
MST in Incremental Graphs Through Tree
Contractions

Akanksha Dwivedi, Sameer Sharma, Dip Sankar Banerjee
Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur, India.

{P23CS0002, sharma.131, dipsankarb}@iitj.ac.in

Abstract—Dynamic graphs, characterized by rapid changes
in their topological structure through adding or deleting edges
or vertices, pose significant challenges for algorithm design. This
paper presents a parallel algorithm for dynamic graphs in a
batched setting. We employ a popular tree contraction mecha-
nism to create a hierarchical representation of the input graph
that allows the identification of localized areas that further enable
maintaining a critical graph primitive such as the minimum
spanning tree (MST) without requiring re-computation from
scratch. We perform experiments to demonstrate the application
of our algorithm in real-world graphs where batch-dynamic
algorithms on large trees are essential for incremental updates.
We show experimental validations on GPUs where our proposed
technique can provide up to 3.43x speedup over equivalent
parallel implementations on shared memory CPUs. Additionally,
our methods can provide up to 4.23x speedup over conventional
parallel computation from scratch.

I. INTRODUCTION

Minimum Spanning Trees (MSTs) are fundamental graph
properties with extensive applications across various domains.
In the context of big data, MSTs play a crucial role in optimiz-
ing networks by identifying the most influential vertices, which
is particularly beneficial for applications involving machine
learning techniques. Dynamic MSTs, which adapt to real-time
updates, are essential for applications requiring instantaneous
processing and analysis, such as real-time traffic manage-
ment and dynamic social network monitoring [1]. Traditional
paradigms require computations that do not scale well with
very high input sizes for computing and maintaining MSTs
in real-world graphs. Modern big data-centric applications
are increasingly dependent on “streaming” data or infinite
data, which is difficult to manage in a limited main mem-
ory size. Conventional methods in such settings require re-
computation from scratch or the use of distributed computers,
which are difficult to implement and do not fully exploit
the computing power available in modern high-performance
platforms, specifically ones equipped with graphics processing
units (GPU). It is imperative to investigate “dynamic” methods
that can yield equivalent results on such settings without
requiring a fresh re-computation on single compute vertices
that exploits available processing capabilities to its fullest.

Towards the development of dynamic approaches, we
specifically focus on the “batch dynamic” setting [1]–[3]
where a set of updates can be assumed to be the maximum
information that can be accommodated on a shared-memory
buffer. Once the buffer is filled, the updates can be applied

concurrently using a parallel algorithm, hence providing a
higher scope of data parallelism. However, concurrent updates
of a batch present their own unique challenges. Challenges
such as identification of localized areas of effect, cascading
impact of a single update, and consolidation of the results in
the affected regions. For example, while maintaining an MST,
when adding a new set of edges, it is necessary to maintain
the minimum weight, ensure no cycles are formed, and reduce
the amount of work involved in every parallel thread.

In this work, we solve the above mentioned challenges
using graph contraction, which helps localize the affected areas
during an update. This is followed by parallel path queries that
can help identify the formed cycles and ensure a minimum
weight tree. In graph contraction one of the major compu-
tational steps is in identifying sub-trees within the graph that
can be collapsed into super-vertices. An existing solution in the
sequential setting proposed by Acar et al. [4], shows the use of
a novel rake and compress (RC) tree that supports the parallel
implementation of the tree contraction [5]. Specifically, the
rake operation identifies and compresses the vertices that are
either leaf or have only one neighbor. This is followed by
the compress step, where all the eligible 2-degree vertices
are compressed. These two operations, when performed in
an iterative manner, lead to the generation of more 1 and
2-degree vertices. The algorithm terminates when the tree is
left with only one single super-vertex. Both the rake and the
compress operations can be done in a data-parallel manner,
given that raking essentially is a marking operation without
the requirement of any writes. Compressing, while dependent,
can be done in parallel with some optimizations that reduce
redundant computations (discussed in Section IV-A). In this
paper, we propose a parallel technique to compute an RC tree,
which is used as a sub-routine in the batch update algorithm
for quick incorporation of new updates into an existing MST.

Once an existing MST is contracted into the RC tree, it is
now easy to identify the areas of the MST that will get affected
due to the application of the batch updates. On concurrent
application of all the edges, we can quickly identify the sub-
trees that need updating, perform the update, and quickly re-
compute the RC-tree, which can be done in a very fast manner
on a massively multi-threaded implementation.

A. Motivation and Contribution

As discussed earlier, a major challenge in the dynamic
maintenance of MSTs is in the identification of affected
regions followed by ensuring the maintenance of the fun-
damental properties of an MST. While simple, designing a
parallel massively parallel implementation for RC tree has
specific set of challenges that can finally yield a scalable
algorithm. In this work we propose techniques to handle
only insertions in the graph and not deletions of batches that
contains both insertions and deletions. So, in that sense our
contribution can be classified as a “semi-dynamic” rather than
“fully-dynamic”.

Our concrete contributions in this work can be listed as
follows:

1) We introduce novel methods for parallel computation of
an RC tree. The RC tree further provides increased scope
for extracting data parallelism.

2) We propose a batch-dynamic parallel algorithm to handle
incremental updates of MST using the RC tree.

3) We conduct experiments on large graphs ranging up to
122 million edges using both a shared memory GPU and
a CPU. From extensive experimentation, we can observe
that our method can provide up to 3.43x speedups over a
parallel CPU implementation. In effect, our method can
insert a batch of size 122,000 edges in 0.05 milliseconds
to maintain the MST.

II. RELATED WORK

Parallel tree contraction on PRAM machines was pro-
posed by Miller et al. [6], where the authors showed an
O(log(n)) stable algorithm for insertions and deletions using
a bottom-up approach. The bottom-up approach is essentially
meant to deal with modifications locally and leads to the use of
data structures that are easy to implement and also have poly-
logarithmic parallel solutions. This idea was expanded upon
by Acar et al. in [4], which proposed techniques for the auto-
matic generation of dynamic algorithms for trees from static
programs. The core idea was to make the idea of [6] more
generic through non-dependence on historical information or
requirement of any rooted computations. This was expanded
upon for a more generic solution proposed by the same team
in [7] where the authors showed how change propagation can
be exploited for dynamic tree updates specifically in problems
related to path queries, sub-tree queries, search, and MSTs.
The work in [4] first proposed the idea of RC trees which was
investigated in detail for several applications in the thesis of
Anderson [8].

Batch dynamic algorithms for several applications in
the areas of spanning forests and clustering was proposed
in [9] where the authors showed specialized data structures
for maintaining maximal spanning forests in the decremental
setting and also use the same for hierarchical agglomerative
clustering. For maintaining dynamic trees, the work in [4]

was extended in [1] where the authors showed algorithms
for batch dynamic updates for several tree problems such
as flow, MST, and minimum-cuts. A similar work on batch
dynamic algorithm for graph connectivity was proposed in [2].
Maintaining information in fully dynamic trees with the help
of top-tree data structures was shown by Alstrup.et.al [10].
This work addressed challenges in efficiently handling updates
and queries in dynamically changing tree data, enhancing the
scalability and versatility of data structures crucial for various
computational tasks.

Luo et al. [11] address the efficient maintenance of min-
imum spanning trees (MSTs) in dynamic weighted undirected
graphs. Their algorithm focuses on updating the MST effi-
ciently when the graph structure undergoes changes, minimiz-
ing the need for full recalculations. This approach preserves
parts of the original tree that remain valid after updates,
thereby reducing computational overhead. The authors provide
a formal proof of correctness and analyze the algorithm’s
time complexity, demonstrating that it compares favorably
with Kruskal’s algorithm in typical scenarios. Prokopenko
et.al [12] proposed GPU solutions for the Euclidean minimum
spanning trees. They propose a novel single-tree Borůvka-
based algorithm optimized for GPU architectures, leveraging
an efficient nearest neighbor approach and minimizing distance
calculations by optimizing subtree transversal.

In all the existing works, we have not observed any
specific work showing the parallel implementation of tree
contraction-based maintenance of MSTs on dynamic graphs.
Our lasting takeaway from this work is an algorithm that
leverages locality-aware updates for maintaining MSTs on
massively parallel platforms.

III. PRELIMINARIES

The Minimum Spanning Tree (MST) problem is a fun-
damental problem in graph theory, where the goal is to find a
subset of edges in a weighted, connected graph that connects
all the vertices without any cycles and with the minimum
possible total edge weight. Classical algorithms for solving
the MST problem include Prim’s, Kruskal’s, and Borůvka’s
algorithms.

A. Borůvka’s Algorithm

Boruvka’s Algorithm [13], also known as Sollin’s Algo-
rithm, is an algorithm for finding a minimum spanning tree in
a graph for which all edge weights are distinct or a minimum
spanning forest in the case of a graph that is not connected. It
proceeds by successively adding the smallest weight edge that
connects any two trees in the forest until the forest forms a
single tree, which is a minimum spanning tree. The algorithm
begins by treating each vertex as a separate component. It
then iterates through all the edges, and for each component,
the edge with the smallest weight is selected to connect the
component to a different one. These selected edges are added
to the minimum spanning tree and the connected components
are merged. This process is repeated until only one component,

the minimum spanning tree, remains. The time complexity
of Boruvka’s Algorithm is O(E log V), assuming the use
of a union-find data structure with union by rank and path
compression. This is because the algorithm performs O(E)
operations in each phase to find the minimum weight edge for
each component and O(V) operations to perform the unions.
There are O(log V) phases, so the total time complexity is
O(E log V). The space complexity of Boruvka’s Algorithm
is O(V + E), as it needs to maintain a list of edges and a
disjoint-set data structure to keep track of which vertices are
in which components.

In our implementations, we create the initial MST using
Boruvka’s algorithm and again in the subsequent steps where
a re-computation is required. Since Boruvka’s algorithm treats
each of the vertices as a separate component to begin with,
it is inherently parallel. We implement a parallel version of
Boruvka’s [14] for the scratch computations on CPU and
GPU. We use a wait-free union-find data structure [15] that
maintains the parent and rank information for each vertex and
subsequently helps in identifying the valid component for each
edge contraction.

B. Rake and Compress Trees

A rake and compress (RC) tree [4] builds upon an earlier
technique of tree contraction on directed graphs proposed by
by Miller and Reif [6]. The idea for EC trees is to handle
dynamic updates in a graph via change propagation. To use
RC trees, the authors use annotations specific to an application
in a manner so that traversals on an RC tree would suffice
to answer dynamic queries. For handling dynamic changes,
only specific re-computations are required on the part of the
tree that is affected by the change. The RC tree is an O(n)
space data-structure which is an improved implementation
over equivalent history-dependent implementations which con-
sumed O(nlogn) space [7]. The combination of Boruvka’s
phased approach and the dynamic, parallel execution of RC
trees results in an MST algorithm that is highly effective
for large-scale graph processing, offering substantial speedups
over traditional methods [16].

IV. METHODOLOGY

Algorithm 1 Dynamic MST using RC

1: procedure DYNAMICMST(Input G, Batches B)
2: Input graph G
3: M=Boruvka(G)
4: R=Parallel RC(M)
5: for bi ∈ B do
6: BatchInsert(R, M , B)
7: Parallel RC()

The broad set of steps for managing the dynamic updates
is shown in Algorithm 1 and Figure 1. The initial pre-
processing steps involve computing the MST on an existing
graph using Boruvka’s algorithm. This is followed by creating

Algorithm 2 Parallel RC operations in the CSR augmented
RC Tree

1: procedure PARALLEL RC(Input G)
2: Input: MST tree M (input graph)
3: Output: RC tree R
4: arr[0]← G,round = 1,update =true.
5: while update do
6: if |E| = |V | then
7: marked=mark vertices iterative(CSRt−1)
8: else
9: marked=mark vertices level(CSRt−1)

10: CSRt=rake(CSRt−1, marked)
11: c=mark compressible vertices(CSRt)
12: compress(c, CSRt)
13: if |c| = 1 then
14: update=false
15: CSRt = CSRt−1

16: procedure MARK VERTICES(CSRt−1)
17: for each vertex v in parallel do
18: if v is not raked and has 1 neighbor then
19: mark v as rakeable
20: procedure RAKE(CSRt−1, marked)
21: for each vertex v ∈ CSRt−1 in parallel do
22: if u is the only neighbor and is unmarked then
23: v is raked
24: procedure MARK COMPRESSIBLE ITERATIVE(CSRt)

▷ Find an independent set
25: for all v ∈ CSRt in parallel do
26: if v has only two alive neighbors then
27: mark v
28: procedure MARK COMPRESSIBLE LEVEL(CSRt) ▷

Run BFS on CSRt

29: for l ≤ H(CSRt) do
30: for all v at height l in parallel do
31: if v has only two alive neighbors then
32: mark v
33: procedure COMPRESS(c, CSRt)
34: for each vertex v ∈ CSRt in parallel do
35: if v is marked then
36: Compress v

the contracted tree using the rake and compressed (RC) opera-
tions. This is done using one of two mechanisms (iterative and
level-wise). Then, we iteratively include the batches into the
existing MST by first identifying the vertex of affection from
the RC tree, inserting the edge, and finally updating the RC
tree with the new edge. Figure 1(a) illustrates the initial graph,
representing the starting point before any transformations. In
Figure 1(b), the graph is shown after the initial computation
of the RC tree, where the two shades of green denote the two
clusters in the RC tree. In Figure 1(c), we can observe the
batch insertion where the broken lines denote the new edges.
After removing the cycles, the RC tree is again re-computed,
shown in Figure 1(d). Here, The remaining vertices 7, 8, 9,

(a) Initial tree (b) Initial RC tree. The green ones
denote the collapsed vertices.

(c) Batch insertions (d) Re-computed RC Tree after
the batch iteration

Fig. 1: The overall steps where we start with an initial MST followed by the initial computation of the RC tree. Following
that the batch insertions are started where the edges (3,8), (7,10), (10,14), (6,13), (13,15), and (6,15) are inserted introducing
the new vertices 13, 14 and 15. Post the batch update, the cycles indicated by blue curved lines are removed and the RC tree
is re-computed

Algorithm 3 Batch update in an existing MST

1: procedure BATCHINSERT(R, M , Bi)
2: for (u, v) ∈ Bi do in parallel
3: Find nu ∈ R where u ∈ nu

4: Find nv ∈ R where v ∈ nv

5: if nv = nu then ▷ Insert (u, v) in nu ∈ R
6: Add (u, v) to R
7: needed = DetectCycle(nu)
8: if needed then
9: BreakCycle(nu)

10: if nu ̸= nv then
11: l = LCA(nu, nv)
12: Insert (u, v) in l
13: needed = DetectCycle(nu)
14: if needed then
15: BreakCycle(nu)
16: if u /∈ R or v /∈ R then
17: Add u or v to M
18: Return Updated MST and RC Tree rcT

19: procedure DETECTCYCLE(nu)
20: Mark root(nu)
21: for vertices ki ∈ adj(nu) do
22: if ki not marked then
23: DFS(adj(ki))
24: if not marked return TRUE
25: Return FALSE
26: procedure BREAKCYCLE(nu)
27: Find e = EulerTour(nu)
28: for wi ∈ ei do
29: Find edge t with the maximum weight
30: nu.delete(t)

10, 11, and 12 are excluded from the RC tree since the other
clusters store their properties.

A. Parallel tree contraction

The parallel graph contraction using RC trees is shown
in Algorithm 2. The rake operation identifies and compresses
the vertices that are either leaves or have only one neighbor.

This is followed by the compress step where all the eligible 2-
degree vertices are compressed. These two operations, when
performed in an iterative manner, lead to the generation of
more 1 and 2-degree vertices. The algorithm terminates when
the tree is left with only one single super-vertex. While raking
is comparatively simpler to perform, compressing involves
a significant amount of memory accesses for checking the
eligibility of the vertices and then compressing. While the-
oretically efficient, a sequential implementation of a RC tree
shows that it takes close to 90 seconds for a graph of 100
million vertices. This is not beneficial for use as a primitive
in stream applications. In this work we propose a parallel
implementation of RC trees which does not exist to the best
of our knowledge. We propose a new data structure that can
handle both rake and compress operations in a parallel setting
along with fine-grained data parallelism.

For a parallel GPU implementation, we observe the key
challenges in both rake and compress operations. As we
observe, the parallel rake operation will require compressible
vertices that are at the leaf level or have a single neighbor.
This, when done in a concurrent fashion, may lead to two
neighboring vertices getting marked and merged into each
other, which will lead to an incorrect solution. Additionally,
in the compress operation, we must not identify two eligible
vertices which are neighbors of each other. However, when
executing in parallel, this can be a possibility. Towards this,
we propose a new technique via augmenting the base RC tree
with compressed sparse row (CSR) representations and double
buffering that allows parallel rake and compress operations. In
Figure 1, we observe a recursive clustering of the tree resulting
from tree contraction. Vertices that are raked or compressed
are represented in darker shades. Figure 1(a) illustrates the
initial tree, which is represented using CSRt−1 at time t-
1. In the second step we find the clusters formed by one
rake and compress operation. Now, these clusters will function
as individual vertices. We will now again apply a rake and
compressed operation, treating the clusters formed from the
previous step as individual vertices. This is continued in a
recursive manner to form the final clusters, as shown in
Figure 1(b). We can observe that there is only one un-shaded

vertex remaining in the tree.

As we can see from Algorithm 2, in the initial phase,
we consolidate rakeable and compressible vertices into their
neighboring vertices, creating super vertices. In the subsequent
phase, we iteratively apply this process to the newly formed
super vertices and the remaining un-contracted vertices until
only a solitary vertex remains. In each operation, we can
observe that the marking of the eligible vertices for raking
and the raking operation itself are data parallel. This step, in
essence, creates an independent set. However, when handling
dense graphs, we observe that the neighborhood size of any
vertex can be potentially very high, leading to significant
serialization when operated in a vertex parallel manner. To
alleviate this, we design a level wise scheme where a simple
BFS on M can provide a count of the number of adjacent
vertices. This further allows us to create blocks of threads that
are in the same number of the level-wise order and can now
be scheduled by a GPU in an efficient manner, thus providing
higher performance. However, the iterative method suffices for
sparse graphs since the local neighborhoods are not very large.
A level wise ordering is hence not significantly beneficial. We
perform this check in Lines 5-9 of Algorithm 2 where we
set a threshold to ensure that the iterative marking scheme
is used for sparse graphs and the level wise for dense. The
benefits obtained due to the level wise marking is evident from
experimental details shown in Section V.

In the compression phase, when we mark the vertices
that can be compressed, the challenge is to resolve the data
dependencies via computation of a minimal independent set
of the raked vertices (Lines 20-22 of Alg 2). This is followed
by the compression step, which is again data parallel. In each
of the steps, potential thread divergences are handled via the
use of bit-masks that reduce divergence but not the work.

B. Batch Insertions

The next step is to perform the batch insertions, which
are done in an edge parallel manner. We create a thread for
every edge of the batch which then proceeds to update the
MST concurrently. The primary goal of constructing the RC
tree is to ensure that the amount of computations required for
re-constructing the MST with the new updates are minimized.
We achieve this via first detecting if the edge undergoing
insertion belongs to some vertex nx of the RC tree R.
The ideal scenario where both the vertices are found in the
same vertex of R provides the opportunity to simply add the
incoming edge to R, and then proceed to checking for the
MST properties. However, this may not be the case where we
can also potentially have edges where the two vertices lies in
different vertices of R. In that case, we insert the edge in the
lowest common ancestor (LCA) vertex of the R, which is again
processed to ensure that the properties are maintained. The
reason for inserting the edge at the LCA vertices is to ensure
that we can get the highest weighted edge. Because of the
structure of the RC tree, the LCA vertex will hold the weight
of the highest weighted edges. This helps efficiently maintain

the MST properties during the insertion process.The other case
that might arise is when the edge brings new vertices to the
graph that did not earlier. This is a trivial case where we can
be sure that the new vertices will not affect any of the existing
MST, and the new edge can be directly added to it.

To ensure the MST properties, we need to validate that the
new edges that are getting added to R are not further creating
cycles and that the minimum property of the tree is maintained.
Toward that, we use two auxiliary functions, DetectCylce() and
BreakCycle(). In DetectCycle() we iterate over all the adjacent
vertices from the root vertex of the sub-graph using a DFS.
The function returns TRUE to report the presence of a cycle.
In case a cycle is detected, the BreakCycle() function is called,
which now removes the heaviest edge from the detected cycle.
For this, an Euler tour [17] is computed on the cycle that
allows us to traverse all the edges and maintain the edge with
the heaviest weight. Once the tour yields the heaviest edge,
the same is removed from the cycle. The use of Eulerian tour
to order the non-tree edges of a spanning tree for dynamic
operations has also been demonstrated in earlier works [18],
[19].

V. EVALUATION

TABLE I: Datasets

Sr. No. Graph Name Vertices |V | Edges |E| Type
G1 road central [20] 14,081,816 33,866,826 Sparse
G2 road usa [20] 23,947,347 57,708,624 Sparse
G3 delaunay n21 [20] 2,097,152 12,582,816 Sparse
G4 asia osm [20] 11,950,757 25,423,206 Sparse
G5 com-youtube [21] 1,157,827 2,987,624 Sparse
G6 delaunay n22 [20] 4,194,304 25,165,738 Dense
G7 com-orkut [21] 3,072,441 117,185,083 Dense
G8 as-Skitter [21] 1,696,415 122,190,596 Dense
G9 soc-LiveJournal1 [21] 4,847,571 68,993,773 Dense
G10 hollywood-2009 [20] 1,139,905 113,891,327 Dense

Fig. 2: Performance across different batch sizes

We conducted all experiments on a server with an
NVIDIA A5000 GPU with 24 GB of global memory. It is
hosted on a CPU chassis with two 32-core AMD EPYC
processors. We compile all the programs with CUDA version
11.7 and GCC version 9.4 with OpenMP version 5.0. We use
large graphs from the SNAP repository [21] and SuitSparse
Collection [20], which are detailed in Table I. We classified the

(a) Runtime for RC tree creation for iter-
ative and level wise methods.

(b) Runtime of batch updates time with
or without RC tree

(c) Comparison of parallel CPU versus
GPU with fixed batch fraction

Fig. 3: (a) Performance analysis of RC Tree in real world graphs, (b) Performance analysis of Batch updates time with or
without RC tree, (c) Performance analysis of real graphs in parallel CPU versus GPU in small size of batch fraction

graphs as sparse or dense based on the vertex (|V |) and edge
(|E|) counts. Traditionally, sparse graphs are characterized
by O(n) edges, while dense graphs approach O(n2) edges,
where n is the number of vertices.All the programs are written
in C++ and CUDA with the CSR representation done using
STL vectors. For comparisons, we also perform an equivalent
implementation on a parallel CPU using OpenMP directives.
The parallel steps highlighted in our algorithms have been
parallelized with equivalent OpenMP implicit directives, and
a dynamic schedule has been maintained throughout. For
experimentation with the batches, we create the batches by
choosing the edges uniformly at random from the input edge
list.

We first study the overall benefit of our batch update
mechanism, which is shown in Figure 2, where we can observe
the update times as a function of the batch sizes for the six
largest graphs. We can observe a linear growth in the time to
update the graph with varying batch sizes. For the largest batch
of approximately 122K edges in the as-Skitter graph, we can
observe that the minimum time taken is 0.090 msec and the
maximum time of 0.370 msec. This is expected behavior since
dense graphs generally require more computation time due
to their higher edge density and connectivity. Overall, when
compared to a parallel static method (fresh re-computation
on a same-sized input), we can observe that, on average, our
technique can provide 4.82x speedup for the largest batch and
3.40x speedup for the smallest batch.

The overall results from our experiments are shown in
Figure 3. In Figure 3(a) we show the the efficacy of iterative
marking versus level-wise methods for RC Tree updates across
different types of graphs. For sparse graphs, iterative marking
consistently shows better performance. On average, for sparse
graphs, we can observe a speedup of 3.29x for the iterative
marking technique over the dense graphs. Conversely, for
dense graphs, we can observe a speedup of 3.20x for the level
wise technique over the sparse graphs. Overall, the level-wise
technique performs 3.25x better for the graphs we chose than
the iterative method. The iterative technique capitalizes on the
sparsity of the graph, efficiently handling fewer connections

and minimizing unnecessary computations.

For the implementation of the level-wise technique, as
we discussed earlier, we create blocks with only the number
of adjacent vertices that are present for a vertex at a particular
level. This configuration allows a lesser number of threads to
be idle, which in turn allows the blocks to complete SIMD
execution in a more efficient manner, thus allowing a more
seamless swapping of the blocks in and out of the SMs.

In Figure 3(b), we can observe the overall execution times
for the batch updates on a fixed batch size (10−3.E) for all
the graphs. We compare the runtimes achieved by the RC tree
with the runtimes of dynamic MST updates that do not use
an RC tree. This is analogous to the case that for every edge
that is inserted, there are no sub-graphs that can be identified
for the MST update, and hence, a re-computation is required
on the entire graph. As we can observe, the RC Tree update
mechanism outperforms the one without by 4.33x. This is
clearly due to the lessened computational work that the RC
tree enables by identifying the optimal sub-graphs affected by
the update.

In Figure 3(c), we compare the performance of equivalent
implementations of MST on parallel CPU and with that of the
GPU. As we mentioned earlier, to the best of our knowledge,
no parallel batch dynamic implementation of MSTs exists. As
we can observe, the GPU implementation provides a speedup
of 3.43x over the parallel CPU implementation and, in turn, a
net 4.23x speedup over a parallel MST implementation using
Boruvka from scratch.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a technique for online mainte-
nance of MST in incremental graphs. We show that with the
ability to localize the affected areas due to a batch update
through tree contraction, good speedups of up to 3.5x can
be obtained over equivalent parallel implementations and is
clearly beneficial over static re-computations. In the near
future, we wish to extend the work to the fully-dynamic case
where we shall explore techniques for handling both insertions
and deletions in a concurrent fashion.

VII. ACKNOWLEDGEMENT

The work is partially supported by a grant from the
Science & Engineering Research Board (SERB) of the De-
partment of Science and Technology (DST), India, vide Project
No: CRG/2023/005225.

REFERENCES

[1] U. A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick,
“Parallel batch-dynamic trees via change propagation,” in European
Symposium on Algorithms (ESA), 2020.

[2] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala, “Parallel
batch-dynamic graph connectivity,” in ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2019.

[3] C. A. Haryan, G. Ramakrishna, K. Kothapalli, and D. S. Banerjee,
“Shared-memory parallel algorithms for fully dynamic maintenance of
2-connected components,” in 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2022, pp. 1195–
1205.

[4] U. A. Acar, G. E. Blelloch, and J. L. Vittes, “An experimental analysis
of change propagation in dynamic trees,” in Algorithm Engineering and
Experiments (ALENEX), 2005.

[5] P. Gawrychowski, S. Mozes, and O. Weimann, “Minimum cut in o(m
log2 n) time,” in Intl. Colloq. on Automata, Languages and Program-
ming (ICALP), 2020.

[6] G. L. Miller and J. H. Reif, “Parallel tree contraction and its application,”
in 26th Symposium on Foundations of Computer Science. Portland,
Oregon: IEEE, October 1985, pp. 478–489.

[7] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and S. L. M. Woo,
“Dynamizing static algorithms, with applications to dynamic trees and
history independence,” in Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans,
Louisiana, USA, January 11-14, 2004. SIAM, 2004, pp. 531–540.

[8] D. Anderson and G. E. Blelloch, “Deterministic and low-span work-
efficient parallel batch-dynamic trees,” ACM Transactions on Algorithms
(TALG), vol. 16, no. 2, pp. 1–32, 2020.

[9] T. Tseng, L. Dhulipala, and J. Shun, “Parallel batch-dynamic minimum
spanning forest and the efficiency of dynamic agglomerative graph
clustering,” Journal of Graph Algorithms and Applications, 2023.

[10] S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup, “Maintaining
information in fully dynamic trees with top trees,” ACM Trans. Algo-
rithms (TALG), vol. 1, no. 2, pp. 243–264, 2005.

[11] M. Luo, H. Qin, X. Wu, C. Xiong, D. Xia, and Y. Ke, “Efficient main-
tenance of minimum spanning trees in dynamic weighted undirected
graphs,” Mathematics, vol. 12, no. 7, p. 1021, 2024.

[12] A. Prokopenko, P. Sao, and D. Lebrun-Grandié, “A single-tree algorithm
to compute the euclidean minimum spanning tree on gpus,” in Proceed-
ings of the 51st International Conference on Parallel Processing, 2022,
pp. 1–10.

[13] O. Borůvka, O jistém problému minimálnı́m (About a certain minimal
problem), ser. Práce Moravské přı́rodovědecké společnosti. Mor.
přı́rodovědecká společnost, 1926.

[14] S. Chung and A. Condon, “Parallel implementation of bouvka’s mini-
mum spanning tree algorithm,” in Proceedings of International Confer-
ence on Parallel Processing, 1996, pp. 302–308.

[15] R. J. Anderson and H. Woll, “Wait-free parallel algorithms for the
union-find problem,” in Proceedings of the Twenty-Third Annual ACM
Symposium on Theory of Computing, ser. STOC ’91. New York, NY,
USA: Association for Computing Machinery, 1991.

[16] D. Anderson and G. E. Blelloch, “Deterministic and low-span work-
efficient parallel batch-dynamic trees,” in Proceedings of the 36th ACM
Symposium on Parallelism in Algorithms and Architectures, 2024, pp.
247–258.

[17] R. E. Tarjan, “Dynamic trees as search trees via euler tours, applied
to the network simplex algorithm,” Math. Program., vol. 78, no. 2, p.
169–177, aug 1997.

[18] M. R. Henzinger and V. King, “Randomized fully dynamic graph
algorithms with polylogarithmic time per operation,” J. ACM, vol. 46,
no. 4, p. 502–516, jul 1999.

[19] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia, “Com-
plexity models for incremental computation,” Theoretical Computer
Science, vol. 130, no. 1, pp. 203–236, 1994.

[20] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.

[21] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

