

Comparative Analysis of GCC and LLVM for

Performance Optimization on Aarch64

Mriganka Bezbaruah, Samruddhi Dhakulkar, Prachi Pandey, Haribabu P, S A Kumar, S D Sudarsan

 Centre for Development of Advanced Computing, Bengaluru, India

{mriganka, samruddhi, prachip, hari, sakumar, sds}@cdac.in

Abstract— The emergence of ARM-based architectures in

high-performance computing (HPC) has necessitated a closer

examination of compiler behaviors and optimizations. This

paper investigates the performance and optimization

capabilities of GCC and LLVM compilers for Aarch64

processors on HPC workloads. We focus on ARM-based HPC

processors used in systems like Grace Hopper and Fujitsu

A64FX, emphasizing on their implementations of the Scalable

Vector Extension (SVE) and other architectural features that

enhance performance. Through comprehensive benchmarking,

including vectorization analysis with the Test Suite for

Vectorizing Compilers (TSVC), we evaluate the performance

of the compilers based on execution times, applied

optimizations, and code portability across these systems. By

comparing recent versions of GCC (v14) and LLVM (v18) with

their previous versions, we highlight performance

improvements and identify optimization gaps. Our analysis of

assembly code offers insights into vectorization, register

allocation, and SIMD instruction generation, providing

valuable recommendations for future compiler enhancements.

This study aims to give insights for the development of more

efficient compilers, ultimately advancing the performance of

Aarch64-based HPC systems.

Keywords— Compilers, ARM, HPC, Vectorization, TSVC,

GCC, LLVM, SVE

I. INTRODUCTION

The architecture of a computer system has significant
impact on the design of compilers. A well-designed compiler
can make a considerable difference in the performance of an
application. For this, the compiler must be able to generate
code that is efficient for the specific architecture. For
example, a compiler for RISC (Reduced Instruction Set
Computer) architecture will need to generate different code
than a compiler for CISC (Complex Instruction Set
Computer) architecture [1].

Traditionally, CISC machines have a more complex
instruction set since a single instruction can involve multiple
operations. Therefore, the burden of achieving the desired
performance falls more on the high-level language program
code, essentially through the compiler, than on the software.
RISC machines on the other hand, usually perform only one
operation within an instruction, which simplifies the
implementation but shifts the burden from the hardware to
the software. The compiler must also take into account the
specific instructions that are available on the processor with
respect to the architecture of the computer system. For
example, a compiler for a processor that has a floating-point
unit will need to generate code that uses the floating-point
unit when possible. This is because the floating-point unit
can perform floating-point operations more efficiently than
the general-purpose registers on the processor. This makes
compiler design and development more critical and complex

that must take into account many factors, including the
architecture of the computer system, the instructions that are
available on the processor, and the specific needs of the
application.

Until recently, the CISC architecture i.e., x86/x86_64
was the de facto standard for HPC [2] systems, and these
systems outperformed the RISC-based systems. the HPC
landscape has seen a significant shift with the introduction of
ARM-based architectures, Aarch64. ARM processors [3] are
renowned for their energy efficiency, cost-effectiveness, and
increasingly competitive computational power, making them
attractive alternatives for x86_64 HPC systems. This shift is
exemplified by the deployment of ARM-based
supercomputers like Fugaku [4], which demonstrated
exceptional performance and energy efficiency. Another
reason for this is the use of better and efficient compiler and
other system software.

This paper focuses on the Compiler behavior and
performance on prominent ARM-based processors such as
Grace Hopper and A64FX [5], emphasizing their
implementations of Scalable Vector Extension (SVE) and
SVE2 [6][7]. Through comprehensive benchmarking,
including vectorization analysis with the Test Suite for
Vectorizing Compilers (TSVC) [8][9], we evaluate execution
times, optimizations, and code portability across SVE and
NEON. We compare the latest versions of GCC [10] and
LLVM [11], and with their previous versions, highlighting
the performance improvements and identifying optimization
gaps.

The paper is structured as follows: Section II provides an
overview of related work on compilers and the high-end
ARM processors. Sections III and IV discuss the
benchmarking and analyzes the behavior of the compiler on
the Aarch64 in different HPC workloads. Section V presents
optimization opportunities for GCC and LLVM. Finally, the
paper concludes with a summary of our findings and insights
which would help developers contribute to improving the
performance further in these HPC systems.

II. RELATED WORK

While ARM architectures offer significant potential,
realizing their benefits in HPC requires a deep understanding
of how compilers optimize for these platforms. Compilers
like GCC and LLVM must effectively exploit ARM's unique
features, such as SVE and NEON (Advanced SIMD), to
achieve optimal performance. This involves sophisticated
optimizations in areas like vectorization, register allocation,
and SIMD instruction generation.

Previous research has explored various aspects of ARM
HPC performance, highlighting the need for efficient
compiler optimizations and examined the performance

characteristics of these aarch64 processors in comparison to
other architectures commonly used in HPC, such as x86_64.
These studies [12][13][14] have highlighted the potential of
ARM architectures in delivering competitive performance in
HPC workloads. Notably, the Scalable Vector Extension
(SVE) has been of significant interest. SVE provides scalable
vector lengths, allowing for better utilization of vector
processing capabilities. Previous research has explored the
benefits of SVE instructions for improving performance in
mathematical computation.

While existing research has made substantial
contributions to understanding the new aarch64 processors
and its implications for HPC systems, this paper aims to
present new experimentation results and performance
evaluation of the latest version of the top-tier open-source
compilers like GCC and LLVM on these aarch64 systems
and their capability for optimizing HPC workloads.

III. EXPERIMENTAL SETUP

A. Target Compiler

We used two popular open-source compilers [15][16]:
GCC v14.1 and LLVM v18.1. Both compilers have been
around for many years and have been extensively developed,
improved, and tested. In addition, GCC and LLVM are
trustworthy and stable compilers that are known to manage
complex codebase and produce effective machine code. The
front-ends of GCC and LLVM share similar capabilities that
allow them to read source code written in C, C++, Fortran,
Java, and other programming languages to generate
Intermediate Representation (IR), which is optimized by the
target independent optimizer and pass it to the back-end. The
back-end then translates the optimized IR into target-
dependent assembly code.

Fig. 1. GCC Structure

For GCC, the IR (known as GIMPLE) is passed multiple
times through SSA, to produce RTL. The GIMPLE to RTL
conversion involves generating RTL expressions, defining
register assignments, and handling control flow. This is done
by comparing the IR with the existing RTL templates by the
GCC back-end. RTL again undergoes additional low-level
optimizations, such as instruction scheduling, register
allocation, and target-specific transformations to form
optimized RTL which is fed into the machine code
generation phase. LLVM on the other hand takes a more
modular and customizable approach to code generation. It
leverages a powerful intermediate representation (IR) called
LLVM IR, which allows for more advanced optimizations
and transformations. LLVM IR has its format in SSA with its

own set of virtual registers. LLVM’s code generation
process, having LLVM IR as an input, involves a series of
machine function passes, where each LLVM instruction
transforms. After each transformation, the representation is
nearer to the actual machine code. These passes work in a
pipeline fashion, analyzing and transforming the LLVM IR
to generate efficient assembly code.

Fig. 2. LLVM Structure

One of the fundamental differences between GCC and
LLVM is that GCC has a separate back-end for each target
architecture, while LLVM has a single back-end that can be
used for multiple architectures. This makes LLVM more
flexible and easier to maintain, but it may also lead to
suboptimal performance on some architectures.

Another difference between GCC and LLVM is the way
they select instructions. While GCC uses a Pattern-matching
approach for instruction selection while LLVM takes a table-
driven approach based on a target description.

B. Target Machines

a) Grace Hopper [17]: The NVIDIA Grace CPU,

based on ARMv9 architecture, features up to 148 cores

running at high performance frequencies, optimized for HPC

and AI workloads. It supports LPDDR5x memory with up to

1 TB/s bandwidth and includes private L1 caches for each

core, shared L2 caches among clusters of cores, and a large

shared L3 cache. With high-speed interconnects like

NVIDIA NVLink, the Grace CPU ensures fast

communication between CPUs and GPUs. Integrated with

NVIDIA Hopper GPUs, it leverages Tensor cores and

CUDA support for enhanced performance, making it good

choice for supercomputing environments.

b) Fujitsu A64FX: It comes with ARM A64FX

processor, HPC processor designed by Fujitsu that is based

on the extended ARMv8.2-a architecture. The processors

have 48 cores and can run at a base frequency of 1.8 GHz -

2.2 GHz depending on the implementation. TofuD or

100Gbps InfiniBand networking is utilized with a single

socket set up for them. HBM2 memory, which was solely

used on GPUs is now being used in this CPU, is organized in

four stacks. Each stack has a direct connection to a Core

Memory Group (CMG), which consists of 12 cores. Level 1

caches are private to each core, however Level 2 caches in a

CMG are shared by all of the cores. Each CMG appears to

the operating system as a separate NUMA node

C. Benchmark Selection

To assess the performance and optimization capabilities
of GCC and LLVM for our target machines, we conducted
benchmarking with some of the selected benchmarks. These
benchmarks provide insights on various aspects of the
compilers' performance, including their ability to handle
various workloads and how they optimize code for specific
computational tasks. Note that, here we have taken only
single node performance of any given app into consideration
and the results and observation could be different when
executed in a multi-node cluster. When considering these
results, it should also be noted that we have not optimized
any of the benchmarks for the target system. We have
implementation each of the given benchmark with OpenMP
except GEMM.

GEMM focuses on matrix-matrix multiplication, a
fundamental operation in many scientific and numerical
computing applications. It is of time complexity O(n3). It
tests the compilers' ability to optimize memory access
patterns and how efficiently it utilizes the available hardware
resources. When evaluating the performance of the
compilers, we take into account the execution time
(measured in seconds).

BabelStream [18], evaluates memory bandwidth and
latency performance by measuring the throughput of
different memory access patterns. It uses memory bandwidth
bound kernels: Copy, Mul, Add, Traid and Dot. Using the
best-performing iteration, the benchmark calculates the
average bandwidth with respect to the array size of each
input.

HPCG (High-Performance Conjugate Gradient) [19],
tests the efficiency of sparse linear algebra computations and
memory hierarchy usage. For HPCG, at least 1800 seconds
(30 minutes) should pass throughout the official run.

MiniBude [20], is a molecular dynamics application that
involves both floating-point computations and memory
operations, requiring efficient handling of data dependencies
and parallelism. It accepts an input deck, the number of
poses, and the iteration as parameters. For our
experimentation, we left everything as default, using the bm1
deck at 65536 poses for 8 iterations for the results to be
consistent.

IV. ANALYSIS OF COMPILER BEHAVIOUR

A. Assembly Code

We investigated the behaviour exhibited by the GCC and
LLVM compilers, aiming to gain insights into their assembly
code generation, compilation time, etc. with GEMM. The
assembly code we considered is with the highest
optimization level (-Ofast) and SVE is enabled for A64FX
and Grace Hopper with the flags -march=armv8.2-a+sve and
–march=native respectively for both GCC and LLVM. We
used –msve-vector-bits=<n> for LLVM to set the SVE
length because without this flag LLVM tend to use NEON.
The argument value is 512 for A64FX and 256 for Grace
Hopper.

 Both the compiler generates assembly code that
performs similar operations such as load, store, arithmetic,
and control flow. However, there are differences in the
assembly code size and the specific instructions used as we
observed for GEMM. LLVM operates on independent

modules. This modular design and the inclusion of additional
metadata and information required for analysis and
optimization purposes for each compiler unit, contribute to
the increased code size in LLVM's assembly output.

 LLVM's assembly code appears to utilize more
vector registers (21 Z-registers) compared to GCC's code (3
Z-registers), potentially indicating different register
allocation strategies. Using these SIMD registers, both the
compiler decides to perform vectorization, but LLVM
decides to perform multiply add vector and two separate
fused multiply, indicating the use of loop unrolling to
maximize efficiency in the computation. GCC on the other
hand takes a different approach and decides to perform a
single instance fused multiply-add, movprfx and floating
point add vector operations. We could also see the use of
inlining in LLVM, demonstrating more aggressive nature of
optimization.

 Additionally, The differences in control flow
instructions (e.g., "whilelo", "b.any", “b.le” in GCC and
"b.ne", "cmp", "b.eq", etc. in LLVM) are a result of
variations in the compilers' control flow optimization
strategies. These differences can be attributed to how GCC
and LLVM handle loop optimizations, branch predictions,
and control flow restructuring. The choice of optimization
level can significantly impact the generated instructions,
code size, and performance of the compiled code.

 It is important to note that the size of the assembly
code alone does not necessarily indicate the performance or
efficiency of the generated code. The choice of instructions,
their ordering, and the overall optimization strategies
employed by the compilers play a significant role in
determining the code’s quality and performance
characteristics. The choice of optimization level can
significantly impact the generated instructions, code size, and
performance of the compiled code. Higher optimization
levels tend to produce more complex and specialized
instructions that exploit more advanced optimization
techniques. For e.g., -O3 introduces more aggressive
optimizations than -O2, including advanced loop
transformations, inter-procedural optimizations, and
automatic vectorization which aim to maximize performance
but may increase the code size and compilation time.

B. Compilation Time

We captured the compilation time for different programs
using both GCC and LLVM compilers. The results show
that, in general, GCC exhibits longer compilation time
compared to LLVM, indicating that GCC requires more time
for performing optimizations. For GCC, Parsing and
preprocessing constitute a significant portion of the
compilation time (up to 57%). The optimization phase,
including vectorization and loop transformations, takes again
a substantial amount of time (43%). Despite these
optimizations, there are gaps where GCC misses
opportunities, primarily due to the complexity of certain
functions and unpredictable memory access patterns. On the
other hand, LLVM’s compilation time is primarily
influenced by instruction selection, Clang front-end
processes, and scheduling. The impact of automatic
vectorization on the overall compilation time is relatively
low for both compilers. Notably, the compilation time for
GEMM with GCC shows fluctuations between multiple runs.
Note that this performance is considered without enabling

any external projects of LLVM like Polly [21] which likely
will increase the compilation time drastically.

Both GCC and LLVM employ various optimizations,
including loop fission, loop fusion, loop unrolling, constant
folding, and eliminating empty loops. These optimizations
involve steps like Loop Recognizer, Loop Dependence
Analysis, and Loop Optimizer. While these steps do not
significantly increase the compilation time, they do impact
the effectiveness and efficiency of the optimizations
performed.

C. Porting of Executables

We attempted porting the SVE executables for GEMM
and observed the interesting results. When running on the
same machine, on Grace Hopper, GCC's performance for
GEMM was both the best and most consistent on both
machines. When compiling with -march=native -msve-
vector-bits=<n> to generate SVE code in Clang, we observed
that with n=256, the results were correct. With n=512, 1024,
and 2048, the results were incorrect and as the vector size
increased, the computations were increasingly skipped,
resulting in a progressively lower resultant matrix value. On
A64fx, the results were consistent for both GCC and LLVM.
After porting, even when compiling with different vector
sizes, the results remained consistent on Grace Hopper and
took the same time as n=256. The compiler targeting A64FX
architecture is producing more portable binaries, while
accommodating the characteristics of SVE

D. Vectorization Analysis with TSVC

To know the vectorization characteristics of the compiler
in a better way, we selected the TSVC benchmark. TSVC or
Test suite for Vectorizing compiler is a benchmark suite
designed to measure the performance of compilers and
processors for vector and SIMD instructions. The benchmark
suite contains a set of programs that make use of vector and
SIMD instructions to perform various computational tasks.
Table I contains of some of the results of the TSVC
benchmark tried with GCC and LLVM with SVE enabled.

TABLE I. TSVC LOOPS SAMPLES WITH EXECUTION TIME

LOOPS
Grace Hopper Fujitsu A64FX

GCC LLVM GCC LLVM

s115 0.587 6.359 3.626 31.645

s118 1.804 0.388 15.552 13.009

s221 1.084 2.057 8.470 16.574

s231 0.049 4.158 0.432 41.105

s1232 0.749 2.916 29.789 24.468

a. Time in seconds

The analysis of GCC and LLVM vectorization
performance on Grace Hopper and Fujitsu A64FX
architectures reveals distinct strengths and weaknesses of
each compiler, influenced by the nature of the loops and the
target architecture. On the Grace Hopper architecture, GCC
generally excels in vectorizing simpler loop constructs. For
instance, in the triangular saxpy loop (s115), GCC performs
significantly better than LLVM, indicating its efficiency in
handling memory dependencies and utilizing SIMD
instructions effectively. Similarly, in partially recursive loops
(s221), GCC shows superior performance, likely due to its
effective loop distribution and vectorization of independent
operations. However, GCC's performance is not universally

superior; in the interchanging triangular loops (s1232),
LLVM outperforms GCC, revealing LLVM's strength in
optimizing more complex loop patterns on Grace Hopper.

 On the other hand, LLVM demonstrates exceptional
performance in specific scenarios on Grace Hopper. For
example, in potential dot product recursion (s118), LLVM
significantly outperforms GCC, suggesting that LLVM's
optimization techniques handle recursive dependencies more
efficiently. However, LLVM struggles with certain loop
constructs, such as the loop interchange with data
dependency (s231), where it performs poorly compared to
GCC.

The performance trends differ on the Fujitsu A64FX
architecture. Here, GCC generally shows better performance
than LLVM for several loop constructs. For instance, in the
triangular saxpy loop (s115) and loop interchange with data
dependency (s231), GCC outperforms LLVM by a wide
margin, indicating effective vectorization and optimization
for these patterns. However, GCC faces significant
challenges with more complex loops, such as the
interchanging triangular loops (s1232), where its
performance drops dramatically. Conversely, LLVM, despite
its overall slower performance, handles this complex loop
pattern better than GCC, suggesting its optimization
strategies. Understanding these nuances is crucial for
selecting the appropriate compiler and optimization
strategies tailored to their specific workload and target
architecture.

E. Performance Benchmarking

To ensure a fair comparison between GCC and LLVM on
both the Grace Hopper and Fujitsu A64FX architectures, we
meticulously configured the compilation and runtime
environments. We enabled the -O3 and -Ofast optimization
flags for both GCC and LLVM. The -Ofast flag, in
particular, activates the -ffast-math flag, which allows a
broad range of optimizations by relaxing strict adherence to
the IEEE 754 standard for floating-point arithmetic. Auto-
vectorization, crucial for ARM architecture, is enabled at -
O2 or higher as of GCC v14.1. For targeting the SVE
(Scalable Vector Extensions) on A64FX and Grace Hopper,
we used the flags -march=armv8.2-a+sve -msve-vector-
bits=512 for A64FX and -march=armv9-a+sve for Grace
Hopper. In addition to compiler optimizations, we set several
environment variables to control system behaviour and
resource allocation. We configured large page settings with
XOS_MMM_L_PAGING_POLICY=demand:demand:dema
nd and set XOS_MMM_L_ARENA_LOCK_TYPE=0 to
influence memory management. For OpenMP
parallelization, we specified OMP_PROC_BIND=close and
OMP_PLACES={0:47:1} to ensure efficient and similar
thread placement and binding. Additionally, we also utilized
all available cores on the Grace Hopper machine to gauge
peak performance.

 BabelStream: On A64FX, the best performance is seen
with LLVM with SVE 647 GB/s which is 22% more than the
peak performance of GCC. On Grace Hopper, both the
compilers performed closely but LLVM outperformed GCC
for Traid operation with a difference of about 50 GB/s. With
SVE on both A64FX and Grace Hopper, GCC is
outperformed by LLVM. The A64fx system shows a
decrease in performance with SVE when using GCC, while
the Grace Hopper system shows improvements with SVE for
both compilers, with LLVM showing the most significant

improvement. In general, LLVM is seen to get benefitted
from SVE than GCC on both systems. However, GCC
outperforms LLVM without SVE on both systems.

Fig. 3. BableStream

HPCG: LLVM consistently outperforms GCC in terms
of both execution time and GFLOP/s, particularly when
Scalable Vector Extension (SVE) is enabled. For instance, on
the A64FX system, LLVM+SVE achieves 0.61 GFLOP/s for
the smaller grid (128x128x128), compared to GCC’s 0.36
GFLOP/s. Similarly, on the Grace Hopper system, LLVM
reaches 4.05 GFLOP/s for the smaller grid, while GCC only
achieves 2.85 GFLOP/s. The segmentation faults
encountered on A64fx for larger grids needs further
investigation, but this suggests a need for better memory
handling and compatibility, particularly with larger datasets.

Fig. 4. HPCG

MiniBude: On the A64fx system, GCC outperforms
LLVM by a significant margin. On the Grace Hopper
system, LLVM outperforms GCC, especially when SVE is
enabled, showcasing LLVM’s superior optimization
capabilities for this hardware.

Fig. 5. MiniBude

The performance of GCC and LLVM across the three
benchmarks exhibits some irregularities. These differences
are influenced by several factors, including the nature of the
benchmarks, the specific characteristics of the hardware, and
the optimization capabilities of the compilers. This in turn
affects the use of SVE registers and the efficiency of cache
utilization resulting in varying performance results. LLVM
consistently outperforms GCC in terms of both execution
time and GFLOP/s, indicating better optimization
capabilities for HPC workloads. The improvement in LLVM
shows the benefit from enhanced vectorization and
parallelism compared to GCC. Also, higher values of
GFLOP/s signify more efficient use of computational
resources, which is crucial for high-performance computing
(HPC) workloads. While SVE enhances performance,
GCC+SVE does not leverage this extension as effectively as
LLVM does. GCC+SVE only marginally improves
performance for most cases on the Grace Hopper system
compared to LLVM.

V. OPTIMIZATION SUGGETIONS

While both GCC and LLVM provide a wide range of
features and optimizations, there are notable opportunities
for enhancing performance on specific targets like the
A64FX processor. From our analysis, it can be concluded
that GCC and LLVM exhibit distinct characteristics in terms
of code generation and optimization, leading to varying
performance outcomes. GCC needs to improve its support
for SVE to fully exploit the hardware’s capabilities. This
could involve more sophisticated vectorization techniques
and better alignment with ARM architecture specifics.

GCC provides a plugin framework that allows developers
to extend the compiler's functionality and introduce custom
optimizations. These plugins can perform additional analysis,
transformations, or code generation techniques to enhance
the optimization process. However, the scope of optimization
that can be achieved through GCC plugins is limited
compared to the core optimization features provided by the
compiler itself. We can create Performance library plugins to
optimize for specific computations which will give a
significant performance boost. On the other hand, LLVM's
extensive and powerful framework, with well-defined APIs,
allows developers to implement major optimizations
targeting specific architectural features as part of the
compiler's optimization passes. Moreover, ongoing projects
such as Polly and Vplan [22] can enhance LLVM's
optimization capabilities by introducing advanced loop
optimizations, vectorization techniques, and improving code
generation. However, it should be noted that these external
projects may sometimes introduce compatibility issues and
other overheads.

Profiling indicated that GCC had significantly more
branch instructions and L2 cache misses compared to
LLVM. GCC was also observed to fail in loop unrolling
when using SVE. Addressing these areas through more
sophisticated optimization techniques can contribute to
substantial performance gains. Additionally, using Profile
guided optimization and improving vectorization strategies
can further enhance the effectiveness of both compilers.

Beyond compiler optimizations, reviewing and
optimizing the algorithms used in HPCG with the help of
SVE intrinsics can yield significant performance gains.
Although we experimented with various optimization flags,

0 200 400 600 800

A64FX

GRACE HOPPER

GB/S

LLVM+SVE LLVM GCC+SVE GCC

0 1 2 3 4 5

A64FX

GRACE HOPPER

GFLOPS/S

LLVM+SVE LLVM GCC+SVE GCC

0 1000 2000 3000 4000

A64FX

GRACE HOPPER

GFLOP/S

LLVM+SVE LLVM GCC+SVE GCC

there may still be combinations that could further maximize
performance. By addressing these gaps and implementing
these suggestions, both GCC and LLVM can enhance their
optimization capabilities, leading to better performance for
HPC workloads on aarch64 systems like A64FX and Grace
Hopper.

VI. CONCLUSION

This study comprehensively evaluates GCC and LLVM
compilers on ARM-based HPC architectures like A64FX and
Grace Hopper, emphasizing their performance and
optimization capabilities, particularly with respect to
Scalable Vector Extension (SVE). LLVM consistently
demonstrates superior performance metrics, achieving faster
execution times and higher GFLOP/s rates compared to GCC
across a range of benchmarks including GEMM, MiniBude,
and HPCG. This superiority is particularly pronounced when
SVE is effectively utilized, showcasing LLVM's adeptness in
exploiting ARM's vector processing capabilities and
architectural nuances. LLVM's assembly code analysis
reveals sophisticated optimization strategies such as
extensive loop unrolling, aggressive use of vector registers,
and efficient memory access patterns, which contribute to its
performance advantage. In contrast, GCC, while competitive
in certain benchmarks like BabelStream on A64FX, exhibits
longer compilation times and less optimized SVE utilization,
indicating room for improvement in its handling of ARM-
specific features. Future advancements could focus on
enhancing GCC's SVE support and refining LLVM's
memory management optimizations and vectorization to
further elevate their efficiency in HPC applications on ARM
architectures. This study will give valuable insights for
developers and system architects aiming to maximize
computational efficiency in ARM-based HPC environments,
guiding future advancements in compiler technologies
tailored to these platforms.

VII. ACKNOWLEDGEMENT

I would like to thank Prof. Sameer Shende, University of
Oregon for providing access to the Grace Hopper system on
which we performed our experiments.

REFERENCES

[1] Kirti Tokas, Dhruv Sharma, Lokesh Yadav, “RISC and CISC
Architecture”, Internatonal Journal Of Innovative Research In
Technology (IJIRT), 2014.

[2] A. Rico, J. A. Joao, C. Adeniyi-Jones and E. Van Hensbergen, ARM
HPC Ecosystem and the Reemergence of Vectors, in Proceedings of
the Computing Frontiers Conference, ser. CF’17, Siena, Italy:
Association for Computing Machinery, 2017.

[3] Leonid Ryzhyk, “The ARM Archiytecture”, 2006.

[4] Ryohei Okazaki, Takekazu Tabata, and Sota Sakashita et al.
Supercomputer fugaku cpu a64fx realizing high performance, high-
density packaging, and low power consumption, 2020.

[5] Fujitsu A64FX, Online:

https://www.fujitsu.com/global/products/computing/servers/supercom
puter/a64fx/.

[6] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, et al., “The ARM scalable vector
extension”, IEEE Micro, vol. 37, 2017.

[7] SVE2, Online:

https://developer.arm.com/documentation/102340/0100/Introducing-
SVE2

[8] Sergi Siso,Wes Armour, Jeyarajan Thiyagalingam, “Evaluating Auto-
Vectorizing Compilers through Objective Withdrawal of Useful
Information”, ACM Trans. Archit. Code Optim., Vol. 16, 2019.

[9] Saeed Maleki, Yaoqing Gao, and Tommy Wong et al., “An Evalution
of Vectorizing Compilers”

[10] GCC, Online: https://gcc.gnu.org/.

[11] LLVM, https://llvm.org/docs/GettingStarted.html.

[12] Jens Domke, “A64FX – Your Compiler You Must Decide!” , IEEE
International Conference on Cluster Computing (CLUSTER),
Portland, Oregon, USA, 2021.

[13] Chanhyun Park, Misun Han, Hokyoon Lee, Myeongjin Cho, and Seon
Wook Kim, “Performance Comparison between LLVM and GCC
Compilers for the AE32000 Embedded Processor”, JEIE Transactions
on Smart Processing and Computing, vol. 3, no. 2, April 2014.

[14] Adrian Jackson, Mich‘ele Weiland, and Nick Brown et al.,
“Investigating Applications on the a64fx”, IEEE International
Conference on Cluster Computing (CLUSTER), 2020.

[15] GCC Internals, Online:

https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals/GNU_C_
Compiler_Architecture.

[16] Chris Lattner, “The Architecture of Open-Source Applications
(Volume 1)”, Online: https://aosabook.org/en/v1/llvm.html.

[17] Wael Elwasif, William Godoy, Nick Hagerty, et. al, “Application
Experiences on a GPU-Accelerated Arm-based HPC Testbed”, 2022.

[18] BabelStream, Online:

http://uob-hpc.github.io/2021/12/22/babelstream-v40.html.

[19] HPCG, Online: https://github.com/hpcg-benchmark/hpcg/.

[20] MiniBude, Online: https://github.com/UoB-HPC/miniBUDE.

[21] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, “International Workshop on Polyhedral
Compilation Techniques (IMPACT)”, 2011.

[22] Vectorization Plan [EB/OL], 2017, Online: https://llvm.org/docs/
Proposals/VectorizationPlan.html.

[23] Jing Ge Fen, Ye Ping He and Qiu Ming Tao, “Evaluation of
Compilers’ Capability of Automatic Vectorization Based on Source
Code Analysis”, Hindawi, Scientific Programming Volume 2021.

[24] Top 500 June 2024, Online: https://top500.org/lists/top500/2024/06/

[25] Andrei Poenaru, Tom Deakin, and Simon N McIntosh-Smith et al.,
“An Evaluation of the Fujitsu a64fx for HPC Applications”, IEEE,
Kobe, Japan, 2020.

[26] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions”,
Phil.Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[27] NVIDIA Grace Hopper Online: https://resources.nvidia.com/en-us-
grace-cpu/nvidia-grace-hopper?ncid=no-ncid.

[28] Ezhil P and Ananthi Sheshasaayee, “Experimental Analysis of
Optimization Flags in GCC”, Turkish Journal of Computer and
Mathematics Education, 2021.

[29] A Performance-Based Comparison of C/C++ Compilers, Online:
https://colfaxresearch.com/compiler-comparison/.

