
GPU Accelerated Construction of Time Respecting
Data Structure for Temporal Graphs

Animan Naskar∗, Venkata Kalyan Tavva† and Subhasis Banerjee‡
∗ † Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Punjab, India

Email: ∗2022csb1297@iitrpr.ac.in, †kalyantv@iitrpr.ac.in
‡ Shell India Markets Pvt. Ltd., Karnataka, India.

Email: subhasis.banerjee@shell.com

Abstract—The transformation of a temporal graph into its
corresponding time-respecting graph (TRG) offers significant
advantages for neighborhood search problems when compared to
the traditional edge stream representations. However, construct-
ing TRGs is a time-consuming process that can be substantially
accelerated using GPU based parallelism. In this paper, we
propose a novel highly parallel method to construct the time-
respecting graph (TRG) from the edge list by leveraging GPU
parallelism. For graphs of various sizes, ranging from 0.05 to
33 million edges, we achieve a speedup of up to 387x over the
sequential variant on comparable hardware. We demonstrate that
our method produces TRG in the standard CSR form that can
be input to high-performance graph analytics libraries such as
nvGRAPH. The TRG produced is also optimized for a minimal
number of vertices and edges. Our method also provides support
for efficient real-time dynamic updates to the temporal graph.

Keywords— Contact sequence temporal graphs, time-respecting
graph, data-structure, parallel, GPU, CUDA

I. INTRODUCTION

Temporal graphs represent networks where edges can be taken only at
specific timestamps. Unlike static graphs, temporal graphs capture the
temporal nature of edges, thereby offering a more realistic representa-
tion of real-world systems [1]. For instance, consider a flight network
where vertices represent airports and edges denote flights scheduled
at specific times. In such a temporal graph, the existence of an edge
between two airports depends not only on their connectivity but also
on the specific time when a flight operates between them. A survey
of temporal networks [2] shows their diverse real-world applications,
spanning from disease spread study, communication networks, road
networks, etc.

In this paper we look at Contact Sequence Temporal Graphs (CSG).
Edges can be taken at discrete time instances. A CSG has edges of
the form < u, v, t, w > where u is the from-vertex and v is the
to-vertex. t is its timestamp at which the edge can be taken and w
(w ≥ 0) is the time it takes to get from u to v along this edge. If t is
the departure time at u, t+w is the arrival time at v. The CSG can
be represented as an edge stream or transformed into an equivalent
Time-Respecting Graph (TRG) [1]. The edge stream is a list of all the
edges in increasing order of their timestamps. The TRG is a graph
in which all paths are time-respecting (also called “journeys”) [3].
A time-respecting path from u to v requires that the departure time
from each vertex along the path is greater than or equal to the arrival
time at that vertex.

Temporal graph algorithms follow different approaches depending on
the underlying graph representation. Prior work [1] has shown that
algorithms optimized for TRG perform better than those optimized
for edge stream representation for solving neighborhood search

problems. In the edge stream representation, edges are scattered
throughout the graph and their information is stored without regard
to the spatial locality of vertices. Consequently, algorithms applied
to edge stream representations must perform a full pass over all the
edges [4] for every query, even for neighborhood search problems.
Conversely, in TRGs, vertices are organized based on their spatial
and temporal configurations that can enhance algorithmic efficiency
for such types of problems.

To the best of our knowledge, thus far, only sequential implemen-
tations for creating TRG exist in the literature [1]. In this paper we
propose a novel highly parallel GPU based method to create the
TRG. On various real-world graphs ranging from 0.05 to 33 million
edges, we achieve a speedup of up to 387× over the sequential
variant on comparable hardware. Reduction in the time to create
the TRG further reduces the time required to begin analysis and
apply graph algorithms. In addition, we incorporate certain reduction
techniques while building the TRG that further benefit a set of graph
applications. Prior work [5] has demonstrated that algorithms applied
to the reduced TRG perform comparably if not better than those
applied to the edge stream for global search problems, such as source-
to-all-vertices problems.

II. EXISTING TRG VARIANTS

An example of a contact sequence temporal graph G = (V,E) is
shown in Figure 1a with four vertices. Each edge in this graph is
marked with two values, namely, timestamp and weight. There
is a possibility of multiple edges existing between two vertices,
with different timestamps. For example, in the graph G, we can
observe two edges originating from A to B, with timestamps ‘3’
and ‘6’. Figure 1b shows the edge stream representation of the
example graph under consideration. Each entry in this representation
provides information about a single edge. An edge is of the form
< u, v, t, w > where u is from-vertex, v is to-vertex, t is timestamp
at which the edge can be taken and w is the weight or simply time
taken to traverse the edge. For example, the first entry in the edge
stream shown in Figure 1b conveys that there is an edge from vertex
B to vertex C at time ‘3’ and with a weight of ‘1’. In case the
weight is representing the traversal time, then the time by which one
can reach C is ‘4’. Next we look at the various TRG representations
proposed over the years.

A. TRG-Wu
Figure 1c shows the TRG-Wu [1] representation of the temporal graph
G. It can be observed that all the paths are time respecting. Consider
vertex A of G. Let,

Tin(A) = {t | (∗, A, ∗, t) ∈ G}
Tout(A) = {t | (A, ∗, ∗, t) ∈ G}
Vin(A) = {(A, t) | t ∈ Tin(A)}
Vout(A) = {(A, t) | t ∈ Tout(A)}

(a) Example Temporal Graph G (b) Edge Stream(G) (c) TRG-Wu(G)

(d) TRG-GPU(G) un-reduced
(e) TRG-GPU(G) reduced

Fig. 1: Temporal Graph and its representation example.

Tin(A) is a set to all distinct times of arrival to the vertex A and
Tout(A) is a set of all distinct times of departure from the vertex
A. Hence, vertex A corresponds to two set of vertices Vin(A) and
Vout(A) in the TRG-Wu, wherein Vin(A) and Vout(A) are sets of
vertices corresponding to distinct arrival and departure times, respec-
tively. < u, v, t, w > corresponds to an edge from (u, t) ∈ Vout(u)
to (v, t+w) ∈ Vin(v) in the TRG-Wu. The TRG-Wu also has a few
additional edges as explained below:

1) Let Vin(A) = {(A, t1), (A, t2), . . . , (A, tk)} where ver-
tices are ordered in decreasing timestamp. Edges exist from
(A, ti+1) ∈ Vin(A) to (A, ti) ∈ Vin(A) for all 1 ≤ i ≤ k− 1.
Similarly, edges exist between Vout(A) vertices.

2) For every vertex (A, tin) ∈ Vin(A), an edge to (A, tout) ∈
Vout(A), where tout = min{t | t ∈ Tout(A), t ≥ tin}.

The above representation is generalized for all the vertices and
edges. The additional edges are called wait-edges and traversing these
implies waiting at a vertex, possibly to take an edge at a higher
departure time. For example, in Figure 1c, edges between (A, 3) and
(A, 6), (B, 6) and (B, 8), etc., are wait-edges.

An improvement on TRG-Wu was proposed by Gheibi et al. [5]
wherein the authors reduce the TRG by eliminating the redundant
vertices and wait-edges. The reduced TRG is shown to perform better
than TRG-Wu for global search problems.

B. TRG-GPU
This TRG representation is created by our GPU parallel method, and
is henceforth referred to as TRG-GPU. It is in reduced form unless
real-time updates are allowed where we leave it un-reduced. Due
to our optimized creation method, our un-reduced form is a slight
variation of the TRG-Wu as explained next.

1) Un-reduced TRG
Referring to Figure 1d, let

V (A) = Vin(A) ∪ Vout(A)
T (A) = Tin(A) ∪ Tout(A)

where, Vin(A), Vout(A), Tin(A), Tout(A) are defined as before in

the case of TRG-Wu and V (A) is a set of all vertices in un-reduced
TRG corresponding to vertex A of temporal graph G. Note that,
unlike in TRG-Wu, where (A, t) ∈ Vin(A) and (A, t) ∈ Vout(A)
are differentiated, in this TRG representation there is only one
corresponding vertex (A, t) ∈ V (A). We generalize the same to all
other vertices.

The edge set is constructed similarly to TRG-Wu:

1) Corresponding to every edge of the form < u, v, t, w > of
the temporal graph G, an edge exists from (u, t) ∈ V (u) to
(v, t+ w) ∈ V (v) in the TRG.

2) Let V (A) = (A, t1), (A, t2), . . . , (A, tk) in which vertices are
in increasing order of t. Edges exist from (A, ti) to (A, ti+1)
∀ 1 ≤ i ≤ k − 1. These are wait-edges of the TRG-GPU.

2) Reduced TRG
Considering Figure 1e, our TRG-GPU construction method creates
the reduced TRG variant proposed by Gheibi et al. [5]. Consider
reduction from Figures 1c, 1d and 1e. To determine if a vertex (A, t)
should be reduced, we need to check for two conditions:

1) Outgoing Edge Condition: The vertex (A, t) must have exactly
one outgoing edge.

2) Successor Condition: It must be followed by another vertex in
the list V (A) = {(A, t1), (A, t2), . . . , (A, tk)}.

If a vertex (A, t) satisfies these conditions it is eligible for reduc-
tion. The reduction process involves merging (A, t) with the vertex
immediately following it in the V (A). Assume (A, ti) gets reduced,
then it is merged with (A, ti+1). Such merging involves,

1) All incoming edges to (A, ti) are redirected to (A, ti+1).

2) The outgoing edge from (A, ti), that is also a wait edge to
(A, ti+1), is removed.

This check is performed for all vertices, and reducible vertices are
removed to create the reduced form. Our method directly constructs
the reduced form, bypassing the creation of the un-reduced form.

TABLE I: Vertices and their mapping for the example temporal graph G.

0 1 2 3 4 5 6 7 8

A, 3 A, 6 B, 3 B, 6 B, 8 C, 4 C, 5 D, 6 D, 7 0

0, 3 0, 6 1, 3 1, 6 1,8 2, 4 2, 5 3, 6 3, 7 1

map[] → 0 3 6 9 11 13 14 21 22 2

III. CONSTRUCTION OF TRG-GPU
This section explains our novel approach to construct the reduced
TRG-GPU data structure from the edge list of a given temporal
graph, using GPU to exploit maximum parallelism. We first explain
some critical aspects of the method and then dive into the parallel
implementation.

CSR Format for TRG: Consider a vertex A in a temporal graph G,
it corresponds to the set of vertices V (A) in the TRG. The outgoing
edges from vertex A get distributed over multiple vertices V (A) in
the TRG. As a result, the corresponding TRG is generally sparse.
Hence, we make use of the Compressed Sparse Row (CSR) [10]
format instead of the adjacency matrix.

Another memory efficient approach is to allocate space dynami-
cally for the neighbors of each vertex separately. However dynamic
memory allocation calls are expensive on a GPU and a single
call for each vertex would consume a lot of time in case of a
large graph. In contrast, the CSR format allocates space for the
neighbors of all vertices with a single malloc call, making it
an ideal choice for large/sparse graphs. However, handling graph
updates with an underlying CSR data structure involves expensive
memory operations. Fortunately, when using GPU acceleration, we
typically deal with large temporal graphs where updates are small
and infrequent.

Vertex Representation: Consider vertex (A, t). Treating it as a pair of
integers is expensive. Hence, we assign it a unique value, At, defined
as,

At = A×∆T + (t− tmin) (1)

In the prior figures, as a generic example we use characters (ex. A, B,
C, D) for vertices. In practice, the vertices are represented as values
(ex. 0, 1, 2, 3). Hence, in Equation 1, the corresponding value of the
vertex is used for calculating At.

Let us now define two parameters as below:
tmin = minimum timestamp of a vertex
tmax = maximum timestamp of a vertex
We can now define,

∆T = tmax − tmin + 1 (2)

CSR Arrays: As mentioned earlier CSR involves the cols[] & rows[]
arrays. To construct rows[] we first calculate degrees of all the
vertices and store them in another array, say, deg[].

Consider vertex (A, t), its degree is stored as deg[At] because At is
unique to the vertex. Then rows[At] is offset of the first neighbor
of vertex (A, t) in cols[]. Similarly, if (B, t+w) is neighbor and it
corresponds to Bt+w, we store value Bt+w in cols[].

Memory Inefficiencies: Table 1 shows the vertices of the temporal
graph, Figure 1(a). Row 2 shows their corresponding values. Columns
are sorted in ascending order of the vertex values. Using these values
directly for indexing arrays deg[] and rows[] will result in many
empty indices because the values are not necessarily contiguous.
Instead, we use the column number of each vertex in Table I for
indexing purposes as these are contiguous and thus eliminate gaps.

In temporal graph G = (V,E), earlier we had to index arrays deg[]
and rows[] for all |V |×∆T possible vertices. Now we index only the
vertices that are actually part of the temporal graph. Often temporal
graphs with a few vertices can span over a large ∆T time-range. The
unoptimized approach would create arbitrarily high memory demand
due to in-efficient space usage.

Our method involves sorting vertex values. We call the sorted array
map[]. Consider storing the degree of vertex (A, t) in array deg[].

1) We can look-up map[] for At by means of O(logn) lower
bound binary search in map[].

2) We denote look-up return value as At. Then, deg[At] is the
degree of (A, t).

Parallel Implementation: Our implementation uses the CUDA par-
allel computing platform [6] for NVIDIA GPUs. We can divide our
implementation methodology into five major parts, and explain each
of them next as Algorithms 1, 3, 4, 5 and 6.

Algorithm 1: Construction of map[] array from input
edge list.
Input: Text file containing temporal graph edge list.
Output: Array that stores edges edge list[]; map[]

array; number of vertices of TRG,
num vertices.

1 Input text file is parsed line by line and edges of the
form < u, v, t, w > are appended at the end of
edge list vector. The vector is then copied to device
memory.

2 parallel for each edge < u, v, t, w >∈ edge list do
3 threadId =

blockIdx.x× blockDim.x+ threadIdx.x
4 map[threadId× 2] = ut

5 map[threadId× 2 + 1] = vt+w

6 map.sort unique()
7 num vertices = map.len()

Algorithm 2: sort unique()

Input: Array with possible duplicates.
Output: Sorted array without duplicates.

1 Call thrust::sort() [7] /* Array is sorted in

parallel */

2 Call thrust::unique() [7] /* All duplicates are

removed as array is sorted making

duplicates consecutive. */

Algorithm 1 constructs an array of all TRG vertices from the input
edge list by reading it line by line and calculating vertex values

as per Equation 1. In order to remove the duplicates and sort the
resultant map[], as shown in Algorithm 2 we use two thrust library
functions, namely, sort() and unique() for their efficient parallel
implementation.

Algorithm 3: Identification and removal of reducible
vertices.

Input: map[] array and edge list[] array.
Output: map[] array after removal of reducible

vertices.
1 Initialize out edge[num vertices] = {0}
2 parallel for each edge < u, v, t, w >∈ edge list do
3 ut = map.lower bound(ut)
4 Atomic-modify out edge[ut] = 1

5 parallel for each entry At ∈ map[] do
6 At = map.lower bound(At)
7 if out edge[At] == 0 then
8 if At + 1 < num vertices then
9 map[At] = −1

10 All −1s are parallelly removed from the map[] array
using thrust::copy if [7].

11 free(out edge)

Algorithm 3 removes reducible vertices from map[]. The reducible
vertices are removed even before the cols[] and rows[] arrays are
even initialized. When an incoming edge to a reduced vertex has to
be placed, the reduced-vertex (i.e. to-vertex) gets looked up in the
map[]. The function lower bound() (in Lines 3 and 6) performs
look-up into sorted array in O(logn) time, where n is length of
the array; and returns the index. As we use lower bound binary
search for look-ups and the vertex is already removed, the successor
vertex (next vertex) is returned. So, in effect all the incoming edges
get directed to the successor vertex. Also note that removing the
reducible vertices beforehand prevents inclusion of their wait edges
in the reduced TRG. Our approach is efficient because we can directly
create the reduced TRG.

Algorithm 4: Degree calculation for all the vertices.
Input: map[] array and edge list[] array.
Output: Array that stores degree of each vertex deg[]

and edge pos[] array.
1 Initialize deg[num vertices] = {0}
2 parallel for each entry At ∈ map[] do
3 At = map.lower bound(At)
4 if At + 1 < num vertices then
5 if map[At + 1]/∆T == At/∆T then
6 deg[At] + +

7 parallel for each edge < u, v, t, w >∈ edge list do
8 threadId =

blockIdx.x× blockDim.x+ threadIdx.x
9 At = map.lower bound(At)

10 edge pos[threadId] = atomicAdd(deg[At], 1)

Algorithm 4 is next used to determine the degrees of all the vertices
in map[], storing the resultant degrees in another, namely, deg[].

atomicAdd (addr, val) (Line 10) atomically adds the value of val to
the double located at the given address addr. It returns the original
value stored at the address before the addition.

Inserting neighbors of a vertex in cols[] array and incrementing its
degree are both sequential tasks. However, some parallelism can be
introduced when neighbors of different vertices are involved in either
case. Ideally we would like to insert neighbors of a vertex in the
cols[] array while incrementing its degree. However, cols array is
not initialized at this stage. So, the ith thread corresponding to the
ith edge < u, v, t, w > increments the degree of (u, t) and stores
an offset in edge pos[i]. Later, when the cols[] array is initialized,
the ith thread again examines the ith edge and inserts the neighbor
vertex (v, t+w) at index rows[ut]+edge pos[i] where edge pos[i]
is the offset stored earlier.

Algorithm 5: Calculation of rows[] array
Input: Array deg[].
Output: Array rows[], i.e., exclusive prefix sum array

of deg[].
1 Exclusive prefix sum array, rows[] is parallelly

calculated for deg[] array using
thrust :: exclusive scan [7].

Once the degrees are determined, we next perform prefix sum of
degrees[] to obtain rows[] array using Algorithm 5. We use another
function from thrust library, exclusive scan for this purpose. As
explained earlier, this prefix sum calculation is very parallelized and
efficient. Lastly, the cols[] array is filled by examining the edge list
again and offsets stored in rows[] array using Algorithm 6.

Algorithm 6: Insertion of neighbor vertices in cols[]
array.
Input: Arrays edge list[], rows[] and edge pos[].
Output: Array cols[] after neighbor vertices are

inserted.
1 Initialize num edges =

rows[num vertices− 1] + deg[num vertices− 1]
2 Initialize cols[num edges] = {−1}
3 parallel for each edge < u, v, t, w >∈ edge list do
4 threadId =

blockIdx.x× blockDim.x+ threadIdx.x
5 ut = map.lower bound(ut)
6 vt+w = map.lower bound(vt+w)

7 free(edge pos)
8 parallel for each entry At ∈ map[] do
9 At = map.lower bound(At)

10 if cols[rows[At]] == −1 then
11 cols[rows[At]] = At + 1

IV. DYNAMIC TRG-GPU

In this section, we propose a parallel method for handling real-
time queries to update the TRG-GPU on a GPU. Although the
implementation of a fully-dynamic data structure for a dynamically
varying TRG is complex, we present a theoretical outline of an
efficient approach. Our goal is to showcase the modular design of
the proposed TRG-GPU and provide a foundation for future research

and development. We next describe some critical aspects considered
in the design of our approach.

Issues with updating reduced TRG: Let vertex (A, t) be reducible
and (A, t+w) be the successor vertex. Consider a case in which TRG
has been constructed and in an update, an outgoing edge is added to
vertex (A, t). This necessitates undoing the reduction of (A, t), as
it no longer meets the reducibility criterion. However, our approach
deletes the reducible vertex (A, t) from map[] at the beginning of
TRG creation, making it inefficient to undo this reduction. Hence, if
a dynamic TRG is needed, it is not reduced while construction.

Updating map[] and look-up: Our method parallely appends new
vertices to the end of the map[]. This leads to a sorted segment
(existing vertices) and an unsorted segment (new vertices). We store
the length up to which map[] is sorted. Look-up for a new vertex
involves launching parallel threads for every entry in the unsorted
segment. Each thread compares its entry to the desired vertex. If a
match is found, it updates a passed parameter to the kernel with the
position.

Note: Look-up in the old segment always returns a position even in
the case it is absent as it is a lower-bound search. Hence, only if a
vertex is not found in the new segment, a look-up in the old segment
is required.

Inserting new vertices anywhere except the end will lead to shifting of
other vertices in effect changing their look-up values. Look-up value
must not change as it indexes the rows[], degrees[] arrays. Hence
sorted order of map[] cannot be preserved once TRG is updated and
needs to be rebuilt after every new insert.

Adding Edges: The CSR data structure has no gaps. To add more
neighbors for a vertex, it is deleted and reinserted with updated edges,
relocating its neighbors to the end of the cols array. This process is
done in parallel for each added edge.

Introducing new vertices may also cause implicit addition and redi-
rection of wait-edges. Consider vertex (A, t) which does not have a
wait-edge. However an update may introduce a vertex (A, t+w) to
the graph which implicitly creates a need for a wait-edge from (A, t)
to (A, t+w). This is the same as adding neighbors to the vertex and
dealt with similarly.

Deleting Edges : The edge deletion process consists of two main
steps: masking and removal. For each edge < u, v, t, w > to be
deleted, first, identify the entry corresponding to (v, t + w) among
the neighbors of (u, t) in cols[] and set it to -1 in parallel. Then,
decrement the entry corresponding to (u, t) in degrees[] by 1. If the
degree becomes 0, set entry corresponding to (u, t) as -1 in the map.

After all edges are processed, remove all -1 entries from cols[],
map[], and 0 entries from deg[] using thrust :: copy if . Finally,
reconstruct rows[] from deg[] using a parallel exclusive scan. This
method is particularly efficient for batched updates.

V. COMPLEXITY ANALYSIS

Table II summarizes the work and time complexities of our method-
ology. Assume temporal graph G = (V,E). Let G = (V ,E) denote
the corresponding reduced TRG. Then,

|V | ≤ 2|E| (3)

|E| = |E|+ΣA∈V (|V (A)| − 1)

= |E|+ |V | − |V | ≤ 3|E| − |V |
(4)

Assume there are N parallel cores available.

TABLE II: Time Complexity.

Algorithm Line# Sequential Parallel

Algo. 1 2 Θ(|E|) Θ(|E|/N)

Algo. 2 1 O(|E| × log |E|) Ω(|E| × log |E|/N)

2 Θ(|E|) Ω(|E|/N)

Algo. 3 2 Θ(|E| × log |V |) Ω(|E| × log |V |/N)

5 Θ(|V |) Θ(|V |/N)

9 Θ(|V |) Ω(|V |/N)

Algo. 4 2 Θ(|V |) Θ(|V |/N)

7 Θ(|E|) Ω(|E|/N)

Algo. 5 1 Θ(|V |) Ω(|V | × log |V |/N)

Algo. 6 2 Θ(|E|) Θ(|E|/N)

3 Θ(|E| × log |V |) Θ(|E| × log |V |/N)

7 Θ(|V |) Θ(|V |/N)

A. Overall time-complexity of sequential variant is given as:
= Θ(|E| × log |V |) +O(|E| × log |E|) (5)

Substituting Equations 3 and 4 we get an upper bound:
= Θ(|E| × log(|E|+ |V |) +O(|E| × log |E|) (6)

B. Overall time-complexity of parallel variant is given as:
= Θ(|E| × log |V |/N) + Ω(|E| × log |E|/N) (7)

Substituting Equations 3 and 4 we get an upper bound:
= Θ(|E| × log(|E|+ |V |)/N) +O(|E| × log |E|/N) (8)

After substituting Equations 3 and 4, we get memory complexity of
our method to be O(|V |)+O(|E|). The memory complexity of each
individual part of the proposed method is provided in Table III.

TABLE III: Memory Complexity.

Algorithm Memory

Algo. 1 & 2 O(|E|)

Algo. 3 O|V |

Algo. 4 O|V | + O(|E|)

Algo. 5 O|V |

Algo. 6 O(|E|)

VI. EXPERIMENTAL SETUP AND RESULTS

In this section we evaluate the performance of our method and
compare it against the sequential counterpart. The sequential imple-
mentation is run on a CPU with AMD EPYC 7V13 Processor with
frequency 2.4GHz, 64 Cores and 226 GB RAM. The sequential
approach is single threaded and we use the g++ compiler with the
O3 optimization. The GPU used is NVIDIA A100 with frequency
1.06 GHz, consisting of 6912 Cores and 80GB device memory.
For the parallel approach, we use the nvcc compiler with the O3
optimization.

We use six datasets from The KONECT Project [9], namely, ia-
reality-call (D1), munmun digg reply (D2), tech-as-topology (D3),
sx-mathoverflow (D4), ca-cit-HepPh (D5) and out.flickr-growth (D6).
Table IV lists the graph datasets used for experimentation. These
datasets were chosen because of their varied characteristics.

TABLE IV: Details of the datasets used in experimentation.

Dataset |V | |E| |V | |E| ∆T

D1 6809 52050 52273 103854 9159564

D2 30398 87627 89016 173356 1306497

D3 34761 171403 60944 230216 2016006

D4 24818 506550 506511 1013040 203069369

D5 16959 2322259 176134 2498376 245980802

D6 2302925 33140017 5343174 38482938 17017202

G = (V,E) denotes the temporal graph, G = (V ,E) denotes the
reduced TRG, and ∆T to denote the timespan of the temporal graph.

A. Results
The following Table V and VI report time taken by the sequential
method and our parallel GPU-based method for TRG construction,
respectively. To gain additional insights we provide timings of each
of the major functions discussed earlier for both the methods.

TABLE V: Average time (in ms) taken for creating reduced
TRG on CPU.

Dataset Algo. 1 & 2 Algo. 3 Algo. 4 Algo. 5 Total

D1 27.65 4.16 0.73 7.24 39.78

D2 49.37 8.40 0.96 13.30 72.03

D3 85.30 13.70 1.12 26.90 126.74

D4 391.04 44.03 2.86 79.65 517.57

D5 423.11 59.06 4.48 195.30 681.95

D6 25016.1 1437.75 74.39 5999.55 32527.79

TABLE VI: Average time (in ms) taken for creating reduced
TRG on GPU.

Dataset Algo. 1 & 2 Algo. 3 Algo. 4 Algo. 5 Total

D1 1.02 0.04 0.14 0.05 1.25

D2 1.19 0.10 0.19 0.05 1.54

D3 1.52 0.12 0.19 0.07 1.90

D4 2.61 0.22 0.40 0.16 3.39

D5 6.45 0.32 0.28 0.26 7.31

D6 72.11 3.79 0.49 7.58 83.96

The observed increase in experiment runtimes with the rising number
of edges aligns well with the theoretical time complexity derived in
earlier section. We also observe increasing performance gain with
increasing input graph size in Table VII. The trend is due to the
degrading CPU performance as it is significantly influenced by its
cache hierarchy. When processing very large graphs, the CPU cache
can be of limited use, leading to cache thrashing that negatively
impacts the sequential performance. This is the reason we observe a
drastic increase in the parallel performance gain over sequential from
smaller graphs like tech-as-topology (D1) to larger graphs like ca-cit-
HepPh (D6). Performance gain is defined as the ratio of fraction of
time taken by the parallel method when compared to the sequential
method.

Our experimental results show that the parallel approach can reduce
execution time by up to 387× compared to the sequential approach

TABLE VII: Performance gain of parallel implementation over
sequential.

Dataset Performance gain

D1 31.9

D2 46.7

D3 66.6

D4 152.9

D5 93.4

D6 387.4

when constructing TRGs of graphs with up to 33 million edges (D6).
Additionally, to evaluate the scalability of our method, we perform
experiments on two large synthetic graphs containing 238 million
and 585 million edges and observe remarkable performance gains
of 1536× and 1702×, respectively. These experiments show that
the proposed method is efficiently utilizing the available parallel in
GPUs.

It is worthy to be noted that the performance gains are highly depen-
dent on the CPU and GPU configurations. When experiments were
conducted on a CPU running at 2.2GHz and NVIDIA Tesla T4 GPU
with frequency 1.59GHz, 2560 Cores, we observed performance
gains of 16.1, 25.2, 51.4, 85.4, 72.3 and 138.9 for datasets D1, D2,
D3, D4, D5 and D6, respectively. But both the sets of experiments
demonstrate the efficiency of the proposed parallel implementation
of TRG creation.

Given that the output TRG of the proposed parallel method is in
the standard CSR format, high-performance graph analytics libraries
such as nvGRAPH [11] can use it directly without any additional
preprocessing and work on the popular graph algorithms in parallel.

VII. CONCLUSION

In this paper, we presented an efficient GPU-based parallel method
for constructing the time respecting TRG data structure from the
edge list of a temporal graph. The resulting TRG is output in
the standard Compressed Sparse Row (CSR) format. The TRG
constructed is superior to the traditional edge stream representation
on problems requiring only local information and highly competitive
for single-source all-destinations problems [5]. When using a TRG
representation, many temporal graph problems, such as the ’foremost
path,’ essentially become variations of the vertex reachability problem
— determining whether one vertex can be reached from another.
This can be easily parallelized in a manner similar to BFS on
GPUs [1]. Our solution is well-suited for very large real-world tem-
poral networks, like flight networks and telecommunication networks.
Our experimental results demonstrate substantial time reductions,
achieving improvements of up to two-three orders of magnitude
compared to existing sequential methods.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their constructive
feedback that helped to improve the draft. This work is supported by
Shell India Markets Pvt. Ltd. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of Shell India.

REFERENCES

[1] Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang
and Hejun Wu, “Efficient Algorithms for Temporal Path Computation”,
IEEE Transactions on Knowledge and Data Engineering,2016, Vol. 11,
pp. 2927-2942, DOI: 10.1109/TKDE.2016.2594065.

[2] Petter Holme and Jari Saramäki, “Temporal Networks”, Physics
Reports, Elsevier BV, 2012, Vol. 519, pp. 97–125, DOI:
10.1016/j.physrep.2012.03.001.

[3] David Kempe, Jon Kleinberg and Amit Kumar, “Connectivity and
Inference Problems for Temporal Networks”, Journal of Com-
puter and System Sciences, 2002, Vol. 64, pp. 820-842,DOI:
https://doi.org/10.1006/jcss.2002.1829.

[4] B. Bui Xuan, A. Ferreira and A. Jarry, “Computing shortest, fastest,
and foremost journeys in dynamic networks”, International Journal
of Foundations of Computer Science, 2003, Vol. 14, pp. 267-285,
DOI:10.1142/S0129054103001728.

[5] S. Gheibi, T. Banerjee, S. Ranka and S. Sahni, “An Effective Data
Structure for Contact Sequence Temporal Graphs,” 2021 IEEE Sympo-
sium on Computers and Communications (ISCC), 2021, pp. 1-8, DOI:
10.1109/ISCC53001.2021.9631469.

[6] “NVIDIA CUDA Toolkit”, 2024. Available:
https://developer.nvidia.com/cuda-toolkit

[7] “Thrust: The C++ Parallel Algorithms Library”, 2024. Available:
https://nvidia.github.io/cccl/thrust/

[8] “CUDA C++ Programming Guide”, 2024. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[9] Jérôme Kunegis. “KONECT: the Koblenz network collection”, 2013, 22nd
ACM International Conference on World Wide Web (WWW ’13 Com-
panion), pp. 1343–1350. DOI: https://doi.org/10.1145/2487788.2488173,
Available: http://konect.cc/

[10] Thorsten Blaß and Michael Philippsen, “Which Graph Representation
to Select for Static Graph-Algorithms on a CUDA-capable GPU”, 2019,
ACM Proceedings of the 12th Workshop on General Purpose Processing
Using GPUs, pp.22-31, DOI: 10.1145/3300053.3319416.

[11] nvGraph API. 2024. Available:
https://docs.nvidia.com/cuda/archive/10.1/nvgraph/index.html

