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Abstract—Studying the genomic diversity of viruses can help
us understand how viruses evolve and how that evolution can
impact human health. Rather than use a laborious and tedious
wet-lab approach to conduct a genomic diversity study, we take a
computational approach, using the ubiquitous NCBI BLAST and
our parallel and distributed SparkLeBLAST, across 53 patients
(∼40,000,000 query sequences) on Fugaku, the world’s fastest
homogeneous supercomputer with 158,976 nodes, where each
code contains a 48-core A64FX processor and 32 GB RAM.

To project how long BLAST and SparkLeBLAST would take
to complete a genomic diversity study of COVID-19, we first
perform a feasibility study on a subset of 50 query sequences from
a single COVID-19 patient to identify bottlenecks in sequence
alignment processing. We then create a model using Amdahl’s law
to project the run times of NCBI BLAST and SparkLeBLAST
on supercomputing systems like Fugaku. Based on the data
from this 50-sequence feasibility study, our model predicts that
NCBI BLAST, when running on all the cores of the Fugaku
supercomputer, would take approximately 26.7 years to complete
the full-scale study. In contrast, SparkLeBLAST, using both our
query and database segmentation, would reduce the execution
time to 0.026 years (i.e., 22.9 hours) – resulting in more than a
10,000× speedup over using the ubiquitous NCBI BLAST.

Index Terms—computational science, NCBI BLAST, SparkLe-
BLAST, COVID-19, genomic diversity, pairwise sequence search,
feasibility, scalability, A64FX CPU, supercomputer.

I. INTRODUCTION

The genomic diversity amongst viral strains creates a chal-
lenge in effectively understanding of a virus. Thus, genomic
diversity studies can be significantly beneficial in order to
accelerate research related to their study. One such virus,
the SARS-CoV-2 coronavirus (i.e., COVID-19), infected more
than 775,000,000 people and resulted in more than 7,000,000
deaths worldwide from January 2020 to May 2024 [1]. Un-
derstanding how the virus evolves within different patients in
response to their immune systems or as a result of interactions
with other microorganisms is crucial for predicting future
outcomes and reducing complications of the infection [2].

While COVID-19 is the most recent pandemic event, it
actually evolved over decades starting in 2003. The emergence
of SARS-CoV-1 in 2003 highlighted the need for ongoing
genomic monitoring and vaccine development. Despite the
efforts for the creation of a vaccine against SARS-CoV-1

during the period of 2003-2004, the subsequent emergence of
MERS in 2012 and ongoing coronavirus research underscored
the importance of viral evolution [3]. To that end, we choose
COVID-19 as the basis for a feasibility study on large-scale
genome diversity, due to its recent outbreak as well as the
abundance of data available related to the the virus [2], [4].

Genome diversity analysis involves a computationally ex-
pensive taxonomic assignment step, requiring exhaustive align-
ment of nucleotide sequences from collected samples against
a reference sequence database, as shown in the red squares
of the COVID-19 genome diversity pipeline [2] in Fig. 1.
This step is typically performed using BLAST (Basic Local
Alignment Search Tool) [5], a widely used algorithm for com-
paring biological sequence information. However, the relative
slowness of BLAST [6] significantly impacts the scalability
of the analysis pipeline, particularly as new projects aim to
collect and analyze large-scale patient data. For example, Shen
et al. [2] studied the interactions of the COVID-19 virus with
various microorganisms, such as bacteria, fungi, and other
viruses, necessitating a comprehensive taxonomic assignment
against the nt reference database [7], the largest publicly
available nucleotide database at 1.78 TB in size.

Fig. 1: The genomic diversity pipeline for detecting and
analyzing intra-host variants for COVID-19.

This project seeks to conduct a feasibility study to charac-
terize the performance and scalability of the genome diversity
analysis pipeline with SparkLeBLAST [8], our massively
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parallel realization of NCBI BLAST, in order to project the
computational cost of performing a full-scale genome diversity
study on all the 158,976 A64FX CPU nodes of the Fugaku
supercomputer. To that end, we perform a smaller but similar
evaluation on Ookami [9], a 173-node A64FX CPU-based
cluster modeled after Fugaku, which reached #1 on the Top500
fastest supercomputers in the world in November 2021 [10],
boasting a peak performance of 488 quadrillion floating-point
operations per second.

By evaluating SparkLeBLAST on Ookami, we aim to
identify performance bottlenecks and predict the scalability of
SparkLeBLAST’s hybrid approach for full-scale runs on Fu-
gaku, which is three orders of magnitude larger than Ookami.
This preliminary study lays the groundwork for future full-
scale genome diversity analysis, ultimately contributing to
more effective management of the COVID-19 pandemic as
well as any future evolutions of the virus.

In short, we make the following contributions in this paper:
• A feasibility study on the Ookami supercomputer to identify

bottlenecks and gather data for scaling up to the Fugaku
supercomputer.

• A model that projects the run times for NCBI BLAST and
SparkLeBLAST at scale.

• A projection of the runtime to conduct the entire genome
diversity study on Fugaku and identification of challenges
unique to Fugaku that are not observed on Ookami.

II. RELATED WORK

Here we summarize past work on parallelizing BLAST,
along with the need for genome diversity studies for prominent
viruses such as COVID-19 and HIV.

A. Parallelization of BLAST

Past attempts to parallelize BLAST simply entailed running
multiple instances of BLAST, each on a different query
sequence against the same database. This technique is referred
to as query segmentation, and while moderately effective, it
still suffers from excessive I/O, due to having to frequently
page different portions of the sequence database (e.g., 1.78 TB
for the nucleotide (nt) database) between memory and storage
as 1.78 TB is too large to fit within system memory. Such an
approach has been leveraged in the case of [11].

Rather than segment the query file (as in [11]), mpiBLAST
proposed to segment the database in such a way that each
portion of the database could fit entirely in memory, effectively
eliminating unnecessary and slow paging between system
memory and disk, thus significantly accelerating pairwise
sequence search [12], [13]. As a consequence, mpiBLAST
experienced broad adoption by the scientific computing com-
munity from 2003–2016, including pre-packaging within many
Linux distributions. However, because mpiBLAST was inter-
twined and customized to a specific version of NCBI BLAST,
updating mpiBLAST with each new release of NCBI BLAST
became tedious and cumbersome, thus leading to its eventual
discontinued support.

SparkLeBLAST [8] eliminates the need to tightly couple
a distributed processing framework, i.e., MPI, with a specific
version of NCBI BLAST by leveraging Apache Spark [14]
instead of MPI to pipe database segments to arbitrary in-
stantiations of BLAST executables. That is, like mpiBLAST,
SparkLeBLAST parallelizes BLAST by segmenting the refer-
ence database among compute nodes and replicating the query
to each node and does so by only having to change a single line
of code whenever a new version of NCBI BLAST is released.

B. COVID-19 Diversity

The rapid mutation of the COVID-19 virus led to significant
challenges in containment and treatment [15]. On top of the
mutation rate, these variants’ initial sightings occurred world-
wide [16]. The benefit of having the ability to profile human
genomics quickly and at scale allows for a faster understanding
of how the virus mutates as well as how it spreads and between
what groups of people. Beyond understanding the spread, such
a level of profiling allows researchers to determine the virus’
resistance to current antiviral drugs [17].

C. COVID-19 Genomic Studies

Another prominent virus, HIV-1, experienced global spread
in the 1980s and 1990s [18]. The organismic origins and
spread of the HIV-1 virus are rather well known yet its “genetic
variability” [19] was also a detrimental factor to vaccine
development, similar to SARS-CoV-2. Due to the level of
study that HIV-1 has seen, much is understood regarding its
mutation rate, drug resistances, as well as the development of
antiretroviral therapies [20], [21]. Progress such as this can
be greatly accelerated with the ability to perform large-scale
genome diversity studies.

III. METHODOLOGY

SparkLeBLAST parallelizes BLAST by segmenting the
reference database among compute nodes and replicating
the query to each node. While this database segmentation
optimizes I/O and load balancing between parallel workers, it
suffers from communication overhead that is needed to merge
and sort the final output, thus limiting its scalability. To extend
the scalability of SparkLeBLAST, a hybrid query and database
segmentation approach is implemented. This approach is pro-
jected to scale SparkLeBLAST across tens of thousands of
cores, thereby providing a scalable genome diversity analysis
pipeline, capable of handling tens of thousands of samples
and delivering timely and crucial insights to enhance our
understanding of viral diseases, such as COVID-19.

To identify the “ideal” segmentation size, our goal is to
utilize as much of the memory of each node in order to
simultaneously minimize paging and minimize the overhead
cost of parallelization, thus maximizing efficiency. Given that
the memory of each A64FX-based node is 32 GB, we project
that the “ideal” segmentation of the nt database occurs at 55
nodes, where each database segment of 32 GB (i.e., 1.78 TB /
55) fits in the available 32 GB of memory per node.
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At a high level, our study evaluates the performance and
scalability of NCBI BLAST and SparkLeBLAST by con-
ducting computational experiments on the 173-node Ookami
A64FX-based supercomputer. We analyze the run times of
NCBI BLAST and SparkLeBLAST as the node count in-
creases, assess threading efficiency, and derive a predictive
model for execution time using Amdahl’s law. By plotting
the run times, we identify scaling behavior and the points
of diminishing returns. Additionally, we perform a bottleneck
analysis to identify phases that dominate run time and deter-
mine the optimal number of nodes for efficient parallelization.

A. Experimental Approach

We conduct a feasibility study on Ookami, a supercomputer
with 173 A64FX-based CPU nodes, where each node is
equipped with 32 GB of memory, as in Fugaku. We use the
results from this feasibility study to project the performance
and scalability of SparkLeBLAST for a full-scale genomic
study on Fugaku, which consists of 158,976 nodes. The sample
query file used for the initial experiments contains a subset of
50 random query sequences, while the full query file contains
761,919 query sequences collected from a single patient (out
of the 53 total patients found in the study conducted by Shen
et al. [2]). We reference the sample query file against the nt
database, which is 1.78 TB in size. Since this is a genomic
study on nucleotides, we use blastn from NCBI BLAST
v2.13.0 for our experiments.

Our approach involves projecting the results from Ookami
(173 nodes) to Fugaku (158,976 nodes), a system nearly 1,000
times larger. This projection is necessary because running
experiments at Fugaku’s full scale incurs substantial costs due
to its massive power and cooling requirements (29,899 kW
≈ 29.9 MW). By extrapolating from our feasibility study,
we can estimate the performance and resource requirements
for conducting a full genome diversity study on the Fugaku
supercomputer.

That is, our feasibility study processes 50 query sequences
on 173 nodes of Ookami. Scaling this to a single patient’s
entire dataset involves 761,919 query sequences, processed on
158,976 nodes. Further expanding to our available dataset of
53 patients increases the workload to 40,381,707 sequences
(with an average length of 100 nucleotides per sequence) on
the same number of nodes.

A note about genome data. We often measure sequence
length in base pairs (bp), which represent the paired nu-
cleotides on complementary DNA or RNA strands. In our
study, the average sequence length is 100 bp. Thus, for 53
patients, we process approximately 4.04 billion base pairs
(i.e., 40,381,707 sequences × 100 bp/sequence). Additional
diversification of the data would further enrich the study.
For instance, incorporating the NCBI Virus database [22]
would add 8,932,711 query sequences with an average length
of 29,500 base pairs, equating to about 263.5 billion base
pairs. Additionally, the GISAID dataset for COVID-19 [23]
contributes 16,933,062 genome sequence submissions, also
averaging 29,500 base pairs in length and adding another 499.5

billion base pairs. These datasets exemplify the vast amount
of genome data available.

When combined, these datasets represent over 767 billion
base pairs of genetic information. These examples illustrate
how the problem size can continue to expand, potentially
outpacing even Fugaku’s considerable resources. The expo-
nential growth in the number of base pairs that need to be
processed underscores the computational challenges in large-
scale genome studies and the need for advanced supercomput-
ing capabilities.

B. Performance Measurement

We measure the run time of SparkLeBLAST searches on
the sample query file as the number of nodes increases. All
the NCBI BLAST executables wrapped by SparkLeBLAST
are configured to utilize 48 threads, with each core mapped
to a single thread, thereby maximizing the utilization of each
node. By plotting the run time of SparkLeBLAST against the
increasing number of nodes, we can visualize the relationship
between node count and run time, identifying points where
diminishing returns begin to appear.

C. Predictive Model for BLAST Execution Time

To better understand the performance scaling of BLAST, we
start with Amdahl’s law, which is used to find the maximum
improvement to an overall application when only part of the
system is improved. Amdahl’s law is given by:

S(N) =
1

(1− P ) + P
N

where S(N) is the speedup with N threads and P is the
parallel fraction of the workload [24].

For BLAST, we extend this model to handle multiple
queries Q by assuming that the time T scales linearly with
Q:

TDb(N,Q) = Q× T1 ×
(
(1− P ) +

P

N

)
(1)

where T1 is the time to process one query on one thread.
Eqn. (1) can be used to forecast the performance of BLAST.

To avoid any idling of resources, a greedy approach would
be appropriate where any additional patients would have their
query sequences appended to the original 761,919 query se-
quences. Hence, when forecasting NCBI BLAST run time for
all the available patients, we simply replace Q in Eqn. (1) with
the total number of query sequences across all the patients.

D. Predictive Model for SparkLeBLAST Execution Time

SparkLeBLAST’s segmentation by a database-only method
is similar to BLAST’s approach, as both involve segmenting
the database. The key difference is that BLAST segments
across threads, while SparkLeBLAST segments across nodes.
Therefore, we simply redefine N in Eqn. (1) to be the number
of nodes instead of the number of threads.

Our observations, as seen on Fig. 2a, indicate diminishing
returns in performance improvements with the addition of
more nodes when relying solely on database segmentation.
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Implementation Method 1 Patient (Single
Thread)

53 Patient (Single
Thread)

1 Patient
(All Nodes)

53 Patients
(All Nodes)

NCBI BLAST Database Segmentation 348.3 days 18459.9 days 184 days 9,752 days
SparkLeBLAST Database Segmentation N/A N/A 46.4 days 2,459.2 days
SparkLeBLAST Query & Database Segmentation N/A N/A 0.018 days 0.95 days

TABLE I: Summary of approaches and estimated run times for COVID-19 genomic studies. The study processes 761,919
query sequences per patient against a 1.78 TB nucleotide database. All Nodes refers to utilizing all 158,976 nodes on Fugaku.
N/A indicates that the method is not applicable for single thread execution.

Integrating a hybrid approach that combines both database and
query segmentation appears to offer the optimal utilization of
all available computing resources. Let

Nd =

⌈
D

M

⌉
where Nd is the ideal number of nodes for database segmen-
tation, D is the size of the database, and M is the memory
per node.

When both database and query segmentation are considered,
we distribute the queries evenly across the nodes. We will
assume that all the queries are roughly the same size. If the
number of nodes N is greater than Nd:

Groups =
⌊
N

Nd

⌋
Thus, the number of queries per group is:

Q⌊
N
Nd

⌋
We can extend Eqn. (1) to obtain the time per group:

Tgroup =
Q⌊
N
Nd

⌋ × T1 ×
(
(1− P ) +

P

Nd

)
Hence,

TDB + Query(N,Q) = max(Tgroup)

We can safely assume that each group will take roughly the
same amount of time since all the queries are divided among
all the threads equally and all the queries are assumed to be
of equal length, therefore:

TDB+Query(N,Q) =
Q⌊
N
Nd

⌋ × T1 ×
(
(1− P ) +

P

Nd

)
(2)

By combining Eqns. (1) and (2), we can formulate the con-
ditional formula for the estimated search time using SparkLe-
BLAST:

T (N,Q) =


Q⌊
N
Nd

⌋ × T1 ×
(
(1− P ) + P

Nd

)
if Nd ≤ N

Q× T1 ×
(
(1− P ) + P

N

)
if Nd > N

(3)
This conditional formula provides the estimated time for the

most efficient method. When Nd is greater than the number

of nodes available, it is more efficient to perform database
segmentation only, as this maximizes resource utilization and
the cost of parallelism does not outweigh the performance
improvement benefits. Conversely, when N is greater than
or equal to Nd, a hybrid approach of database and query
segmentation is more efficient, as it ensures optimal utilization
of all available computing resources.

As mentioned in §III-C we want to use a greedy algorithm
to avoid idling of compute resources. Hence, when forecasting
SparkLeBLAST run time for all the available patients, we
simply replace Q in Eqn. (3) with the total number of query
sequences across all the patients.

E. Bottleneck Analysis

To identify potential bottlenecks in SparkLeBLAST, we
analyzed the time distribution across different phases of the
search process on the sample query file.

1) Time Distribution Across Phases: We measured the
percentage of time spent on various phases of the SparkLe-
BLAST search, including the BLAST search operation and the
intermediate output phase. The results allowed us to identify
the phases that dominated the run time.

2) Node Scalability: We observed the scalability of
SparkLeBLAST by examining how the percentage of time
spent on the distributed search phase changed with the number
of nodes. This analysis helped us identify the optimal num-
ber of nodes for efficient parallelization and highlighted the
diminishing returns beyond a certain point.

IV. RESULTS

In this section, we present the results of our experiments and
analyses on Ookami. We evaluate the performance of SparkLe-
BLAST, our optimized version of BLAST, on the Fugaku su-
percomputer. Our findings highlight significant improvements
in execution time, showcasing the potential of SparkLeBLAST
for large-scale genomic studies. We systematically examine
different configurations, node utilizations, and segmentation
approaches to provide a thorough understanding of SparkLe-
BLAST’s performance characteristics and scalability.

Table I summarizes the key findings of our feasibility study
for large-scale genomic diversity analysis at exascale. These
results demonstrate the significant performance improvements
achieved by SparkLeBLAST, particularly when using both
query and database segmentation. The approach reduces the
processing time for a 53-patient study from over 26 years
(using NCBI BLAST) to less than a day, making large-scale
genomic diversity studies feasible on exascale systems. In
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the following subsections, we systematically examine different
configurations, node utilizations, and segmentation approaches
to provide a thorough understanding of SparkLeBLAST’s
performance characteristics and scalability.

A. Genomic Diversity: Modeling BLAST Performance

We now utilize the BLAST predictive model to estimate the
time required for BLAST to perform a comprehensive COVID-
19 genomic study using the entirety of Fugaku.

As previously mentioned, the database size is approximately
1749 GB, our query file contains 761,919 query sequences,
and Fugaku comprises 158,976 nodes. We ran experiments
on configurations with 1, 2, 4, 8, 16, and 32 threads. The
experimental data was then used to fit a non-linear least
squares regression line to calculate the P value in Amdahl’s
law. The regression analysis yielded an R2 value of 0.94,
indicating a strong correlation between the model predictions
and the actual data. An R2 value of 0.94 means that 94% of the
variance in the observed data can be explained by the model,
showcasing a high degree of accuracy and reliability in the
predictive model. The P value obtained from the regression
analysis was 0.4718. This P value represents the parallel
fraction of the workload, indicating that approximately 47.18%
of the workload can be parallelized, while the remaining
52.82% is inherently serial.

When we apply Eqn. (1), we verify that a single thread
is expected to take approximately 348.3 days to process all
the query sequences for a single patient. This is given that a
single query for one thread is 39.5 seconds. When utilizing
all 158,976 nodes (which would be 7,630,848 threads), the
predicted time for NCBI BLAST search is reduced to approx-
imately 184 days, which is only ∼1.9 times faster than a single
thread. If we extend the analysis to all of the 53 patient data
available to us, the processing time scales linearly. For the 53-
patient study, we multiply the single-patient processing time
by 53, as each patient’s genome is processed independently.
When we apply Eqn. (1), we find that a single thread is
expected to take approximately 18,460 days (50.6 years) to
process the query sequences for all 53 patients. When utilizing
all 158,976 nodes (which would be 7,630,848 threads), the
predicted time for NCBI BLAST search is reduced to ap-
proximately 9,752 days (26.7 years). The poor speedup occurs
because the database segments per thread become so small that
the parallelization overhead dominates, leading to diminished
performance despite the extensive parallelism.

B. SparkLeBLAST Search

The blue line in Fig. 2a shows the run time of SparkLe-
BLAST search as the number of nodes increases. We observe
a exaggerated speed up as the number of nodes increases up to
16 nodes. Beyond this point, the decrease in run time becomes
less noticeable, indicating a diminishing return in performance
improvement with the addition of more nodes. The parallel
behaviour of SparkLeBLAST is similar to that observed in
NCBI BLAST, where the database is divided across all the
nodes, enabling simultaneous sequence searches across all

segments. Each node searches for hits in its own database
segment for one query sequence at a time. Once the sequence
hits are complete, it moves on to the next query sequence.
This parallel processing significantly reduces the overall run
time, especially with the initial increase in nodes.

C. Time Spent on Each Phase of SparkLeBLAST Search

Fig. 2b shows the percentage of time spent on different
phases of the SparkLeBLAST search. It is evident that the
search time is dominated by the BLAST search operation
(depicted in blue) and the intermediate output phase, which
involves grouping each query sequence result, sorting by score,
and selecting the top k sequences (depicted in red). Ideally,
we would like to see the majority of the time spent on the
BLAST search operation.

From Fig. 2b we observe that the percentage of time spent
on the distributed search phase increases with the number of
nodes up to 32 nodes. Beyond this point, the percentage starts
to decrease, indicating that the cost of parallelism outweighs
the benefits. As analyzed in §III, the distributed search phase
peaks at 55 nodes. The inefficiency beyond 55 nodes is
due to each node holding a database segment that is too
small to effectively parallelize. Consequently, the search phase
becomes extremely fast due to the small database size, causing
the entire compute time to be dominated by I/O operations.
This highlights the importance of maximizing the database size
on each node to ensure optimal performance and minimize I/O
overhead.

D. Verification of SparkLeBLAST Predictive Model

To verify the predictive model for SparkLeBLAST, we
conducted experiments using 50 queries against the 1.78 TB
nt database. The experiments were run on configurations with
2, 4, 8, 16, 32, and 64 nodes. The experimental data was then
used to fit a non-linear least squares regression line to calculate
the P value in Amdahl’s law. The regression analysis yielded
an R2 value of 0.92, indicating a strong correlation between
the model predictions and the actual data.

The P value obtained from the regression analysis was
0.8805. This high parallel fraction suggests that SparkLe-
BLAST is well-suited for parallel execution, benefiting sig-
nificantly from the addition of more nodes.

We validate the model only for database segmentation,
which is given by Eqn. (1). The equation for query and
database segmentation (and subsequently the conditional equa-
tion) is an extension of the database segmentation equation.
Therefore, validating the model for database segmentation also
ensures the validation of the model for the combined query and
database segmentation.

To validate the predictive model, we compared the model’s
predictions with the results of further experiments. We ex-
tended our experiments to include configurations with 2, 4, 8,
16, 32, 64, and the previously unseen 96, 120, 128, and 173
nodes. As illustrated by the red line in Fig. 2a, the model’s
predictions closely matched the experimental results across the
different node configurations.
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(a) (b)

Fig. 2: Comparison of (a) SparkLeBLAST predictive model’s estimated execution times with experimental results for various
node configurations, and (b) time spent on each phase of the SparkLeBLAST search process for multi-node configurations.

Fig. 2a shows that as the number of nodes increases,
the model’s predictions remain closely aligned with the ex-
perimental results. This consistency reinforces the model’s
accuracy and reliability in predicting the execution time of
SparkLeBLAST. The close alignment between the model and
experimental data across a wide range of node configurations
indicates that the model effectively captures the performance
characteristics of SparkLeBLAST, even for configurations not
previously tested during the initial regression analysis.

The verification process demonstrates the robustness of
our predictive model. By accurately estimating the execution
time across various node configurations, the model provides
valuable insights for optimizing SparkLeBLAST deployments,
ensuring efficient use of computational resources.

E. Genomic Diversity: Modeling SparkLeBLAST Performance

We now utilize the SparkLeBLAST predictive model to
estimate the time required for two configurations of SparkLe-
BLAST — (1) database segmentation and (2) database and
query segmentation — to perform comprehensive COVID-19
genomic studies using the entirety of Fugaku. As previously
noted, the database size is approximately 1784 GB; our query
file contains 761,919 query sequences per patient; and Fugaku
comprises 158,976 nodes. For database segmentation only, we
apply Eqn. (1). For a single patient study, a single node is
expected to take approximately 388.6 days, while utilizing all
158,976 nodes reduces the predicted time to approximately
46.4 days. Extending this to the 53-patient study, a single
node would require approximately 20,595.8 days (56.4 years),
while all nodes would complete the task in approximately
2,459.2 days (6.7 years). For the combined database and query
segmentation approach, each group consists of 55 nodes, with
each node handling roughly 32 GB of the database. Applying
the extended model equation (Eqn. (2)), SparkLeBLAST on
all 158,976 nodes of Fugaku is predicted to take approxi-
mately 26.2 minutes for a single patient study and 22.9 hours
(0.954 days) for the 53-patient study. The significant reduction
in execution time when using the combined “database and

query segmentation” configuration highlights its efficiency,
especially for large-scale genome diversity studies involving
multiple patients. By optimally distributing both the database
and query workload across Fugaku’s extensive node resources,
SparkLeBLAST achieves rapid and efficient processing of
multiple patient genomes, enabling timely insights and analy-
ses for genomic diversity studies.

V. DISCUSSION

A more expansive genome diversity study that encompasses
more patients and more diverse datasets would capture newer
viral variants and reveal different virus-microorganism interac-
tions across populations, enhancing our understanding of viral
evolution and improving strategies for vaccine development.
Using NCBI BLAST for such extensive studies could lead
to the generation of obsolete results before the genome di-
versity study is even completed, given the rapid evolution of
viruses. The accelerated processing and scalability capabilities
of SparkLeBLAST delivers timely analysis that is crucial in
addressing the challenges posed by fast-evolving pathogens.

In addition to the time savings on the computationally
expensive taxonomic assignment step in the genome di-
versity pipeline, the economic impact of the performance
differences between NCBI BLAST and SparkLeBLAST is
substantial. With Japan’s average commercial power cost of
$233.55/MWh1 and Fugaku’s power consumption of 29.9
MW, NCBI BLAST, running for 26.7 years, would cost
approximately $1.63 billion in energy consumption; while
SparkLeBLAST with database segmentation, taking 6.7 years,
would incur about $0.41 billion in energy costs. In stark
contrast, SparkLeBLAST with hybrid database and query
segmentation, completing in just 22.9 hours, would only cost
about $0.00016 billion (i.e., $159,914). These calculations
demonstrate the enormous cost savings of SparkLeBLAST,
particularly the hybrid segmentation approach, when used in
a genome diversity study; it could save over $1.5 billion

1Average power costs in Japan: https://www.global-climatescope.org/
markets/jp/
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in energy costs compared to the traditional NCBI BLAST
approach for this 53-patient study.

The projections made for the Fugaku supercomputer are
based on runs made on a smaller Fugaku-like supercomputer
called Ookami. When migrating to a larger system, like
Fugaku, the latency of shared file systems starts to suffer due
to increased I/O demands and network complexities. Further-
more, due to misconfigured memory-mapped files (mmap) on
the Fugaku file system, which NCBI BLAST uses for file
I/O operations, we might experience further I/O issues that
increase latency.

We confirmed the above assertion when NCBI BLAST
incurred a 7× slowdown when running on a single node with
48 threads on Fugaku (vs. Ookami). The database and output
files residing in the global file system exacerbate this issue, as
constant writes and reads significantly increase latency. This is
due to the contention and overhead associated with accessing
the global file system across many nodes, leading to bottle-
necks. To verify this, we ran BLAST on a query file consisting
of 50 query sequences against a much smaller database of 284
MB. We chose a smaller database intentionally to ensure that
the database file, query file, and output file could all reside
within the local storage of the node, without exceeding the
local storage limitation of 80 GB. By doing so, we minimized
the dependency on the global file system and eliminated the
associated I/O contention. This approach allowed us to match
the runtime observed on Ookami, where no provisions for local
storage were necessary. Thus, optimizing file I/O on Fugaku
will be critical in achieving the predicted performance gains
with SparkLeBLAST.

VI. FUTURE WORK

While our study provides a comprehensive analysis of
SparkLeBLAST’s performance and scalability, we plan further
exploration in the following areas: (1) conducting experiments
on the actual Fugaku supercomputer to validate our predic-
tions and refine the hybrid approach based on real-world
performance data, (2) investigating optimization techniques for
the BLAST search operation and intermediate output phase
to improve runtime and enhance efficiency, and (3) tuning
file system parameters and memory-management techniques
to minimize I/O-induced latency introduced by the large file
system of Fugaku.

VII. CONCLUSION

Our feasibility study, conducted on the 173-node Ookami
supercomputer and projected to the 158,976-node Fugaku
supercomputer, demonstrates the transformative potential of
SparkLeBLAST for large-scale genome diversity studies.
For a modest 53-patient study, SparkLeBLAST with hybrid
query and database segmentation is projected to complete the
genome diversity study in just 0.026 years (i.e., 22.9 hours)
on Fugaku, a dramatic improvement from the approximately
26.7 years estimated for NCBI BLAST.

The projected performance of SparkLeBLAST has impor-
tant implications for population-scale genomics and personal-

ized medicine. The ability to rapidly analyze large cohorts of
patient genomes could accelerate the identification of disease-
linked genetic variations and enhance our understanding of
genetic diversity. On the other hand, our study also reveals
challenges in I/O optimization and scalability that require
further investigation. As genome datasets continue to expand,
the development of increasingly sophisticated and optimized
computing strategies will be essential to keep pace with the
growing computational demands of genetic research.
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