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Abstract—This case study presents a characterization and
optimization of an application code for extracting parton dis-
tribution functions from high energy electron-proton scattering
data. Profiling this application code reveals that the phase-
space density computation accounts for 93% of the overall
execution time for a single iteration on a single core. When
executing multiple iterations in parallel on a multicore system,
the application spends 78% of its overall execution time idling
due to load imbalance.

We address these issues by first transforming the application
code from Python to C++ and then tackling the application
load imbalance via a hybrid scheduling strategy that combines
dynamic and static scheduling. These techniques result in a 62%
reduction in CPU idle time and a 2.46× speedup in overall
execution time per node. In addition, the typically enabled
power-management mechanisms in supercomputers (e.g., AMD
Turbo Core, Intel Turbo Boost, and RAPL) can significantly
impact intra-node scalability when more than 50% of the
CPU cores are used. This finding underscores the importance
of understanding system interactions with power management,
as they can adversely impact application performance, and
highlights the necessity of intra-node scaling tests to identify
performance degradation that inter-node scaling tests might
otherwise overlook.

Index Terms—C++, Python, parallelization, profiling, charac-
terization, optimization, performance, power management, scal-
ability, systems, deep inelastic scattering, quantum physics.

I. INTRODUCTION

Parton distribution functions (PDFs) are a particular class
of quantum correlation functions (QCFs) defined within the
theory of quantum chromodynamics (QCD) that describe
the longitudinal momentum fractions of quarks and gluons
(collectively known as partons) inside moving hadrons such
as protons and neutrons. These functions play a key role in
many aspects of particle physics in facilities such as Jefferson
Lab, the Relativistic Heavy Ion Collider, the Large Hadron
Collider, and will be important for studies of hadron structure
at the upcoming Electron Ion Collider (EIC).

PDFs, however, are not calculable from first principles but
can be reconstructed from high-energy particle scattering data.
This task, known as QCD global analysis, has been carried
out by several groups around the world [1]–[4] and remains
an active area of research in QCD phenomenology. With the
Jefferson Lab 12-GeV program and the future EIC, the field
of hadronic physics is entering a new era of exploration of
the 3D hadron structure via transverse momentum-dependent
PDFs [5] and generalized parton distribution functions [6].
One of the challenges is that these quantities need to be re-
constructed from multi-dimensional phase-space densities (or
events), which in turn are reconstructed from experimentally
measured particle momentum vectors resulting from collision
events. The reconstruction of these phase-space densities,
known as unfolding, is challenging due to the presence of
detector effects and backgrounds, which ultimately impose
irreducible systematic uncertainties.

Instead of reconstructing the phase-space density from
events, an alternative approach is to carry out a simulation-
based analysis. By comparing the phase-space samples from a
simulation with those from the experiment, one can implement
an inference strategy on QCFs and bypass the limitations
imposed by the unfolding procedures. However, the numerical
complexity of such simulation-based analysis requires an
efficient numerical framework.

In this work, we consider a case study using theory codes
from the Jefferson Lab angular momentum collaboration
(JAM) [7] and present a performance and scalability charac-
terization of the application code for extracting PDFs from
simulated event-level data.

Our main contributions include the following:
• Characterizing and optimizing an application code for

extracting parton distribution functions (PDFs) within the
theory of quantum chromodynamics (QCD), resulting in
a 62% reduction in CPU idle time and a 2.46× speedup
in overall per-node execution time.



• Exposing the potentially adverse impact of power man-
agement on intra-node performance and scalability (e.g.,
a fully threaded CPU under full load will drop its CPU
frequency to maintain CPU power consumption, but, in
turn, impact per-thread performance).

• Highlighting the importance of analyzing and understand-
ing single-node scaling behavior, as CPU frequency drops
under full workload can be overlooked in coarse-grained
node-based scaling studies.

The rest of the paper is organized as follows. §II provides the
mathematical context to understand the nature and complexity
of the problem. §III describes the application code and our
characterization practices. §IV presents our performance and
scalability results. Finally, §V summarizes our findings.

II. BACKGROUND

Because the main focus of this work is a performance
case study, we only briefly describe the mathematical nature
of the underlying problem that our application code aims to
solve. The mathematical components discussed here are then
mapped to the components in the high-level flowchart in Fig. 1
and presented in §III. We only show the formulation of key
components for brevity. Exact formulations for other functions
can be found in [8], [9].

A. PDFs from Deep Inelastic Scattering

We consider the process of deep inelastic scattering (DIS),
where a beam of electrons scatters off a beam of protons or
neutrons. Using detectors around the interaction region, the
momentum of the scattered electron can be recorded as data.
The reaction can be schematically written in momentum space
as follows:

e−(l) +N(P ) → e−(l′) +X(W ) (1)

Here, l and P are the 4-momenta of the incoming electron and
nucleon N (i.e., proton or neutron), respectively, and l′ denotes
the final state detected electron. X represents the unobserved
remnants of the collision with total momentum W , resulting
from the breaking of the proton and the transformation of its
parts into other forms of matter. In practice, it is convenient
to work with two sets of variables that allows one to relate
PDFs with the underlying reaction. Specifically we use

Q2 = −q2 = −(l − l′)2, x =
Q2

2P · q
(2)

to isolate the relevant degrees of freedom that characterize
the reaction. Specifically, QCD factorization theorem provides
a theoretical formulation for the phase-space density propor-
tional to the so-called differential cross section given by

dσN

dxdQ2
=
∑
i

∫ 1

x

dξ

ξ
Hi

(
x

ξ
,Q2, αS(µ

2), µ2/Q2

)
fi/N

(
ξ, µ2

)
(3)

Here, N labels the reacting hadron and the sum over i runs
over all possible partonic constituents, i.e., up, down, strange,
charm, and bottom quarks and their corresponding anti-quarks

and gluons. Hi is a quantity calculable in perturbative QCD
(pQCD) in powers of the strong coupling αS . fi/N is the PDF,
which can be interpreted as the number density of finding a
parton of type i inside a hadron N with a momentum fraction
between ξ and ξ + dξ. The scale dependence µ on the right-
hand side (RHS) of Eq. (3) is optimized by choosing µ = Q,
which accounts for larger logarithmic corrections present in
the calculation of Hi. This is achieved by solving a set of
equations for the strong coupling and the PDFs which reads

dαS(µ
2)

d lnµ2
= −

∑
i=1

βiα
i+2
S (µ2) , (4)

with the coefficients βi calculable in pQCD. This equation
can be solved numerically using empirically determined values
for the strong coupling at a given scale. The scale depen-
dence of the PDFs, on the other hand, is more involved as
they obey a system of integro-differential equations known
as DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evo-
lution equations. These equations can be solved analytically
in Mellin space [10] and their solutions have the form

f̃i/N (n, µ2) =
∑
j

Uij(n, µ
2, µ2

0)f̃j/N (n, µ2
0) (5)

The sum runs over all parton flavors, and f̃j/N are Mellin
transforms of the PDFs, i.e., f̃i/N (n) =

∫ 1

0
dξξn−1fi/N (ξ).

The evolution operator Uij can be calculated in pQCD [10]
and encodes the transformation of the PDFs from the input
scale µ0 to any other scale µ. We can then write the entire
differential cross-section in Eq. (3) in Mellin space as

ΣN (n,Q2) ≡
∫ 1

0

xn−1 dσN

dxdQ2

=
∑
i,j

H̃i(n,Q
2, ...)Uij(n, ...)f̃j/N (n, µ2

0) (6)

using the Mellin transforms of Hi. The expression can be
numerically inverted to the original space via

dσN

dxdQ2
=

1

π

∫ ∞

0

dz Im
[
eiϕx−n(z)ΣN (n(z), Q2)

]
(7)

using a complex contour parameterized as n(z) = c +
z exp(iϕ) with constant values for c and ϕ chosen to optimize
the convergence of the integral over z. The integral can be
performed numerically using Gaussian quadrature using sub-
intervals to increase precision.

The remaining task is then to model the input scale PDF in
Eq. (6). For this, we use a standard parameterization by the
JAM collaboration. Specifically, for each parton flavor, we use

f̃i/N (n, µ2
0|θ

i/N
0...4) = θ

i/N
0

T̃ (n, θ
i/N
1...4)

T̃ (a+ 1, θ
i/N
1...4)

(8)

with the shape function given as linear combinations of beta
functions [11]. θ’s are the free parameters to be optimized for
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the PDF inference task. We can now combine Eqs. (7) and (8)
and obtain a final master formula

dσN

dxdQ2
≃ T N (x,Q2,θN ) ≡ 1

π

∑
k,l

wlJ
k
l Im

[
eiϕx−nk

l

∑
i,j

H̃i(n
k
l , Q

2, ...)Uij(n
k
l , ...)θ

j/N
0

T̃ (nk
l , θ

j/N
1...4)

T̃ (a+ 1, θ
j/N
1...4)

]
(9)

The sub-intervals of the z integration ranges are labeled with
k, while the index l labels the Gaussian quadrature points
with weights wl. The factor Jk

l is the Jacobian transformation
to implement Gaussian quadrature within the limits of inte-
gration of the z-range sub-intervals. Notice that all the target
dependence N is ultimately encoded in the PDF parameters,
as required by theory.

The formulation based on QCD factorization is only accu-
rate within a certain region of the physical phase space. For in-
stance, Q2 needs to be larger than typical hadronic masses and
the invariant mass of the hadronic debris W 2 = (q+P )2 needs
to be large enough to avoid the so-called resonance region. We
employ typical cuts employed in QCD phenomenology where
Q > Qcut = 1.28 GeV and W 2 > W 2

cut = 10 GeV2. Also,
the inference task requires us to include the normalization of
the cross-section within the region of exploration including the
kinematic cuts. We refer to this quantity as σcut, which can
be measured experimentally and computed using Eq. (9) as

σN
cut(θ

N ) =

∫
dxdQ2 T N (x,Q2,θN ) Θ(Q2

cut,W
2
cut) (10)

with a Heaviside step function Θ that implements phase-space
cuts. In practice, reconstructing all quark flavors and anti-quark
PDFs requires the consideration of additional reactions, which
is beyond the scope of this work. We focus on reconstructing
the up and down quark PDFs and the gluon, assuming phe-
nomenologically known values for the strange quark PDFs. To
achieve this, we consider proton and neutron beams, with the
latter serving as a proxy for deuteron beams, as neutron beams
are not available in practice. This allows the use of isospin
relations that relate fu/p = fd/n, fd/p = fu/n, and similarly
for anti-u and anti-d quarks, while the rest of the quarks and
gluons are the same for both protons (p) and neutrons (n).
These relations allow us to obtain θn from θp, and thus, we
only need to perform inference for the θp parameters.

B. Event-Level Inference for θp

To carry out an inference for the proton PDF parameters θp

using the master formula, Eq. (9), with event samples from
proton and neutron beams, we employ a standard unbinned
maximum likelihood analysis and include the corresponding
fiducial cross-sections. Specifically, the objective function to
be optimized is as follows:

L(θ) = −
∑

N=p,n

ω1,N

[
1

MN

MN∑
i=1

ln

(
T N (xN,i, Q

2
N,i,θ

N )

σN
cut(θ

N )

)]

+
∑
N

ω2,N

∣∣∣∣∣σN
cut − σN

cut(θ
N )

δσN
cut

∣∣∣∣∣ (11)

where the phase-space samples xN,i, Q2
N,i, and cut cross-

sections σN
cut, δσ

N
cut are given as training samples from sim-

ulated DIS experiments on protons and neutrons. We use
the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) algorithm from SciPy to optimize the loss function in
Eq. (11). The optimization is bounded, as the PDF parameters
θ need integrability conditions along with additional consider-
ations to render the PDF realistic. (See [11] for more details.)

III. APPROACH

The first part of this section provides a brief description
of the solution algorithms used in the original application
code, which was written in Python+NumPy. The second
part focuses on the practices that we apply to improve the
performance of the application code.

A. Design of the Application Code

Fig. 1 illustrates the design and modularization of our
QuantOm project application code [12], showing the im-
plementation of finding the PDF parameters by minimizing
Eq. (11). The PDF & DGLAP block and the TN(. . . ) block,
which form the Theory module, correspond to the calculations
from Eqs. (3) to (9). The Scoring block represents the log
terms in Eq. (11), while the Integrator block handles the
numerical integration of Eq. (10). The optimizer used is the
L-BFGS algorithm, as noted in §II.

Starting with the PDF Parameters block and proceeding
through the Theory module, the workflow forms a feedback
loop that continues until the PDF parameters stabilize. Once
the loop terminates, the parameters from the last iteration
are treated as the solution. It is important to note that the
application does not execute the workflow in Fig. 1 just once.
Each run involves numerous independent executions of the
workflow, as described below.

PDF
Parameters

Proton and Neutron DIS 
Phase Space samples

D
k
(...)Scoring

Integrator

Proton and 
Neutron σ

cut

Theory

TN(...)
PDF &
DGLAP

Optimizer

Fig. 1: A high-level overview of the components in the target
application code. The process begins with pseudo-data — synthetic
data generated from known parton distribution functions (PDFs) to
mimic experimental data for solution verification. Proton and neutron
deep inelastic scattering (DIS) phase-space samples are represented
as sets of [ x Q2 ]. Additional synthetic data, proton and neutron σcut,
are generated using Eq. (10) with ground-truth PDFs. Note that the
block Dk(. . . ), representing simulators of real-world detectors in
experiments, is not used and thus not discussed in this work. PDF
parameters are iteratively updated using the L-BFGS optimization
algorithm until convergence to the desired tolerance.
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Experimental events (pseudo-data in this work) represent
a continuous probability distribution, requiring an infinite
number of events to precisely recover the distribution function.
A limited number of events results in some regions being
under-represented, causing uncertainty in the fitted PDFs. To
quantify this uncertainty, we apply a bootstrapping-style en-
semble analysis, as illustrated in Fig. 2. The PDF Fitting block
represents one execution of the workflow. The Bootstrap
Sampler block draws a new set of events from the original
dataset with replacement, matching the number of events in
the original dataset. Each bootstrapped dataset is processed
independently from the others. We denote the fitting of a
bootstrapped dataset as one bootstrap.

The current implementation of the bootstrap distribution
uses MPI. Although there is no communication between
bootstraps, MPI allows finer control over the random number
generators by binding rank information with the random
seed, ensuring reproducibility of the results. The distribution
of bootstraps uses static scheduling, meaning each rank’s
bootstraps are predetermined and fixed.

Experimental Dataset

Bootstrap Sampler

Bootstrap Dataset 1

PDF Fitting

Uncertainty Quantification

PDF Parameters

Bootstrap Dataset N

PDF Fitting

PDF Parameters

Fig. 2: A visual illustration of ensemble analysis via bootstrapping.
The Bootstrap Sampler generates new datasets by drawing events,
with replacement, from the original dataset. Each bootstrap dataset
undergoes an independent fitting process. Once all bootstrap datasets
are fitted, the collection of final PDF parameters can be used for
further analysis to understand the uncertainty contributed by the
limited experimental data.

B. Performance Characterization and Optimization

Starting with the original Python code from our quantum
physicists on the QuantOm project, we use cProfile to
profile and identify bottlenecks. To work from the same
reference point with respect to the algorithm, we then port
the Python code, along with these bottlenecks, to C++. After
briefly characterizing the C++ implementation, we focus on
its parallelization, followed by a deeper performance charac-
terization to optimize its parallel performance. This staggered
approach ensures the immediate release of stable application
prototypes, including intermediate ones, to our end users.

In addition, the scalability of this and subsequent appli-
cation codes will be crucial for deployment on exascale
supercomputers. That being said, this study focuses on intra-
node scalability to understand how multiple serial tasks (i.e.,
bootstraps) compete for local resources (cache, RAM, disk
I/O) when a node is fully loaded. Both strong and weak scaling
are examined.

Load balance, essential in any parallel and distributed
system, is another key focus. Without assumptions, there is
no guarantee that each bootstrap will take a similar amount of
time for QCF fitting, making load balance a critical aspect to
investigate.

Given the MapReduce-like execution profile of this code, we
assume dynamic scheduling might be more suitable, provided
the execution time outweighs scheduling overhead. Also, dif-
ferent scheduling strategies and load imbalance levels impact
scalability, necessitating an examination of their effects in both
dynamic and static scheduling.

We then construct a hybrid bootstrap distribution strategy,
combining dynamic and static scheduling. Bootstraps are
predetermined for each node. Each node then maintains a first-
in-first-out (FIFO) task queue using Python’s multiprocessing
module. This hybrid mode allocates only one MPI rank per
node, with all the local CPU cores as workers. Tasks are
fetched from the queue as workers complete previous tasks,
becoming idle only when no tasks remain.

While inter-node bootstraps are predetermined, the load
imbalance is expected to be minor compared to the intra-node
levels. Each node handles hundreds of bootstraps in production
runs, ensuring statistically similar computational loads. Thus,
this hybrid scheduling strategy appears to be sufficient for now.

As detailed in §IV-E, we conduct further analysis due to
anomalies that appear in our standard testing of the code.
In particular, we examine cache misses and CPU frequency
variability when nodes are fully loaded. Throughout §IV, we
present these unexpected results and, ultimately, our rationale
regarding their causes.

IV. RESULTS

Here we present the results of our computational exper-
iments, enhancing our understanding of the target applica-
tion’s characteristics and improvements. §IV-A briefly explains
our experimental setup. §IV-B addresses the overall time
to solution, bottlenecks, and speedups, with bottlenecks re-
implemented in C++. Comparisons between Python and C++
implementations are then made. §IV-C evaluates static versus
dynamic scheduling for better parallelization. §IV-D exam-
ines strong and weak parallel efficiencies, critical for future
deployment to exascale supercomputers. §IV-E investigates
unexpected issues through cache usage and CPU frequency
variations.

A. Experimental Set-Up
We conducted all of of our computational experiments on

Tinkercliffs, a CPU-based cluster at Virginia Tech. Table I
articulates the hardware specifications and software versions of
the Tinkercliffs cluster. In addition, for any experiment shown,
all the MPI ranks are evenly distributed between the two 64-
core sockets in a node, totaling 128 CPU cores.

As noted earlier, we use cProfile to profile the execution
of our code. In addition, we make use of Linux’s perf
tool and AMD’s Performance Monitor Counter (PMC [13])
for detailed system information on cache usage and CPU
frequency variability.
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Hardware Value Software Value
CPU AMD 7702 GCC Version 13.2.0
Number of Cores 2x64 Python Version 3.10.12
System Memory 256 GB Turbo Core ON
Memory Bandwidth 350 GB/s RAPL ON

TABLE I: Hardware and software specifications

B. Characterizing Performance: Python and C++

We first profile the original Python code to identify bot-
tlenecks and then re-implement the bottlenecks in C++ for
fairness in comparison across languages. Fig. 3a clearly shows
that the major bottleneck is in the theory module evaluation
(see Fig. 1). In effectively porting the Python code to C++,
we achieved a 1.82× speedup in the overall time to solution
and a 1.90× speedup in the theory evaluation alone for a
given bootstrap. In the Python implementation, the theory
evaluation takes about 93.1% of the runtime, while in the C++
implementation, it takes 88.9%.

C++ Python
0.0

2.5

5.0

7.5

10.0

12.5

Jo
b 

Ti
m

e 
(m

)

1.82x

1.90x

Theory
Other

(a) Executing one boot-
strap on one CPU.

C++ Python
0.0

2.5

5.0

7.5

10.0

12.5

Jo
b 

Ti
m

e 
(m

)

1.86x

1.95x

Theory
Other

(b) Executing 128 repli-
cas of the same bootstrap
on 128 CPUs. Each CPU
executes one replica.

C++ Python
0

1

2

3

4

5

Jo
b 

Tim
e 

(h
rs

) 1.37x

(c) Executing 128 dif-
ferent bootstrap on 128
CPUs. Each CPU exe-
cutes one bootstrap.

Fig. 3: The overall time to solution and speedup after switching from
Python to C++ for the theory module. Each bar represents the overall
time-to-solution, distinguishing the theory execution portion from
other operations. The speedups on top of the bars indicate overall
speedup, while those in the blue portions reflect theory evaluation
speedup. In the parallel setting (3b), each CPU executes the same
bootstrap as in (3a), expected to show similar time-to-solution, which
is not the case here. Figure 3c, depicts a more realistic situation where
each CPU runs a different bootstrap. The bootstrap used in the first
two sub-figures is also one of the 128 bootstraps here.

To determine if switching from Python to C++ for the
theory evaluation affects scaling characteristics, we conduct
a preliminary weak-scaling test. This test replicates the same
bootstrap 128 times, each on a separate CPU core. Fig. 3b
shows the job execution time for both implementations. The
execution time per core matches the job time since all cores
run the same bootstrap. As shown in Fig. 3b, the overall
speedup and the theory module speedup are 1.86× and 1.95×,
respectively. The theory evaluation takes about 94% of the
runtime in Python and 89% in C++, aligning with the serial
case and indicating consistent characteristics between Python
and C++ when scaling.

However, when comparing Figs. 3a and 3b, we were sur-
prised to find a significant difference in the overall time to

solution for the Python implementation between the serial
and parallel cases. Despite the simplicity of this weak-scaling
test and using identical bootstraps, the Python implementation
delivers a 34% slowdown in the parallel case. Furthermore,
the C++ implementation also experiences a 31% slowdown.
This unexpected behavior indicates the need for further scaling
studies, as discussed in §IV-D.

Fig. 3c shows similar trending results as in Fig. 3b but with
128 different bootstraps, closer to a real-world use case. The
specific bootstrap used in Fig. 3a is also included here.

The first notable observation in Fig. 3c is that the time scale
is in hours, unlike the minutes observed in Fig. 3a, indicating
significant load imbalance across the bootstraps. However, the
extent of this imbalance is unclear from this test. Thus, we
conduct further investigation with respect to load balance in
§IV-C.

The second notable observation is that C++ with static
scheduling provides only a 1.37× overall speedup, much lower
than the 1.86× speedup in Fig. 3b. Intuitively, the speedup
from the C++ implementation should remain consistent, re-
gardless of load imbalance. That is, we expect a similar 1.86×
speedup in Fig. 3c since all bootstraps should experience
the same speedup. This discrepancy suggests an unexpected
factor influencing performance and may relate to the slowdown
observed from Fig. 3a to Fig. 3b.

C. Load Balance and Task Scheduling

While the original code implementations, whether in Python
or C++, suffer from load imbalance, the extent of the im-
balance remains unclear. Fig. 4 shows the execution time of
each bootstrap from Fig. 3c. Because each CPU core handles
only one bootstrap, the run time equates to the busy time
of each core. The longest-running bootstrap, rank 23, aligns
with the overall time to solution in Fig. 3c. The overall CPU
idle percentages of 78% for Python and 79% for C++ reveal
significant load imbalance across CPU cores. This imbalance
points to potential computational cycles wasted on idling.

Fig. 5 shows the probability of a bootstrap completing at
different run times, normalized by the longest-running boot-
strap’s time. Since there is only one bootstrap per CPU core,
the figure also indicates when most CPU cores become idle
during the job’s execution. Assuming all bootstraps achieve
similar speedup after switching to the C++ implementation,
the two curves were expected to be similar. However, Fig. 5
reveals a noticeable discrepancy, with the C++ implementa-
tion showing greater variance, indicating more divergence in
bootstrap completion times. This implies a change in scaling
behavior when switching from Python to C++, though the
exact cause remains unclear. §IV-D on code scalability sheds
some light on this change.

To address the load imbalance, we implement dynamic
scheduling, as described in §III. Table II compares the time
to solution and speedup between static and dynamic schedul-
ing, using the original application code as the baseline. The
results, derived from running 512 different bootstraps on 128
CPUs, show a 2.46× overall speedup from the original code.
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(a) Execution time for the bootstrap on each CPU (Python theory
evaluation).

(b) Execution time for the bootstrap on each CPU (C++ theory
evaluation).

Fig. 4: Execution time of the bootstrap on each CPU core. Blue
bars represent how much time a CPU core is busy. The left y-
axis shows actual runtime in hours, while the right y-axis shows
relative runtime to the longest-running bootstrap. A non-uniform bar
height distribution indicates load imbalance. The median shows when
50% of CPU cores become idle. For example, in Fig. 4b, 64 CPU
cores become idle after 0.7 hours or 21% of the longest-running
task’s execution time. Note that the x-axis label, MPI Rank, can be
considered a CPU core’s ID since ranks are bound to cores.

Fig. 5: Probability density distribution of execution time normalized
to the overall job time. The curves represent the probability of a
bootstrap completing at different times, normalized to the overall job
time (i.e., the longest-running bootstrap).

Furthermore, the overall CPU idle-time percentage for the
C++ implementation is now only 30%, down from 79% with
static scheduling, resulting in a 62% improvement in CPU idle
time. In the next subsection, we will examine the scalability
characteristics of both scheduling approaches.

Static (Python) Static (C++) Dynamic (C++)
Time (Hrs) 11.8 8.6 4.8

Speedup 1× 1.37× 2.46×

TABLE II: Time-to-solution and speedups for parallel execution of
512 different bootstraps using 128 CPUs and different scheduling
approaches. The time to solution is defined as the job time. Note:
Because each CPU core executes multiple bootstraps, the time to
solution is not the execution time of the longest-running bootstrap.

D. Characterizing Scalability

For scalability, we perform both strong- and weak-scaling
tests with both dynamic and static scheduling using our C++
theory implementation to understand the change in scaling
characteristics when switching from static scheduling to dy-
namic scheduling.

We conduct a strong-scaling test by running 512 different
bootstraps with varying numbers of CPU cores, up to 128
cores. However, due to computational costs, we were unable
to perform 512 bootstraps with 1, 2, and 4 CPU cores, as these
configurations exceed the time allocation of the Tinkercliffs
cluster, a shared HPC cluster resource. Fig. 6 shows the
time to solution and parallel efficiencies for both scheduling
approaches, along with the curves for ideal scaling. The results
indicate that dynamic scheduling offers better time to solution
and better parallel efficiency.

(a) Time to solution. (b) Parallel efficiency.

Fig. 6: Strong scaling and parallel efficiency tests conducted with 512
bootstraps on 8 to 128 CPU cores. Parallel efficiency was calculated
using the 8-core results as the baseline.

For static scheduling, the drop in efficiency appears to
be due to the load imbalance. For dynamic scheduling, the
steeper drop in efficiency begins around 32 CPU cores, also
likely due to the load imbalance. When fixing the number of
bootstraps but increasing the number of CPU cores in dynamic
scheduling, each core handles fewer bootstraps, increasing
the likelihood of deviations from the mean time to solution.
Additional study and analysis are needed to determine whether
further improving load balance can also improve strong scaling
efficiency.

Figure 7 shows the results of the weak-scaling test, using
two different setups: (1) adding random, different bootstraps
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when doubling the number of CPU cores, mimicking a real-
world use case and (2) adding identical bootstraps, maintaining
a fixed computational load per unit.

Fig. 7: Weak scaling in two different setups: (1) when doubling the
number of CPU cores, the added bootstraps are random and different
and (2) when doubling the number of CPU cores, the added bootstraps
are exactly the same, i.e., “Fixed Bootstrap” in the legend.

The random-bootstrap test exhibits significantly poorer
weak scaling for both scheduling approaches, as expected, due
to the varying completion times for the bootstraps. Conversely,
the fixed-bootstrap test demonstrates much better scaling with
nearly perfect efficiency up to 32 cores for both approaches.
This indicates that the scheduling overhead associated with
dynamic scheduling is insignificant for this problem size.
However, weak scaling performance drops significantly when
scaling to 64 and 128 cores, suggesting an unknown factor
affecting performance when using more than 50% of the CPU
cores of a socket. This observation aligns with the slowdown
noted in §IV-B, where executing the same bootstrap becomes
slower when replicated and scaled to 128 CPU cores.

E. Memory Usage and CPU Clock Frequency

In this section, we seek to investigate the anomalies noted
in the previous subsections:

• Slower overall execution of the same bootstrap when
replicated and scaled to 128 CPU cores.

• Unexpectedly lower speedup for 128 different bootstraps
with static scheduling when switching from Python to
C++, compared to 128 replications of the same bootstrap.

• Differences in variance for bootstrap completion times
between Python and C++ implementations.

• Poor weak scaling when using more than 50% of CPU
cores.

We hypothesize that the aforementioned problems stem from
(1) insufficient sharing of cache blocks, leading to increased
cache miss rates and (2) reduced CPU clock rates.

For an AMD 7702 CPU in the Tinkercliffs cluster, each core
has its own L1D and L2 cache, while the L3 cache is shared
amongst four cores. Thus, to identify if poor caching behavior
is responsible in part for inefficient scaling, we investigate the
cache miss rates across the different cache levels (i.e., L1D,

L2, and L3 cache misses) when running a fixed bootstrap with
varying ranks.

Fig. 8 shows the average miss rate per rank and the
normalized miss rate relative to a single rank. The L1D cache
miss rate oscillates; the L2 miss rate drops until 32 ranks
and then rises again; and the L3 miss rate remains consistent
despite increasing ranks. Although interesting, this behavior
does not explain the poor weak scaling beyond 32 CPU cores.
Therefore, we assume the cache sizes of the AMD CPU are
sufficient to prevent capacity misses for this problem.

Fig. 8: Cache miss rates normalized against to that of using only one
rank.

In Fig. 9, we compare the relationship between average CPU
frequency and execution time as we vary the number of ranks.
We observe that CPU frequency decreases proportionally
with performance loss, explaining our poor scaling behavior.
When accounting for the CPU frequency drop, the normalized
execution time approximates linear weak scaling.

Fig. 9: Comparing execution time and average CPU frequency

The drop in frequency when CPUs are fully loaded answers
the questions above. When there is load imbalance and all the
CPUs are busy, the CPU frequency drops, causing all bootstrap
executions to slow down. Once some bootstraps finish and
CPU cores become idle, the CPU frequency bounces back
(i.e., increases), speeding up the remaining bootstraps.

This phenomenon invalidates the assumption that all boot-
straps receive the same C++ speedup. In the C++ implemen-
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tation, more bootstraps finish earlier than in Python, meaning
fewer bootstraps benefit from the CPU frequency bounce-back,
resulting in lower speedups when comparing Fig. 3c to Fig. 3b.
In addition, this explains the different variances in execution
time between C++ and Python in Fig. 5.

The drop in CPU frequency is due to a combination
of AMD’s Turbo Core and Running Average Power Limit
(RAPL) power management. With Turbo Core, the CPU is
allowed to draw as much as 1.2× to 1.3× the nominal thermal
design power (TDP) for short periods of time, meaning that the
otherwise 2.0-GHz AMD 7702 CPU (e.g., “ for all threads”)
can be clocked as high as 3.35 GHz (e.g., “for a single thread”)
for short periods of time. As a counterbalance, RAPL ensures
that the long-term average power does not exceed the TDP and
does so by reducing the CPU frequency and voltage to reduce
power. Fig. 9 shows a peak CPU frequency at 3.35 GHz, thus
verifying that Turbo Core was active. (The AMD 7702 CPU
has a maximum boost frequency of 3.35 GHz).

V. CONCLUSION

This work focuses on the performance characterization and
optimization of fitting quantum correlation functions (QCFs)
to femtoscale experimental data, in preparation for running on
exascale supercomputers. Re-implementing in C++ achieves a
1.8× speedup with balanced loads and 1.4× with significant
load imbalance. Dynamic scheduling improves load balance,
resulting a 62% percent of improvement in CPU idle time and
a 2.46× overall speedup compared to the original application
code. Dynamic scheduling also enhanced strong scaling effi-
ciency, maintaining over 90% efficiency up to 32 cores. Both
scheduling approaches performed well in weak-scaling tests
up to 32 cores, with only a slight decline afterward.

Unexpected testing results reveal performance degradation
with increased intra-node parallelism. This is due to the (typ-
ically) enabled power management in supercomputers (such
as Tinkercliffs at VT) in the form of AMD Turbo Core and
Running Average Power Limit (RAPL). With Turbo Core,
the CPU may draw as much as 1.3× the nominal thermal
design power (TDP) for short periods of time, meaning that the
otherwise 2.0-GHz AMD 7702 CPU (e.g., “ for all threads”)
can be clocked as high as 3.35 GHz (e.g., “for a single thread”)
for short periods of time. As a counterbalance, RAPL ensures
that the long-term average power does not exceed the TDP
and does so by reducing the CPU frequency and voltage to
reduce power.

Specifically, to abide by AMD’s RAPL long-term average
power, the CPU frequency must necessarily drops when 50%
or more of the CPU cores in order to not exceed the TDP,
thus explaining the scaling efficiency drop and inconsistent
C++ performance under load imbalance. Initially, all boot-
straps suffer from the lower CPU frequency due to full node
load. As CPU cores finish execution, the frequency bounces
back, accelerating the remaining bootstraps. The difference in
execution speeds between C++ and Python bootstraps affects
the timing of this frequency bounce-back, resulting in different
scaling characteristics between the two implementations.

Our study highlights the importance of analyzing single-
node scaling behavior, as frequency drops at full load can
be overlooked in node-based scaling studies. Future work
includes developing features like detector simulation and au-
tomatic differentiability of mathematical calculations. These
features will alter performance characteristics, necessitating
further performance studies to ensure efficient deployment on
exascale supercomputers.
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