity values. (c) NMI accuracy values.

Normalized cut (NCut) Normalized mutual information (NMI) Variation of information (VI)
Test case MDC Graclus KaHIP MDC Graclus KaHIP MDC Graclus KaHIP

Binaryalphadigs 12.381 12.820 13.592 0.613 0.603 0.595 2.736 2.832 2.906
mfeatzernike 0.848 1.037 0.966 0.715 0.693 0.700 1.226 1.414 1.379
Ecoli 1.559 1.676 1.860 0.540 0.493 0.507 1.650 1.830 1.794
har 0.160 0.286 0.305 0.691 0.648 0.615 1.789 1.242 1.378
indianpines 0.183 0.294 0.294 0.462 0.388 0.357 1.767 2.159 2.286
MNIST 0.795 0.914 0.823 0.749 0.699 0.789 1.134 1.380 0.970
Fashion MNIST 0.576 0.755 0.705 0.598 0.582 0.608 1.804 1.923 1.806
Japanese Vowels 0.510 0.638 0.583 0.675 0.639 0.721 1.345 1.568 1.220

TABLE I. Classification results for the image datasets of Section IV-C. The value of the best method achieved is in bold font.

in the range [0.1, 0.4]. This selection produces graphs with
increasingly noisy clusters as the value of ξ increases. The
number of clusters k in this benchmark ranges from 17 to 21.
The NCut value of the final partition increases for an increasing
noise component ξ, as illustrated in Figure 2a. MDC yields a
strictly lower NCut compared to Graclus in 14 out of the 16
graphs, and consistently outperforms KaHIP. On average, MDC
achieves a NCut that is 14% lower than that of Graclus and
28% lower than that of KaHIP. We then present in Figure 2b
the values of modularity Q achieved by each method. MDC
reports a strictly higher value of Q for 13/16 cases, and is
again consistently better than KaHIP. On average, MDC results
in 5% higher modularity values compared to Graclus, and 13%
higher than KaHIP. Last, the NMI values for the three methods
are presented in Figure 2c. Our method achieves a NMI equal
or close to 1 for a noise component ξ ≤ 0.2, indicating a high
level of accuracy between the produced clusters and the true
community structure. The NMI of the partitions computed by
our algorithm surpasses that of Graclus in 15/16 cases and
consistently exceeds that of KaHIP across all cases. On average,
the NMI of MDC is 3% higher compared to Graclus and 19%
higher compared to KaHIP.

C. Clustering real-world instances

We consider a subset of the ML Graph group [32] from the
University of Florida sparse matrix collection [33] for our real

world experiments.2 MDC reports the lowest values of NCut
for all the graphs considered. With respect to classification
accuracy, MDC is the best method in 5/8 cases in terms of
NMI and VI. KaHIP achieved the best NMI in 3/8 cases and
the highest VI in 2/8 cases. Graclus is the best method in 1/8
cases in terms of VI.

V. CONCLUSION & OUTLOOK

In this work we have introduced diffusion principles in
a multilevel spectral graph clustering framework. The initial
partitioning at the coarsest and sparsest level is achieved by an
eigenvector analysis of the diffusion Laplacian. Subsequently,
at each uncoarsening phase, a diffusion weighted kernel k-
means is employed, avoiding the need for the computationally
expensive eigenspectrum computations and refines the projected
cluster assignment from the previous level. Our experiments
with synthetic and real-world data demonstrate the potential
of the MDC algorithm in both minimizing graph cut metrics
and maximizing classification accuracy. The source code and
timing results will be presented in future work, following the
exploitation of the parallelization potential that this multilevel
method offers. We intend to further explore the spectral
properties of graphs that benefit from diffusion clustering and
extend the equivalence between WKKM and spectral clustering
to modularity optimization [34].

2The ML Graph group is available at https://sparse.tamu.edu/ML Graph.
Details for the datasets of Table I are offered therein.
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