
Augmenting HPC Profilers with Analysis
Capabilities

1st Abhishek Patil
CDAC

Bangalore, India
abhishekpatil@cdac.in

2nd Shamjith K V
CDAC

Bangalore, India
shamjithkv@cdac.in

3rd Senthil Kumar R K
CDAC

Bangalore, India
senthil@cdac.in

4th Dr. S D Sudarsan
CDAC

Bangalore, India
sds@cdac.in

Abstract—This paper focuses on framework designed and
developed by integrating multiple profiler modules to profile
HPC applications. There is a constant demand for application
performance on High Performance Computing (HPC) systems.
Multiple software tools are currently available in the performance
profiling realm to help application developers to profile and
identify performance bottlenecks. Application developers strive
to achieve the optimum execution of applications on available
hardware resources using the profiling tools of their choice. They
have to comprehend all the information provided by the tools
and identify the bottlenecks to arrive at possible modifications.
To assimilate the bottlenecks information from the profiling tool’s
outputs and representations, one requires experience and exper-
tise in the application algorithm, programming methodologies,
domain knowledge, and hardware resources. Many a time it is
challenging for the developers to make changes in the application
program based on the profiler output. We have developed a
profile and analysis framework to identify the bottlenecks in
an HPC application and help the developers improve application
performance. The framework is developed by augmenting the
existing opensource profilers with analysing capabilities for
bottleneck identification and potential performance suggestions.
This paper describes the architecture of the software framework
and the benefits of the adopted mechanism.

Index Terms—hpc profiling, performance analysis, hotspots
identification, meaningful analysis, performance suggestions

I. INTRODUCTION

High Performance Computing (HPC) systems are essential
for scientific research areas involving computer simulations,
like weather forecasting, material analysis, CFD, machine
learning, and other applications to solve the grand challenges
faced in their respective domains. In order to harness the
compute power of the HPC system, utmost care must be
taken to tune the performance[1] of the application under
consideration.

HPC Systems are composed of multiple computing units,
which are capable of carrying out computing operations much
faster rate than the traditional computing units. These comput-
ing units are supported with high bandwidth and fast memory
systems, with varying size and speed depending on how close
they are available with the computing units. The computing
units can even be of different architecture and working in
coordinated way to carry out different tasks, and can also
have associated accelerator devices to speed up specialized
computations and algorithms. Many of these HPC systems
are meant for processing large amount of data, hence a very

sophisticated and high through put storage system is present
on the nodes. In order carry out multiple tasks at the same
time there will be many such computing nodes put together
to form a computing cluster system, essentially following a
master slave model.

Hardware units in HPC systems require many software
drivers, system software and runtime systems to ensure that
these components are geared up for performing their respective
tasks. Once these components are ready for their operations,
they require different set of programs to exploit the capabilities
offered by each computing units, their memory subsystems,
network systems and storage systems. Also, there will be
specialized communication libraries and runtime systems to fa-
cilitate parallel communication among participating processes
and parallel executing environments. So, in order to spin off
an application that needs to be run on such a sophisticated
HPC system requires amalgamation of multiple programming
paradigms, specialized computation and communication li-
braries, along with necessary runtime systems.

Hence, the whole process of harnessing the supercomput-
ing power offered by the HPC systems requires handling a
great challenge in overcoming the complexities innate to the
specialized components of those systems. In order to exploit
the optimum performance offered by the HPC system and
to impart the same in an application code, one requires in-
depth understanding of the system, application domain and the
programming models being employed. In order to overcome
the challenges in performance optimization, HPC systems
vendors have come up with many tools that can capture
the performance profile and traces of application execution.
These profile and trace information can be used to visualize
the application behaviour at the run-time. These visually
represented performance behaviour, through timelines, graphs
and charts can help an application developer to understand the
performance of the application on a given HPC system.

In order to catch up with the performance demand in the
rapidly changing HPC systems architectures, the application
must often be adapted [30] to execute efficiently [39] on
systems with advanced architectures. HPC application perfor-
mance analysis [3][40] is essential to harness the optimum
performance [5] out of the computing resources available for
application run or simulation.

To achieve performance improvements a developer needs to



carefully examine the application implementation and how it
uses the underlying hardware resources [6]. There are a variety
of methods to understand [28] how a scientific application uses
computing hardware. The most straightforward and simple
one is to get the timing of each section of the program; and
the most extensive way is [7] to collect various information
about the performance [8] events occurring during application
execution by using profiling tools. Ultimately, the developer
must apply his experience and expertise to identify the areas
of bottlenecks [9] by assimilating all this information with
the knowledge and expertise gained on algorithms and HPC
systems. Typically, the application will be iteratively improved
with successive executions and performance data collection on
the target computing hardware [10].

Application developers have to invest time and effort to
identify performance gaps in the application with respect
to algorithms and hardware resources. There exist several
limitations with respect to underlying hardware and software
which won’t allow a sub-optimal code to run at its best.
Research efforts by Leiserson, C. E. et al.[33], presented the
performance improvement in a matrix multiplication that can
be obtained with optimization at software level on a target
hardware Hence, the best way is to look at performance
metrics which could provide application developers something
insightful to comprehend.

This paper presents a modular guided approach with static
and dynamic analysis mechanisms for performance measure-
ment and bottleneck identification. The profiling framework
categorizes the application based on percentage of total exe-
cution time in terms of communication, input-output, compu-
tation etc., with a direction that can be explored by the user to
improve performance. Based on the most dominant category,
application is executed again and performance metrics relevant
to that category are presented for better understanding of
underlying performance bottlenecks.

This paper is organized as follows. The Section II captures
the details of various existing profilers currently available
for users, both opensource and commercial ones. This is
followed by Section III describing about the framework we
have developed, where the architecture, design, implementa-
tion and experiments are explained. The Section IV describes
the various use cases of the framework. The paper concludes
with the features of the HPC profiler and analyser framework,
and the future activities planned in the same direction.

II. EXISTING PROFILERS

There are plenty of tools for analysing performance be-
haviour of the HPC application on a computing hardware
cluster. Each of the tools require specific understanding and
expertise to derive conclusive action points from results for
yielding performance benefits. In a multi-node parallel ap-
plication making use of both distributed and shared memory
parallel applications [13], the performance aspects need to be
considered at multiple facets. One at the process and thread
levels that is limited to a specific core or node, and the other
level is the processes that spans across nodes that constitute the

application. Most widely used tools [14] in the performance
analysis domain are as follows.

ARM Map is the commercial application profiler for HPC
applications from ARM [15]. Arm Map provides an easy-to-
understand visual representation of the bottlenecks in an ap-
plication. It also shows various performance metrics related to
communication, input-output, vectorization etc. Performance
Reports is a tool , where it provides a single page report on
the application performance containing the input-output, com-
munication and vectorization details, and provides exploring
tips to further improve performance.

HPC Toolkit is an open-source toolkit for capturing and
analysing the application performance on computer systems
[16]. HPC Toolkit uses statistical sampling of various perfor-
mance counters and timers in the hardware to gather accurate
details of the application execution, resource consumption and
inefficiency. It supports OpenMP, MPI and hybrid applications
with both OpenMP and MPI. HPC Toolkit is developed by
Rice University.

TAU, Tuning and Analysis Utilities, is a tracing and profil-
ing open-source software toolkit developed by the University
of Oregon [17]. It supports performance analysis of parallel
applications written in C/C++, Fortran, Python and Java. It also
supports the performance analysis of OpenMP, MPI and hybrid
MPI OpenMP applications. TAU captures profiling and tracing
information of the applications in detail, through instrumenta-
tion at variety of granularity levels such as functions, methods,
and basic blocks. It also supports event-based sampling with
the capability of capturing instruction level profile of the
application. TAU presents the information to the user in a
visually appealing and easy to understand GUI.

Intel VTune is a performance analysis tool for Intel archi-
tectures. It helps to analyse the performance of the parallel
applications [18] with multiple profiling techniques like stack
sampling, thread profiling and event sampling. It prefers users
with prior experience in programming to understand and
incorporate troubleshooting of the application issues. VTune
can drill down the issues to instruction level. It supports
multiple programming languages C/C++, Fortran, Python etc.,
and it also supports parallel paradigms like MPI, OpenMP and
hybrid MPI + OpenMP. Due to the availability of lots of tools
[29], each tool has an edge in a specific direction or aspect.

Our integrated approach followed in the framework for
profiling and analysis help in exploring the dominant time-
consuming aspects in the application execution. We have
devised a multi-level profiling and analysis mechanism, the
combination of static [21] and dynamic analysis [22][23] of
the HPC application.

III. FRAMEWORK DESCRIPTION

A typical profiling software captures the inclusive and
exclusive time spent in various regions of code, few advanced
profiling software are able to provide deeper insights, like the
performance of the application and its hotspot areas [24], with
automated performance modelling[25]. Even after understand-
ing the insights and representation provided by the advanced



profilers, developer requires a longer learning phase and expert
knowledge to derive proper corrective actions. “Premature
optimization is root of all evil” [33], without understanding the
locality and actual nature of bottleneck the developer cannot
make any code modifications and expect better performance.

We have put together various features offered by the avail-
able free and opensource software like Perf, LProf and CQA
from MAQAO to get the performance details and added
analysis and suggestion modules for respective sections to get
insights into the issues and provide verbose suggestions for
overcoming the issues.

To enhance the HPC Profiling Framework capabilities, we
meticulously integrated various features that empower users
to access comprehensive performance details. The framework
essentially puts together multiple components of existing pro-
filing software, and make use of various features to extract
the bottleneck and performance details. These details are
processed by the analysis module in the framework. We
incorporated analysis and suggestion modules to look into
each bottleneck sections. The suggestion module analyses
the respective bottleneck sections and bring out relevant
constructive verbose suggestions for performance improve-
ment. Moreover, our framework goes beyond identification of
bottlenecks and provides potential suggestions to overcome
these issues, ensuring a holistic approach to performance
improvement. By combining these functionalities, we have
built a framework that helps users to optimize performance
and achieve their desired outcomes. The framework supports
Intel x86 64 architecture-based computing nodes, but it can
also be extended to ARM’s aarch64 architecture.

A. Architecture

The HPC Profiler framework is developed by stitching
together various components available in the open-source
domain based on their key features and augmenting fea-
tures around that. The framework carries out the profiling
and analysing operations mainly over multiple levels. The
functional modules involved in the profiling and analysis are
depicted in the Fig. 1 and Fig 2.

The initial stage of operation executes the user application
and primarily focuses on capturing the intended profiling
information. Analysis of the obtained profiling information
helps in identifying hotspot regions in user programs. Static
analysis module further analyses these hotspot regions of code
in user applications to find out the instruction level behaviour
of the application with respect to the micro-architecture. Static
analysis module compares the binary code with machine
model and returns a lower bound on number of cycles required
to execute each instruction which helps in quantifying the
performance gain that could be obtained if resource usage is
optimized. Static analysis can also detect the applied compiler
optimization heuristics and analyse them with respect to
available hardware resource features to further augment these
heuristics for potential performance enhancement.

The initial stage also categorizes the overall distribution of
its execution time across different processes, with respect to

Fig. 1. Profiling stage

computation, communication, input-output etc. This serves as
a basis for deciding the directions to further explore. Along
with profiling information, the initial stage is also capable of
collecting raw values from the chosen hardware performance
monitoring units.

Our profiling tool mechanism has an ability to establish a
boundary for different blocks of user code. And hence we
can capture various performance events distinctly for various
blocks of codes. Exploiting this feature and incorporating it
with the raw values from the hardware monitoring units we
have implemented Top-down Microarchitecture level Analysis
Method (TMAM) [26] over the highlighted hotspot regions of
user code.

TMAM is a directed approach monitoring the available
PMUs [32] which highlights the performance anomalies which
were not expected during the development phase of the
application. Insights from TMAM helps application devel-
opers understand the nature of user applications and helps
them in fine tuning the application in order to maximize
the performance of the application. TMAM analysis modules
identifies hotspot regions of code into frontend bound, backend
bound (compute-bound, memory-bound), bad speculation, and
retiring. Based on the orientation observed in the TMAM
report, the respective suggestions along with directions for
deeper analysis with respect to the hardware bottlenecks are
formulated. TMAM is used to calculate the efficiency of
highlighted hotspot functions and loops. If inefficient, further
inefficiencies can be drilled down to highlight a primary cause
that accounts for pipeline’s resource usage.

Once the initial profiling stage concludes, it provides the
application profile information which highlights the areas
where further analysis needs to be carried out, and succes-
sive analysis stage is initiated. The analysis stage focus on
capturing performance parameters based on the information
collected from the profiling stage. If the application spends
most of the execution time in computation, then the analysis
is carried out for inferring how the application is utilizing
available hardware resources at the microarchitecture level.
This analysis can detect the bottleneck and their cost at the
core level. In case with the breakdown of time, the MPI
communication is the major contributor, the framework advice



for investigating the MPI communication calls for reducing the
intercommunication time.

Fig. 2. Analysis stage

The core of our framework is the analysis applied in
identifying the various factors that can yield improvement in
application performance. This is accomplished through careful
and meticulous analysis of the output generated by relevant
profiling components, and correlating them with attainable
performance improvements.

The framework uses static performance evaluation to spot
inefficient code and check the performance of loops. It focuses
on the x86 architecture and analyzes the code to provide
further insights.

Our framework localizes the bottleneck areas in an appli-
cation by identifying the sections that contribute the most to-
wards performance anomaly at the application level and at the
process level. The application section is localized with respect
to the type of bottlenecks, converging under various granular-
ity levels application-level execution, node level, process level,
and thread level. The gathered information is further analysed
for generating possible performance improvement suggestions.
Our framework works with the unmodified executable; hence
the measurement mechanism does not alter the application
behaviour. This results in reduced overhead for performance
profiling [27] and analysis.

B. Key features of the framework

The key features of the profiler framework are listed below.
1) Support for Multithreaded and Multi-process Applica-

tions: The current framework supports sequential application
and parallel applications implemented using OpenMP for
a single node. Additionally, it also supports multi-process
parallel applications implemented using MPI paradigms on a
compute cluster.

2) Use of unmodified executable: The framework adopts
sampling based profiling approach hence it doesn’t require
modifications in the application binaries for collecting the
application profile during the execution of the application. But
the application has to be compiled with the “-g” option for
profiling and analysis. Hence, the profiling is carried out with
minimal execution overhead on an unmodified executable.

3) Multiple granularity levels for bottleneck detection:
The profiling framework captures the execution details of
the application at various granularity levels, such as at the
application level that are innermost loops, vectorization and

compute intensive regions, also detects presence of fused
multiply add operations, details at node level, process level
and thread level. This helps to localize the bottlenecks, at
application, process and thread levels.

4) Constructive suggestions: The framework localizes the
application bottlenecks and provides constructive performance
suggestions to resolve the issues in the bottleneck area.The
suggestions include vectorization, detetection of FMA, loop
unrolling and slow data structure. Also appropriate compila-
tion flags are suggested. This helps the application developer
to potentially improve the performance of the application.The
following are the figures of respective suggestions i.e. fig.3
,fig.4 and fig.5.

Fig. 3. Vectorization suggestion

Fig. 4. FMA suggestion

Fig. 5. Slow-Data structure

5) Detecting core-level bottlenecks: The framework is ca-
pable to drill down to the source of performance inefficiencies
at the microarchitecture level. The pipeline port utilization,
memory access pattern and branch prediction anomalies, per-
centage of successful retiring instructions are the few things



considered. This gives insights on how the application is
behaving at the CPU core-level.

6) Pluggable and modular architecture: The framework
follows a pluggable and modular architecture. This helps in
extending the capabilities of the framework by incorporating
various new profiling tools, based on the demands of the
application. Further, this will also help to support profiling
and analysis of applications on a newer compute architecture.

7) Integration with batch systems: The Local Resource
Manager is the component responsible for getting the appli-
cation run on a compute cluster. The framework integrates
well with popular batch systems, like SLURM, to spawn the
profiling jobs. This helps the user to seamlessly submit jobs
on to the HPC clusters for profiling and analysis.

8) Dedicated web interface: The framework receives input
parameters from web interface so overall it functions as web
application from where users can submit jobs and navigate, vi-
sualize application performance details.Framework is designed
such as architecture details,topology of process/thread id and
data visualization aspects helps developer to analyze details in
better way.

C. Usage and Experiment

The HPC profiler and analyser framework has been used
to identify bottlenecks and fixes on a compute cluster with
8 nodes. The nodes have dual Intel(R) Xeon(R) Gold 6126
CPUs with 12 cores on each, along with 96GB of RAM and
1TB of storage. We are also planning to deploy and run the
HPC profiler and analyser HPC cluster with higher number of
nodes.

We have experimented with k-means clustering and n-
body MPI applications. Initially we submitted the k-means
clustering MPI application with input data of 10k number of
sites per process, and 100 clusters in 100 dimensions. The
compilation was carried out with “–O3” optimization option.
We could get an average execution time of 27.8 seconds from
5 submissions with 8 processes.

Preliminary application categorization detected most of the
time spent by user application is disseminated in application
code and MPI library calls. This directed the user to explore
potential issues in both user code and MPI region. The
software highlighted the hotspots in user code at multiple
granularity levels and code sections of these hotspots are
further analysed statically. The analysis of these hotspots
revealed very low vectorization ratio. The software further
suggested the options to maximize the utilization of vector
units with respect to the current architecture.

It also suggested the changes required in the data structures
to make it more cache-memory friendly, like changing the
array of structures to a structure of array. Initial TMAM
analysis highlighted that most of the hotspot’s areas of the
application are inclined towards core bound operations.

After accommodating the above suggestions, we observed
that the execution took 20.47 seconds with the same input data,
giving a 26% reduction in average execution time compared

TABLE I
APPLICATION EXPERIMENTS

Application Exec time(unopt) Exec time(opt) Reduction(%)
K-means 27.8 20.47 26
N-Body 5.9 4.22 28

Matrix Multiplication 150 132 12
2D Heat Equation 35.55 19.06 46
2D Navier Stokes 25.84 20.80 19

NPB-IS 74.6 69.7 6

to the runs without the suggested optimizations, and it was
observed that the performance of application has improved.

In the case of N-body MPI application, we ran the simu-
lation with 10k particles and 1k iterations as inputs and for
24 processes. It took 5.9 seconds. We let the n-body appli-
cation run through our software for performance bottlenecks
identification and suggestions.

Preliminary application categorization detected most of the
time spent is in application code. This guided the user to
explore potential optimizations in user code only. The static
analysis highlighted that the application is not efficiently
making use of the capabilities available in the processor. The
analysis indicated the traces of partial vectorization in the
hotspot sections of the application. The analysis also detected
the data structures that are not compliant for efficient read and
write operations. The framework gave suggestions to improve
the vectorization ratio and to avoid mixing different data types
in the loops. The software also brought out the instruction level
conversions that are costly. Initial TMAM analysis brought out
that the application is inclined towards backend bound.

After incorporating the suggestions, we observed the exe-
cution time is reduced to 4.22 seconds, a reduction of 29% in
execution time.

Similarly, we have used the framework to analyze other
applications, like Matrix Multiplication, 2D Heat Equations,
2D Navier Stokes Equation and NPB-IS benchmark. The de-
tails of the execution with and without bottleneck improvement
suggestions, along with reduction in execution time are given
in the Table 1.

IV. USECASE DESCRIPTION

The framework we developed is trying to address the chal-
lenges faced by the application developers in improving the
performance of the application. The challenges are addressed
at multiple facets. First, we put together multiple existing
free and open-source profiling tools, like Perf, LProf and
CQA from MAQAO to work for identifying bottlenecks and
generating performance improvement suggestions. The steps
of execution, analysis and decision making followed in the
framework are governed by the behaviour of the application
at the runtime. The framework orients the direction of profiling
based on the sections which make a larger impact with respect
to the performance footprint. The execution of application
is carried out in a way to ensure that the performance data
collection and performance analysis is oriented towards the
sections where there is a greater potential of performance



impact. The information gathered during the run is analysed
through our own analysis sections to decide the further course
of action in the application performance improvement.

The user submits the compiled application with “-g” to the
framework. Our framework does not require any modification
or insertion of hooks/probes in the source code. The only
configuration required is related to the job submission for the
cluster.

The key use cases of the HPC profiler framework are auto-
mated performance analysis, bottleneck and granularity-based
performance analysis, and constructive suggestion generation.

A. Automated performance analysis

HPC applications are inherently complex in nature owing
to the magnitude of the problems they address, and the
programming methodologies used to exploit the HPC hard-
ware resources. And the performance analysis of the HPC
applications require specialized domain expertise and in-depth
understanding of the hardware resources. This makes the
performance analysis of the HPC application complex to an
average application developer. Hence, most of the application
developers heavily rely on tools on performance analysis.
Tools also require a great level of user interference and actions
to achieve the required performance improvements to the ap-
plications. This necessitates need of an automated performance
analysis that can take away the hardships involved in HPC
performance analysis.

The HPC Profiler framework embarks on the automated
performance analysis to help the application developers in
carrying out the performance analysis and to constructively
improve the performance. The framework collects the required
inputs from the users and frames the batch scripts to submit
on to the HPC cluster and analyse the application execution.
The analysed data is processed to identify the potential areas
of issues in performance. The framework uses heuristics and
analyse the application based on its behaviour at various
granularity levels like application computation, node level,
process level and thread levels. This automated way of analysis
by the HPC profiler framework helps the user to simplify
the procedures involved in improving the HPC applications
performance.

B. Bottleneck and granularity-based performance analysis

The HPC profiler framework helps the application developer
to focus on specific areas of interest in performance analysis.
The developer can select various granularity of bottlenecks
where the framework must focus for analysis to bring out the
hotspots and the suggestions for overcoming the identified
issues at different granularity levels. The area of analysis
will be focused on the specific granularity levels spanning
from application level, node level, process, and thread level.
If an application developer wishes to profile the application
to cater to computation aspects at process level, the HPC
profiler framework can be made to run through the required
phases of execution, analysis and decision making to bring out
the bottlenecks and suggestions catering to the computational

aspects of the application. This helps in finetuning the HPC
application for a specific system.

C. Constructive suggestion generation

The most challenging part of application profiling and
analysis is identifying the hotspots and bringing out the ways
and means to overcome the issues prevailing in the hotspots. It
requires a considerable effort and expertise to arrive at a con-
structive solution, and to bring out modifications in and around
the application that can accomplish performance improvement.
After the analysis, the framework shows the constructive
suggestions, potential gain, and workarounds. Suggestions
could be source restructuring, configuration changes, compiler
optimizations, hardware changes, fine-tuning the environment,
load balancing the execution, memory optimization, input-
output optimization, optimizing the communication between
the processes, use of better data-structure etc. In this direction,
we have brought in various heuristics to provide verbose
suggestions in respective bottlenecks that can bring in positive
improvement in performance of the application.

V. FUTURE WORK

The current HPC Profiler Analysis Framework supports
performance profiling and bottleneck detection of the OpenMP
and MPI applications on an HPC cluster. We will be carrying
out the deployment of the framework on a HPC cluster with
higher number of nodes and cores. Additionally, we are also
working on incorporating performance analysis of the HPC
applications, which includes accelerator programs like CUDA,
OpenACC and SYCL. Subsequently, we also plan to include
bottleneck detections and refined performance improvement
suggestions in multiple dimensions by using Large Language
Models. Further, we will incorporate mechanisms to repair and
fix the bottlenecks based on the user’s selection choices for
the performance.

VI. CONCLUSION

In this paper, we have explained the software framework
developed to effectively identify and analyse performance bot-
tlenecks and generation of possible suggestions through static
and dynamic approaches. The software can highlight various
critical bottlenecks of an application inside its hotspot areas
under consideration, which are identified for the currently
available computing resources. The framework modules carry
out analysis at multiple granularity levels to localize the area
of a bottleneck. The meaningful suggestions generated by
the framework assist the developers to achieve performance
improvements in their applications. We have implemented
the profiling framework by making use of the existing free
and open-source components. These framework will allow the
users and application developers to make their applications
perform better , by identifying the bottleneck areas and incor-
porating potential suggestions for performance improvement.



REFERENCES

[1] Williams, J.J., Tskhakaya, D., Costea, S., Peng, I.B., Garcia-Gasulla,
M., Markidis, S. (2024). Leveraging HPC Profiling and Tracing Tools
to Understand the Performance of Particle-in-Cell Monte Carlo Simu-
lations. In: Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing
Workshops. Euro-Par 2023. Lecture Notes in Computer Science, vol
14351. Springer, Cham.

[2] Tan, S., Jiang, Q., Cao, Z. et al. Uncovering the performance bottleneck
of modern HPC processor with static code analyzer: a case study on
Kunpeng 920. CCF Trans. HPC 6, 343–364 (2024).

[3] Gravelle, B. (2019, March). Understanding the Performance of HPC
Applications. https://ix.cs.uoregon.edu/ gravelle/Brian Area Paper.pdf.

[4] Rocha, Rodrigo CO, et al. ”Vectorization-aware loop unrolling with
seed forwarding.” Proceedings of the 29th International Conference on
Compiler Construction. 2020.

[5] Chen, Yishen, Charith Mendis, and Saman Amarasinghe. ”All you need
is superword-level parallelism: systematic control-flow vectorization
with SLP.” Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation.
2022.

[6] O. H. Mondragon, P. G. Bridges, S. Levy, K. B. Ferreira and P.
Widener, ”Understanding Performance Interference in Next-Generation
HPC Systems,” SC ’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2016,
pp. 384-395, doi: 10.1109/SC.2016.32.

[7] Malony, A. D., Ramesh, S., Huck, K., Chaimov, N., & Shende, S.
(2019, August). A plugin architecture for the tau performance system. In
Proceedings of the 48th International Conference on Parallel Processing
(pp. 1-11).

[8] Madsen, Jonathan R., et al. ”TiMemory: modular performance analysis
for HPC.” International Conference on High Performance Computing.
Springer, Cham, 2020.

[9] Deakin, T.,& McIntosh-Smith, S. (2020, April). Evaluating the per-
formance of HPC-style SYCL applications. In Proceedings of the
International Workshop on OpenCL (pp. 1-11).

[10] Knobloch, M., & Mohr, B. (2020). Tools for gpu computing–debugging
and performance analysis of heterogenous hpc applications. Supercom-
puting Frontiers and Innovations, 7(1), 91-111.

[11] Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V. J., ... &
Coskun, A. K. (2017, June). Diagnosing performance variations in HPC
applications using machine learning. In International Supercomputing
Conference (pp. 355-373). Springer, Cham.

[12] Lehr, J. P. (2016). Counting performance: hardware performance counter
and compiler instrumentation. Informatik 2016.

[13] Machado, R. S., Almeida, R. B., Jardim, A. D., Pernas, A. M., Yamin, A.
C., & Cavalheiro, G. G. H. (2017, October). Comparing performance
of C compilers optimizations on different multicore architectures. In
2017 International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW) (pp. 25-30). IEEE.

[14] Palomares, V., Wong, D. C., Kuck, D. J., & Jalby, W. (2016). Evaluating
out-of-order engine limitations using uop flow simulation. In Tools for
High Performance Computing 2015 (pp. 161-181). Springer, Cham.

[15] Pedretti, K. (2019). Experiences Scaling a Production Arm Super-
computer (No. SAND2019-11171C). Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

[16] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-
Crummey, J.,& Tallent, N. R. (2010). HPCToolkit: Tools for per-
formance analysis of optimized parallel programs. Concurrency and
Computation: Practice and Experience, 22(6), 685-701.

[17] Shende, S. S., & Malony, A. D. (2006). The TAU parallel performance
system. The International Journal of High Performance Computing
Applications, 20(2), 287-311.

[18] Marowka, A. (2011, September). On performance analysis of a mul-
tithreaded application parallelized by different programming models
using intel vtune. In International Conference on Parallel Computing
Technologies (pp. 317-331). Springer, Berlin, Heidelberg.

[19] Marques, D., Duarte, H., Ilic, A., Sousa, L., Belenov, R., Thierry, P.,
& Matveev, Z. A. (2017, July). Performance analysis with cache-aware
roofline model in intel advisor. In 2017 International Conference on High
Performance Computing & Simulation (HPCS) (pp. 898-907). IEEE.

[20] Zhukov, I., Feld, C., Geimer, M., Knobloch, M., Mohr, B., & Saviankou,
P. (2015). Scalasca v2: Back to the future. In Tools for high performance
computing 2014 (pp. 1-24). Springer, Cham.

[21] Meng, K., & Norris, B. (2017, September). Mira: A framework for static
performance analysis. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER) (pp. 103-113). IEEE.

[22] Mantovani, F., & Calore, E. (2018). Performance and power analysis of
HPC workloads on heterogeneous multi-node clusters. Journal of Low
Power Electronics and Applications, 8(2), 13.

[23] Molka, D., Schöne, R., Hackenberg, D., & Nagel, W. E. (2017, April).
Detecting memory-boundedness with hardware performance counters.
In Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering (pp. 27-38).

[24] Luecke, G. R., Groth, B. M., Weeks, N. T., & Kraeva, M. (2017,
April). Comparing Allinea’s and Intel’s performance tools for HPC. In
Proceedings of the 25th High Performance Computing Symposium (pp.
1-12).

[25] Wolf, F., Bischof, C., Calotoiu, A., Hoefler, T., Iwainsky, C., Kwas-
niewski, G., ... & Wittum, G. (2016). Automatic performance modeling
of hpc applications. In Software for Exascale Computing-SPPEXA
2013-2015 (pp. 445-465). Springer, Cham.

[26] Yasin, A. (2015). Software Optimizations Become Simple with Top-
Down Analysis Methodology on Intel Microarchitecture, Code Name
Skylake. In Intel Developer Forum.

[27] Yoo, W., Koo, M., Cao, Y., Sim, A., Nugent, P., & Wu, K. (2015, De-
cember). Patha: Performance analysis tool for hpc applications. In 2015
IEEE 34th International Performance Computing and Communications
Conference (IPCCC) (pp. 1-8). IEEE.

[28] Agelastos, A., Allan, B., Brandt, J., Gentile, A., Lefantzi, S., Monk, S.,
... & Stevenson, J. (2015, September). Toward rapid understanding of
production HPC applications and systems. In 2015 IEEE International
Conference on Cluster Computing (pp. 464-473). IEEE.

[29] Collins, W., Martinez, D. T., Monaghan, M., Munishkin, A. A.,
Blenkhorn, A. R., Graf, J. S., ... & Linford, J. C. (2015). Compari-
son of Performance Analysis Tools for Parallel Programs Applied to
CombBLAS. UMBC Student Collection.

[30] Shamjith, K.V., Mangala, N., Deepika, H.V, & Pandey, P. (2019).
Dynamic Adaptation of Application Execution on Heterogeneous Ar-
chitectures. 2019 10th International Conference on Computing, Com-
munication and Networking Technologies (ICCCNT), 1-8.

[31] Lebras, Y. (2019). Code optimization based on source to source transfor-
mations using profile guided metrics (Doctoral dissertation, Université
Paris-Saclay (ComUE)).

[32] Doweck, J., Kao, W. F., Lu, A. K. Y., Mandelblat, J., Rahatekar, A.,
Rappoport, L., ... & Yoaz, A. (2017). Inside 6th-generation intel core:
New microarchitecture code-named skylake. IEEE Micro, 37(2), 52-62.

[33] Leiserson, C. E., Thompson, N. C., Emer, J. S., Kuszmaul, B. C.,
Lampson, B. W., Sanchez, D., & Schardl, T. B. (2020). There’s plenty of
room at the Top: What will drive computer performance after Moore’s
law?. Science, 368(6495).

[34] Randall Hyde. 2009. The Fallacy of Premature Optimization.
Ubiquity 2009, February, Article 1 (February 2009), 5 pages.
DOI:https://doi.org/10.1145/1569886.1513451

[35] X. Tian et al., ”Practical SIMD Vectorization Techniques for Intel®
Xeon Phi Coprocessors,” 2013 IEEE International Symposium on Par-
allel & Distributed Processing, Workshops and Phd Forum, Cambridge,
MA, USA, 2013, pp. 1149-1158, doi: 10.1109/IPDPSW.2013.245.

[36] Cebrián, J.M., Natvig, L. & Meyer, J.C. Performance and energy impact
of parallelization and vectorization techniques in modern microproces-
sors. Computing 96, 1179–1193 (2014)

[37] Dursun, H., Kunaseth, M., Nomura, Ki. et al. Hierarchical paralleliza-
tion and optimization of high-order stencil computations on multicore
clusters. J Supercomput 62, 946–966 (2012).

[38] Nikitenko, D. A., Shvets, P. A., & Voevodin, V. V. (2020). Why do Users
Need to Take Care of Their HPC Applications Efficiency?. Lobachevskii
Journal of Mathematics, 41(8), 1521-1532..

[39] Klôh, V., Yokoyama, D., Yokoyama, A., Silva, G., Ferro, M., & Schulze,
B. (2018, October). Performance and energy efficiency evaluation for
HPC applications in heterogeneous architectures. In 2018 Symposium
on High Performance Computing Systems (WSCAD) (pp. 162-169).
IEEE

[40] Abraham, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E. B., Kondov,
I., ... Streit, A. (2015, September). Preparing HPC applications for


