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Abstract— The emergence of ARM-based architectures in 

high-performance computing (HPC) has necessitated a closer 

examination of compiler behaviors and optimizations. This 

paper investigates the performance and optimization 

capabilities of GCC and LLVM compilers for Aarch64 

processors on HPC workloads. We focus on ARM-based HPC 

processors used in systems like Grace Hopper and Fujitsu 

A64FX, emphasizing on their implementations of the Scalable 

Vector Extension (SVE) and other architectural features that 

enhance performance. Through comprehensive benchmarking, 

including vectorization analysis with the Test Suite for 

Vectorizing Compilers (TSVC), we evaluate the performance 

of the compilers based on execution times, applied 

optimizations, and code portability across these systems. By 

comparing recent versions of GCC (v14) and LLVM (v18) with 

their previous versions, we highlight performance 

improvements and identify optimization gaps. Our analysis of 

assembly code offers insights into vectorization, register 

allocation, and SIMD instruction generation, providing 

valuable recommendations for future compiler enhancements. 

This study aims to give insights for the development of more 

efficient compilers, ultimately advancing the performance of 

Aarch64-based HPC systems. 

Keywords— Compilers, ARM, HPC, Vectorization, TSVC, 

GCC, LLVM, SVE 

I. INTRODUCTION 

The architecture of a computer system has significant 
impact on the design of compilers. A well-designed compiler 
can make a considerable difference in the performance of an 
application. For this, the compiler must be able to generate 
code that is efficient for the specific architecture. For 
example, a compiler for RISC (Reduced Instruction Set 
Computer) architecture will need to generate different code 
than a compiler for CISC (Complex Instruction Set 
Computer) architecture [1].  

Traditionally, CISC machines have a more complex 
instruction set since a single instruction can involve multiple 
operations. Therefore, the burden of achieving the desired 
performance falls more on the high-level language program 
code, essentially through the compiler, than on the software. 
RISC machines on the other hand, usually perform only one 
operation within an instruction, which simplifies the 
implementation but shifts the burden from the hardware to 
the software. The compiler must also take into account the 
specific instructions that are available on the processor with 
respect to the architecture of the computer system. For 
example, a compiler for a processor that has a floating-point 
unit will need to generate code that uses the floating-point 
unit when possible. This is because the floating-point unit 
can perform floating-point operations more efficiently than 
the general-purpose registers on the processor. This makes 
compiler design and development more critical and complex 

that must take into account many factors, including the 
architecture of the computer system, the instructions that are 
available on the processor, and the specific needs of the 
application. 

Until recently, the CISC architecture i.e., x86/x86_64 
was the de facto standard for HPC [2] systems, and these 
systems outperformed the RISC-based systems. the HPC 
landscape has seen a significant shift with the introduction of 
ARM-based architectures, Aarch64. ARM processors [3] are 
renowned for their energy efficiency, cost-effectiveness, and 
increasingly competitive computational power, making them 
attractive alternatives for x86_64 HPC systems. This shift is 
exemplified by the deployment of ARM-based 
supercomputers like Fugaku [4], which demonstrated 
exceptional performance and energy efficiency. Another 
reason for this is the use of better and efficient compiler and 
other system software. 

This paper focuses on the Compiler behavior and 
performance on prominent ARM-based processors such as 
Grace Hopper and A64FX [5], emphasizing their 
implementations of Scalable Vector Extension (SVE) and 
SVE2 [6][7]. Through comprehensive benchmarking, 
including vectorization analysis with the Test Suite for 
Vectorizing Compilers (TSVC) [8][9], we evaluate execution 
times, optimizations, and code portability across SVE and 
NEON. We compare the latest versions of GCC [10] and 
LLVM [11], and with their previous versions, highlighting 
the performance improvements and identifying optimization 
gaps. 

The paper is structured as follows: Section II provides an 
overview of related work on compilers and the high-end 
ARM processors. Sections III and IV discuss the 
benchmarking and analyzes the behavior of the compiler on 
the Aarch64 in different HPC workloads. Section V presents 
optimization opportunities for GCC and LLVM. Finally, the 
paper concludes with a summary of our findings and insights 
which would help developers contribute to improving the 
performance further in these HPC systems. 

II. RELATED WORK 

While ARM architectures offer significant potential, 
realizing their benefits in HPC requires a deep understanding 
of how compilers optimize for these platforms. Compilers 
like GCC and LLVM must effectively exploit ARM's unique 
features, such as SVE and NEON (Advanced SIMD), to 
achieve optimal performance. This involves sophisticated 
optimizations in areas like vectorization, register allocation, 
and SIMD instruction generation. 

Previous research has explored various aspects of ARM 
HPC performance, highlighting the need for efficient 
compiler optimizations and examined the performance 



characteristics of these aarch64 processors in comparison to 
other architectures commonly used in HPC, such as x86_64. 
These studies [12][13][14] have highlighted the potential of 
ARM architectures in delivering competitive performance in 
HPC workloads. Notably, the Scalable Vector Extension 
(SVE) has been of significant interest. SVE provides scalable 
vector lengths, allowing for better utilization of vector 
processing capabilities. Previous research has explored the 
benefits of SVE instructions for improving performance in 
mathematical computation.  

While existing research has made substantial 
contributions to understanding the new aarch64 processors 
and its implications for HPC systems, this paper aims to 
present new experimentation results and performance 
evaluation of the latest version of the top-tier open-source 
compilers like GCC and LLVM on these aarch64 systems 
and their capability for optimizing HPC workloads. 

III. EXPERIMENTAL SETUP 

A. Target Compiler 

We used two popular open-source compilers [15][16]: 
GCC v14.1 and LLVM v18.1. Both compilers have been 
around for many years and have been extensively developed, 
improved, and tested. In addition, GCC and LLVM are 
trustworthy and stable compilers that are known to manage 
complex codebase and produce effective machine code. The 
front-ends of GCC and LLVM share similar capabilities that 
allow them to read source code written in C, C++, Fortran, 
Java, and other programming languages to generate 
Intermediate Representation (IR), which is optimized by the 
target independent optimizer and pass it to the back-end. The 
back-end then translates the optimized IR into target-
dependent assembly code.  

 

Fig. 1. GCC Structure  

For GCC, the IR (known as GIMPLE) is passed multiple 
times through SSA, to produce RTL. The GIMPLE to RTL 
conversion involves generating RTL expressions, defining 
register assignments, and handling control flow. This is done 
by comparing the IR with the existing RTL templates by the 
GCC back-end. RTL again undergoes additional low-level 
optimizations, such as instruction scheduling, register 
allocation, and target-specific transformations to form 
optimized RTL which is fed into the machine code 
generation phase. LLVM on the other hand takes a more 
modular and customizable approach to code generation. It 
leverages a powerful intermediate representation (IR) called 
LLVM IR, which allows for more advanced optimizations 
and transformations. LLVM IR has its format in SSA with its 

own set of virtual registers. LLVM’s code generation 
process, having LLVM IR as an input, involves a series of 
machine function passes, where each LLVM instruction 
transforms. After each transformation, the representation is 
nearer to the actual machine code. These passes work in a 
pipeline fashion, analyzing and transforming the LLVM IR 
to generate efficient assembly code. 

 

Fig. 2. LLVM Structure 

One of the fundamental differences between GCC and 
LLVM is that GCC has a separate back-end for each target 
architecture, while LLVM has a single back-end that can be 
used for multiple architectures. This makes LLVM more 
flexible and easier to maintain, but it may also lead to 
suboptimal performance on some architectures.  

Another difference between GCC and LLVM is the way 
they select instructions. While GCC uses a Pattern-matching 
approach for instruction selection while LLVM takes a table-
driven approach based on a target description. 

B. Target Machines 

a) Grace Hopper [17]: The NVIDIA Grace CPU, 

based on ARMv9 architecture, features up to 148 cores 

running at high performance frequencies, optimized for HPC 

and AI workloads. It supports LPDDR5x memory with up to 

1 TB/s bandwidth and includes private L1 caches for each 

core, shared L2 caches among clusters of cores, and a large 

shared L3 cache. With high-speed interconnects like 

NVIDIA NVLink, the Grace CPU ensures fast 

communication between CPUs and GPUs. Integrated with 

NVIDIA Hopper GPUs, it leverages Tensor cores and 

CUDA support for enhanced performance, making it good 

choice for supercomputing environments. 

b) Fujitsu A64FX: It comes with ARM A64FX 

processor, HPC processor designed by Fujitsu that is based 

on the extended ARMv8.2-a architecture. The processors 

have 48 cores and can run at a base frequency of 1.8 GHz - 

2.2 GHz depending on the implementation. TofuD or 

100Gbps InfiniBand networking is utilized with a single 

socket set up for them. HBM2 memory, which was solely 

used on GPUs is now being used in this CPU, is organized in 

four stacks. Each stack has a direct connection to a Core 

Memory Group (CMG), which consists of 12 cores. Level 1 

caches are private to each core, however Level 2 caches in a 

CMG are shared by all of the cores. Each CMG appears to 

the operating system as a separate NUMA node 



C. Benchmark Selection 

To assess the performance and optimization capabilities 
of GCC and LLVM for our target machines, we conducted 
benchmarking with some of the selected benchmarks. These 
benchmarks provide insights on various aspects of the 
compilers' performance, including their ability to handle 
various workloads and how they optimize code for specific 
computational tasks. Note that, here we have taken only 
single node performance of any given app into consideration 
and the results and observation could be different when 
executed in a multi-node cluster. When considering these 
results, it should also be noted that we have not optimized 
any of the benchmarks for the target system. We have 
implementation each of the given benchmark with OpenMP 
except GEMM. 

GEMM focuses on matrix-matrix multiplication, a 
fundamental operation in many scientific and numerical 
computing applications. It is of time complexity O(n3). It 
tests the compilers' ability to optimize memory access 
patterns and how efficiently it utilizes the available hardware 
resources. When evaluating the performance of the 
compilers, we take into account the execution time 
(measured in seconds). 

BabelStream [18], evaluates memory bandwidth and 
latency performance by measuring the throughput of 
different memory access patterns. It uses memory bandwidth 
bound kernels: Copy, Mul, Add, Traid and Dot. Using the 
best-performing iteration, the benchmark calculates the 
average bandwidth with respect to the array size of each 
input. 

HPCG (High-Performance Conjugate Gradient) [19], 
tests the efficiency of sparse linear algebra computations and 
memory hierarchy usage. For HPCG, at least 1800 seconds 
(30 minutes) should pass throughout the official run. 

MiniBude [20], is a molecular dynamics application that 
involves both floating-point computations and memory 
operations, requiring efficient handling of data dependencies 
and parallelism. It accepts an input deck, the number of 
poses, and the iteration as parameters. For our 
experimentation, we left everything as default, using the bm1 
deck at 65536 poses for 8 iterations for the results to be 
consistent. 

IV. ANALYSIS OF COMPILER BEHAVIOUR 

A. Assembly Code 

We investigated the behaviour exhibited by the GCC and 
LLVM compilers, aiming to gain insights into their assembly 
code generation, compilation time, etc. with GEMM. The 
assembly code we considered is with the highest 
optimization level (-Ofast) and SVE is enabled for A64FX 
and Grace Hopper with the flags -march=armv8.2-a+sve and 
–march=native respectively for both GCC and LLVM. We 
used –msve-vector-bits=<n> for LLVM to set the SVE 
length because without this flag LLVM tend to use NEON. 
The argument value is 512 for A64FX and 256 for Grace 
Hopper. 

 Both the compiler generates assembly code that 
performs similar operations such as load, store, arithmetic, 
and control flow. However, there are differences in the 
assembly code size and the specific instructions used as we 
observed for GEMM. LLVM operates on independent 

modules. This modular design and the inclusion of additional 
metadata and information required for analysis and 
optimization purposes for each compiler unit, contribute to 
the increased code size in LLVM's assembly output.  

 LLVM's assembly code appears to utilize more 
vector registers (21 Z-registers) compared to GCC's code (3 
Z-registers), potentially indicating different register 
allocation strategies. Using these SIMD registers, both the 
compiler decides to perform vectorization, but LLVM 
decides to perform multiply add vector and two separate 
fused multiply, indicating the use of loop unrolling to 
maximize efficiency in the computation. GCC on the other 
hand takes a different approach and decides to perform a 
single instance fused multiply-add, movprfx and floating 
point add vector operations. We could also see the use of 
inlining in LLVM, demonstrating more aggressive nature of 
optimization.   

 Additionally, The differences in control flow 
instructions (e.g., "whilelo", "b.any", “b.le” in GCC and 
"b.ne", "cmp", "b.eq", etc. in LLVM) are a result of 
variations in the compilers' control flow optimization 
strategies. These differences can be attributed to how GCC 
and LLVM handle loop optimizations, branch predictions, 
and control flow restructuring. The choice of optimization 
level can significantly impact the generated instructions, 
code size, and performance of the compiled code.  

 It is important to note that the size of the assembly 
code alone does not necessarily indicate the performance or 
efficiency of the generated code. The choice of instructions, 
their ordering, and the overall optimization strategies 
employed by the compilers play a significant role in 
determining the code’s quality and performance 
characteristics. The choice of optimization level can 
significantly impact the generated instructions, code size, and 
performance of the compiled code. Higher optimization 
levels tend to produce more complex and specialized 
instructions that exploit more advanced optimization 
techniques. For e.g., -O3 introduces more aggressive 
optimizations than -O2, including advanced loop 
transformations, inter-procedural optimizations, and 
automatic vectorization which aim to maximize performance 
but may increase the code size and compilation time. 

B. Compilation Time 

We captured the compilation time for different programs 
using both GCC and LLVM compilers. The results show 
that, in general, GCC exhibits longer compilation time 
compared to LLVM, indicating that GCC requires more time 
for performing optimizations. For GCC, Parsing and 
preprocessing constitute a significant portion of the 
compilation time (up to 57%). The optimization phase, 
including vectorization and loop transformations, takes again 
a substantial amount of time (43%). Despite these 
optimizations, there are gaps where GCC misses 
opportunities, primarily due to the complexity of certain 
functions and unpredictable memory access patterns. On the 
other hand, LLVM’s compilation time is primarily 
influenced by instruction selection, Clang front-end 
processes, and scheduling. The impact of automatic 
vectorization on the overall compilation time is relatively 
low for both compilers. Notably, the compilation time for 
GEMM with GCC shows fluctuations between multiple runs. 
Note that this performance is considered without enabling 



any external projects of LLVM like Polly [21] which likely 
will increase the compilation time drastically. 

Both GCC and LLVM employ various optimizations, 
including loop fission, loop fusion, loop unrolling, constant 
folding, and eliminating empty loops. These optimizations 
involve steps like Loop Recognizer, Loop Dependence 
Analysis, and Loop Optimizer. While these steps do not 
significantly increase the compilation time, they do impact 
the effectiveness and efficiency of the optimizations 
performed. 

C. Porting of Executables 

We attempted porting the SVE executables for GEMM 
and observed the interesting results. When running on the 
same machine, on Grace Hopper, GCC's performance for 
GEMM was both the best and most consistent on both 
machines. When compiling with -march=native -msve-
vector-bits=<n> to generate SVE code in Clang, we observed 
that with n=256, the results were correct. With n=512, 1024, 
and 2048, the results were incorrect and as the vector size 
increased, the computations were increasingly skipped, 
resulting in a progressively lower resultant matrix value. On 
A64fx, the results were consistent for both GCC and LLVM. 
After porting, even when compiling with different vector 
sizes, the results remained consistent on Grace Hopper and 
took the same time as n=256. The compiler targeting A64FX 
architecture is producing more portable binaries, while 
accommodating the characteristics of SVE  

D. Vectorization Analysis with TSVC 

To know the vectorization characteristics of the compiler 
in a better way, we selected the TSVC benchmark. TSVC or 
Test suite for Vectorizing compiler is a benchmark suite 
designed to measure the performance of compilers and 
processors for vector and SIMD instructions. The benchmark 
suite contains a set of programs that make use of vector and 
SIMD instructions to perform various computational tasks. 
Table I contains of some of the results of the TSVC 
benchmark tried with GCC and LLVM with SVE  enabled. 

TABLE I.  TSVC LOOPS SAMPLES WITH EXECUTION TIME 

LOOPS 
Grace Hopper Fujitsu A64FX 

GCC LLVM GCC LLVM 

s115 0.587 6.359 3.626 31.645 

s118 1.804 0.388 15.552 13.009 

s221 1.084 2.057 8.470 16.574 

s231 0.049 4.158 0.432 41.105 

s1232 0.749 2.916 29.789 24.468 

a. Time in seconds 

The analysis of GCC and LLVM vectorization 
performance on Grace Hopper and Fujitsu A64FX 
architectures reveals distinct strengths and weaknesses of 
each compiler, influenced by the nature of the loops and the 
target architecture. On the Grace Hopper architecture, GCC 
generally excels in vectorizing simpler loop constructs. For 
instance, in the triangular saxpy loop (s115), GCC performs 
significantly better than LLVM, indicating its efficiency in 
handling memory dependencies and utilizing SIMD 
instructions effectively. Similarly, in partially recursive loops 
(s221), GCC shows superior performance, likely due to its 
effective loop distribution and vectorization of independent 
operations. However, GCC's performance is not universally 

superior; in the interchanging triangular loops (s1232), 
LLVM outperforms GCC, revealing LLVM's strength in 
optimizing more complex loop patterns on Grace Hopper. 

 On the other hand, LLVM demonstrates exceptional 
performance in specific scenarios on Grace Hopper. For 
example, in potential dot product recursion (s118), LLVM 
significantly outperforms GCC, suggesting that LLVM's 
optimization techniques handle recursive dependencies more 
efficiently. However, LLVM struggles with certain loop 
constructs, such as the loop interchange with data 
dependency (s231), where it performs poorly compared to 
GCC. 

The performance trends differ on the Fujitsu A64FX 
architecture. Here, GCC generally shows better performance 
than LLVM for several loop constructs. For instance, in the 
triangular saxpy loop (s115) and loop interchange with data 
dependency (s231), GCC outperforms LLVM by a wide 
margin, indicating effective vectorization and optimization 
for these patterns. However, GCC faces significant 
challenges with more complex loops, such as the 
interchanging triangular loops (s1232), where its 
performance drops dramatically. Conversely, LLVM, despite 
its overall slower performance, handles this complex loop 
pattern better than GCC, suggesting its optimization 
strategies. Understanding these nuances is crucial for 
selecting the appropriate compiler and optimization 
strategies tailored to their specific workload and target 
architecture. 

E. Performance Benchmarking 

To ensure a fair comparison between GCC and LLVM on 
both the Grace Hopper and Fujitsu A64FX architectures, we 
meticulously configured the compilation and runtime 
environments. We enabled the -O3 and -Ofast optimization 
flags for both GCC and LLVM. The -Ofast flag, in 
particular, activates the -ffast-math flag, which allows a 
broad range of optimizations by relaxing strict adherence to 
the IEEE 754 standard for floating-point arithmetic. Auto-
vectorization, crucial for ARM architecture, is enabled at -
O2 or higher as of GCC v14.1. For targeting the SVE 
(Scalable Vector Extensions) on A64FX and Grace Hopper, 
we used the flags -march=armv8.2-a+sve -msve-vector-
bits=512 for A64FX and -march=armv9-a+sve for Grace 
Hopper. In addition to compiler optimizations, we set several 
environment variables to control system behaviour and 
resource allocation. We configured large page settings with 
XOS_MMM_L_PAGING_POLICY=demand:demand:dema
nd and set XOS_MMM_L_ARENA_LOCK_TYPE=0 to 
influence memory management. For OpenMP 
parallelization, we specified OMP_PROC_BIND=close and 
OMP_PLACES={0:47:1} to ensure efficient and similar 
thread placement and binding. Additionally, we also utilized 
all available cores on the Grace Hopper machine to gauge 
peak performance. 

 BabelStream: On A64FX, the best performance is seen 
with LLVM with SVE 647 GB/s which is 22% more than the 
peak performance of GCC. On Grace Hopper, both the 
compilers performed closely but LLVM outperformed GCC 
for Traid operation with a difference of about 50 GB/s. With 
SVE on both A64FX and Grace Hopper, GCC is 
outperformed by LLVM. The A64fx system shows a 
decrease in performance with SVE when using GCC, while 
the Grace Hopper system shows improvements with SVE for 
both compilers, with LLVM showing the most significant 



improvement.  In general, LLVM is seen to get benefitted 
from SVE than GCC on both systems. However, GCC 
outperforms LLVM without SVE on both systems.   

 

Fig. 3. BableStream 

HPCG: LLVM consistently outperforms GCC in terms 
of both execution time and GFLOP/s, particularly when 
Scalable Vector Extension (SVE) is enabled. For instance, on 
the A64FX system, LLVM+SVE achieves 0.61 GFLOP/s for 
the smaller grid (128x128x128), compared to GCC’s 0.36 
GFLOP/s. Similarly, on the Grace Hopper system, LLVM 
reaches 4.05 GFLOP/s for the smaller grid, while GCC only 
achieves 2.85 GFLOP/s. The segmentation faults 
encountered on A64fx for larger grids needs further 
investigation, but this suggests a need for better memory 
handling and compatibility, particularly with larger datasets. 

 

Fig. 4. HPCG 

MiniBude: On the A64fx system, GCC outperforms 
LLVM by a significant margin. On the Grace Hopper 
system, LLVM outperforms GCC, especially when SVE is 
enabled, showcasing LLVM’s superior optimization 
capabilities for this hardware. 

 

Fig. 5. MiniBude 

The performance of GCC and LLVM across the three 
benchmarks exhibits some irregularities. These differences 
are influenced by several factors, including the nature of the 
benchmarks, the specific characteristics of the hardware, and 
the optimization capabilities of the compilers. This in turn 
affects the use of SVE registers and the efficiency of cache 
utilization resulting in varying performance results. LLVM 
consistently outperforms GCC in terms of both execution 
time and GFLOP/s, indicating better optimization 
capabilities for HPC workloads. The improvement in LLVM 
shows the benefit from enhanced vectorization and 
parallelism compared to GCC. Also, higher values of 
GFLOP/s signify more efficient use of computational 
resources, which is crucial for high-performance computing 
(HPC) workloads. While SVE enhances performance, 
GCC+SVE does not leverage this extension as effectively as 
LLVM does. GCC+SVE only marginally improves 
performance for most cases on the Grace Hopper system 
compared to LLVM. 

V. OPTIMIZATION SUGGETIONS 

While both GCC and LLVM provide a wide range of 
features and optimizations, there are notable opportunities 
for enhancing performance on specific targets like the 
A64FX processor. From our analysis, it can be concluded 
that GCC and LLVM exhibit distinct characteristics in terms 
of code generation and optimization, leading to varying 
performance outcomes. GCC needs to improve its support 
for SVE to fully exploit the hardware’s capabilities. This 
could involve more sophisticated vectorization techniques 
and better alignment with ARM architecture specifics.  

GCC provides a plugin framework that allows developers 
to extend the compiler's functionality and introduce custom 
optimizations. These plugins can perform additional analysis, 
transformations, or code generation techniques to enhance 
the optimization process. However, the scope of optimization 
that can be achieved through GCC plugins is limited 
compared to the core optimization features provided by the 
compiler itself. We can create Performance library plugins to 
optimize for specific computations which will give a 
significant performance boost. On the other hand, LLVM's 
extensive and powerful framework, with well-defined APIs, 
allows developers to implement major optimizations 
targeting specific architectural features as part of the 
compiler's optimization passes. Moreover, ongoing projects 
such as Polly and Vplan [22] can enhance LLVM's 
optimization capabilities by introducing advanced loop 
optimizations, vectorization techniques, and improving code 
generation. However, it should be noted that these external 
projects may sometimes introduce compatibility issues and 
other overheads. 

Profiling indicated that GCC had significantly more 
branch instructions and L2 cache misses compared to 
LLVM. GCC was also observed to fail in loop unrolling 
when using SVE. Addressing these areas through more 
sophisticated optimization techniques can contribute to 
substantial performance gains. Additionally, using Profile 
guided optimization and improving vectorization strategies 
can further enhance the effectiveness of both compilers. 

Beyond compiler optimizations, reviewing and 
optimizing the algorithms used in HPCG with the help of 
SVE intrinsics can yield significant performance gains. 
Although we experimented with various optimization flags, 
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there may still be combinations that could further maximize 
performance. By addressing these gaps and implementing 
these suggestions, both GCC and LLVM can enhance their 
optimization capabilities, leading to better performance for 
HPC workloads on aarch64 systems like A64FX and Grace 
Hopper. 

VI. CONCLUSION 

This study comprehensively evaluates GCC and LLVM 
compilers on ARM-based HPC architectures like A64FX and 
Grace Hopper, emphasizing their performance and 
optimization capabilities, particularly with respect to 
Scalable Vector Extension (SVE). LLVM consistently 
demonstrates superior performance metrics, achieving faster 
execution times and higher GFLOP/s rates compared to GCC 
across a range of benchmarks including GEMM, MiniBude, 
and HPCG. This superiority is particularly pronounced when 
SVE is effectively utilized, showcasing LLVM's adeptness in 
exploiting ARM's vector processing capabilities and 
architectural nuances. LLVM's assembly code analysis 
reveals sophisticated optimization strategies such as 
extensive loop unrolling, aggressive use of vector registers, 
and efficient memory access patterns, which contribute to its 
performance advantage. In contrast, GCC, while competitive 
in certain benchmarks like BabelStream on A64FX, exhibits 
longer compilation times and less optimized SVE utilization, 
indicating room for improvement in its handling of ARM-
specific features. Future advancements could focus on 
enhancing GCC's SVE support and refining LLVM's 
memory management optimizations and vectorization to 
further elevate their efficiency in HPC applications on ARM 
architectures. This study will give valuable insights for 
developers and system architects aiming to maximize 
computational efficiency in ARM-based HPC environments, 
guiding future advancements in compiler technologies 
tailored to these platforms. 
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