
Sans: Streaming Anonymized Network Sensing
Ketai Zhao

School of Computer Science
Nanjing University
lttmg@outlook.com

Yuhang Zhou
School of Computer Science

Nanjing University
yuhangzhou@smail.nju.edu.cn

Hongxu Pan
School of Computer Science

Nanjing University
221501029@smail.nju.edu.cn

Zhibin Wang
School of Computer Science

Nanjing University
wzbwangzhibin@gmail.com

Sheng Zhong
School of Computer Science

Nanjing University
sheng.zhong@gmail.com

Chen Tian
School of Computer Science

Nanjing University
tianchen@nju.edu.cn

Abstract—Large-scale network sensing is an important task
with applications in various domains. Recently, researchers have
proposed a network sensing algorithm based on GraphBLAS,
which divides the input data into multiple disjoint blocks and
constructs a graph for each block containing hypersparse net-
work sensing data. However, this block-based approach may miss
some anomalies between two consecutive blocks. In this paper, we
aim to address this issue by developing a streaming anonymized
network sensing systems, Sans. Specifically, Sans combines the
advantages of directly maintaining edges in the hashtable and
maintaining the vertices as well as the adjacent edges in the
hashtable of list to develop a dynamic, efficient, and compressed
data structure for hypersparse network sensing data. Further-
more, we develop an incremental calibration algorithm based on
gradient descent by leveraging the previous analysis parameters.
We also propose a parallel version of the algorithm, which
supports shared-memory lock-based and distributed-memory
lock-free designs. We conduct extensive experiments to evaluate
the performance of the proposed streaming network sensing
algorithm. The results demonstrate that Sans outperforms the
static CSR (GraphBLAS) approach by one million times.

Index Terms—Graph, Hashtable, Sliding Window, Network
analysis, Parallelization

I. INTRODUCTION

Large-scale network sensing [1] is an important research
area with various applications, wireless sensor analysis [2],
large-scale statistical cyber characterization of network traf-
fic [3] [4], social recommendation systems [5]. Regarding the
importance of large-scale network sensing, the GraphChal-
lenge competition [6] has proposed the Anonymized Network
Sensing Graph Challenge, which aims to construct and analyze
anonymized traffic matrices from network packet capture
(PCAP) data to enable open community-based approaches to
protecting networks.

Recently, [1], [3], [4] proposed a network sensing algorithm
based on GraphBLAS. Specifically, they first divide the input
data into multiple disjoint blocks and construct a graph for
each block containing hypersparse network sensing data by
using GraphBLAS. Subsequently, the constructed graphs will
be analyzed to identify whether there are any anomalies.
Unfortunately, this block-based approach may miss some
anomalies across two consecutive blocks. For example, the

anomaly may happen in the time window starting from the half
of the first block and ending at the half of the second block.
The core reason is that the block-based approach transforms
the streaming network sensing data into static network sensing
data, which may lose some information.

In this paper, we aim to address this issue by developing a
streaming network sensing algorithm. Specifically, we consider
the analysis of the network sensing data within a sliding
time window, e.g., [0, B], [1, B +1], etc. This requires online
maintenance of hypersparse network sensor data and incre-
mental analysis targeting dynamically shifting focused areas.
Therefore, streaming network sensing faces several challenges
as follows.

• Dynamic, efficient and compressed data structure. It
is critical to carefully design a data structure to handle
the hypersparse network sensing data. The data structure
should be dynamic to support the streaming data, efficient
to handle update and query operations, and compressed
to limit memory usage. The existing data structures,
e.g., compressed sparse row (CSR) [7], can not directly
support the dynamic and streaming network sensing data.

• Incremental analysis of the focusing and calibration.
Instead of analyzing the network sensing data from
scratch for each window, it is necessary to leverage the
previous analysis results to accelerate the computation.
This requires an incremental analysis algorithm that can
update and modify the analysis from the previous win-
dow. Notably, the calibration step in network sensing,
involving intricate fitting with established distributions,
poses challenges for algorithm design.

• Parallelization. In the block-based approach, due to
the independence of blocks, the analysis of each block
can be easily parallelized. However, in the streaming
approach, the analysis of two consecutive windows may
overlap, inevitably introducing dependencies, and making
parallelization more challenging. Furthermore, to support
parallel updates, stricter requirements are imposed on the
design of the data structure.

To tackle these challenges, we propose a streaming

anonymized network sensing systems, Sans. The main con-
tributions of this paper are as follows.

A streaming network sensing framework, which can handle
the hypersparse network sensing data in a sliding time window
and support incremental analysis (Section III). We first review
and analyze five possible data structures for the dynamic
hypersparse network sensing data. However, none of them can
satisfy all the requirements. CSR and edge lists are targeted
for static graphs. Directly maintaining edges in the hashtable
(HT for edge) does not support neighbor queries. Hierarchical
data structures, e.g., hashtable of hashtable (HT of HT) and
hashtable of list (HT of list), can support neighbor query but
have either unbounded memory usage (HT of HT) or high
complexity for add and remove operations (HT of list). To
address these issues, we propose a novel data structure that
combines the advantages of the HT for edge and HT of list.
Specifically, we maintain the edges in the HT for edge and
the vertices as well as the adjacent edges in the HT of the list,
ensuring synchronization between them. Furthermore, leverag-
ing the prior analysis parameters, we develop an incremental
calibration algorithm based on gradient descent [8].

The parallelization of the streaming network sensing algo-
rithm (Section IV). We consider two main-stream parallel data
structure designs: shared-memory lock-based and distributed-
memory lock-free. The former handles parallel updates by
locking the data structure, e.g., atomic operations. The latter
avoids locks by partitioning the data structure as well as the
workload. We implement both two parallel versions of the
streaming network sensing algorithm and conduct scalability
experiments to identify the more efficient one.

Finally, we conduct extensive experiments to evaluate the
performance of the proposed streaming network sensing algo-
rithm (Section V). Compared with leveraging the static CSR
(GraphBLAS) to handle the streaming network sensing data,
Sans achieves a speedup of a million times. Even compared
with the original block-based approach, which may miss
some anomalies, Sans still outperforms it by 9.9×. Moreover,
by scaling from 1 to 32 threads, we achieve a speedup of
5.6× for the distributed-memory lock-free design. The results
demonstrate the effectiveness and efficiency of the proposed
streaming network sensing algorithm.

II. EXISTING NETWORK SENSING

Anomaly detection in network sensing involves the fol-
lowing steps: we need to transform the hypersparse network
sensing data into a graph, focus on the active IP addresses,
and calibrate the traffic distribution to detect anomalies.

A. Preprocessing and maintenance of network sensing data

The PCAP [9] file is a common format for storing network
packet data. It contains a series of packets, each of which
includes the source and destination IP addresses. Subsequently,
we introduce how to transform the PCAP file into a hyper-
sparse graph and maintain it.
Blocking of streaming network traffic. As indicated in [10],
we should consider the traffic within any time window to

IP n…IP y……IP 5IP 4IP 3IP 2IP 1IP 0

1IP 0

IP 1

IP 2

53IP 3

IP 4

IP 5

…

2IP x

…

…

IP nn = 2!" − 1

0.0.0.0

Source IP

Destination IP

There are only rare
Packets between IPs.
Sparse edge.

Many IP addresses
do not active in the
current time window.
Sparse vertex.

Hypersparse network

Fig. 1: Hypersparse adjacency matrix.

reduce statistical fluctuations. Accordingly, the traditional
way [1] to perform network sensing is to block the traffic into
several disjoint blocks and analyze the traffic in each block.
Moreover, two adjacent blocks can be merged to form a larger
block with a time window of twice the size.

Unfortunately, blocking method fails to capture the real-
time traffic within a time window across two blocks. Actually,
the blocking method only senses the traffic in the pre-defined
block, e.g., the packet data in [0, B], [B + 1, 2B], etc., where
B is the block size. However, the anomaly traffic may occur
at any window, e.g., [10, B + 10], which fails to be captured
by the blocking method.
Hypersparse network data. Within a given time window,
the network sensing data can be elegantly represented as a
graph. Here, individual IP addresses serve as vertices, while
the transmission of packets from a source IP to a destination IP
is conceptualized as a directed edge connecting the respective
vertices. Additionally, the number of packets between the same
source and destination IP pairs can be expressed as the weight
of this edge.

In the real world, graphs are usually sparse [11], i.e., the
number of edges is much smaller than the possible connec-
tions between vertices. Researchers have developed many data
structures to store the sparse graph, e.g., adjacency list [12],
edge list [13] and compressed sparse row (CSR) [7].

In addition to the sparsity of edges, the vertices also exhibit
sparse characteristics within the time window of network
sensing. Specifically, there are up to 232 IP addresses, while
only a small fraction of them have active packet transmission
within this time window. Considering the sparsity of both
edges and vertices, we call hypersparse [14] network.

Fig. 1 illustrates an example of a hypersparse adjacency
matrix. Firstly, we observe that IP 0 to IP 3 have active
packet transmission, while there are only 3 edges among them
compared to the total possible 4 × 4 connections, indicating
the sparsity of edges. Secondly, there are many IP addresses
with no active packet transmission, IP 4 to IP x-1, reflecting the
sparsity of vertices. The main reason for the hypersparse nature
is there are 232×232 possible connections, while only a small
fraction of them (e.g., 217) have active packet transmission in

2

the time window.
Maintenance of Hypersparse network data. Though the
blocking method misses several possible anomalies, it provides
the convenience of maintaining the network sensing data.
Specifically, the data within each block are static, thereby
allowing complex transformations to compress the graph into
CSR format for further analysis.

B. Analysis

Focusing. The focusing step aims to find a range of IP
addresses that are experiencing active packet transmission.
In practice, it’s common for certain subnets to experience
significant communication over a while. For example, in
environments such as university campuses, subnets dedicated
to research departments may experience increased traffic due
to activities such as video conferencing and remote debugging
sessions. To identify these high-traffic subnets, an efficient
approach is to calculate the total number of data packets
exchanged within each subnet. Critical to this process is rec-
ognizing the hypersparse nature, where a majority of subnets
may have relatively low traffic.
Calibration. The calibration step aims to distinguish whether
the traffic within the focused range is normal or abnormal.
Researchers observe that the normal transmission follows the
heavy-tail distributions [15] (like Zipf-Mandelbrot [16]). By
fitting the heavy-tail distributions to the data collected within
a specific time window, we can accurately measure the extent
of deviation from this expected pattern. This process enables
us to pinpoint abnormal traffic that stands out from the norm.

III. STREAMING NETWORK SENSING

In this paper, we target to develop a streaming approach to
network sensing, to detect anomalous traffic within arbitrary
time windows. Diverging from the blocking method [17], our
method is designed to enable sliding time window analysis,
exemplified by the intervals [0, B], [1, B + 1], and so on.
Therefore, we introduce a novel data structure that dynami-
cally maintains hypersparse network sensor data and enables
incremental analysis tailored to the evolving focused range.

A. Dynamic hypersparse network data structure

Given the continuous evolution of network sensor data as
the time window slides, we require a data structure capable of
maintaining the data A[i, j] online and efficiently supporting
corresponding modification operations. Before delving into the
details of the data structure, we first review the fundamental
operations it supports. When sliding to the next window, we
need to update the data structure by removing S oldest packets
and adding S new packets, where S is the stride of the sliding
window.

• Add. When a new packet is added, we first check if the
source and destination IP addresses are already in the
data structure. If not, we insert new IP addresses into the
data structure. Similar operations are also performed for
the edges, i.e., the link corresponding to the packet. If
the link is already in the data structure, the count of the

link, i.e., the weight of the edge representing the number
of packets between the two IP addresses, is updated.

• Remove. After a packet is removed, we will first update
the count of its corresponding link which is similar to the
add operation. Then, if the count is decreased to zero, the
link should be removed from the data structure.

As the network is hypersparse, we will not maintain all
vertices (IP addresses) and edges (communication links) in
the network. Instead, we will only maintain the active vertices
and edges in the current window. In addition, we also have
the following observations:

The number of packets within a sliding window is
limited. We can maintain the data structure in a fixed-
size memory.

Subsequently, we summarize several possible data structures
for the dynamic hypersparse network as well as their pros and
cons in Table I.

TABLE I: Comparison of data structures, where HT, d(v) and
E denotes hashtable, the degree of vertex v and the set of
edges, respectively.

Category structure type Add Remove Memory
Direct Edge list Static O(|E|) O(|E|) Bounded
(edge) HT for edge Dynamic O(1) O(1) Bounded

Hierarchical CSR Static O(|E|) O(|E|) Bounded
(vertex- HT of HT Dynamic O(1) O(1) Unbounded

adjacent) HT of list Dynamic O(d(v)) O(d(v)) Bounded

Edge list and CSR (Compressed Sparse Row) are two
common data structures for static graphs, which belong to two
distinct categories of data structures: direct and hierarchical,
respectively. The edge list, as a direct structure, straightfor-
wardly maintains a listing of all edges in the graph. On the
other hand, CSR, a hierarchical structure, organizes vertices
at the first level and their adjacent edges on the second level.
This hierarchical structure streamlines accessing a vertex’s
neighbors, a pivotal operation in network analysis and graph
traversal tasks.

However, they are not suitable for dynamic graphs due to the
high complexity of the add and deletion operations [18][19].
In contrast, the hashtable, which is a dynamic data structure
with O(1) complexity for add and deletion operations, is more
suitable for dynamic graphs. And the three data structures
derived from it for the dynamic hypersparse network shown
in Fig. 2 have their pros and cons.

• Hashtable for edge can efficiently add and remove pack-
ets (O(1) in Fig. 2a) but suffers from the inefficiency
of accessing the neighbors of a vertex. Moreover, as the
number of packets in the sliding window is limited, we
can pre-allocate a bounded amount of memory for the
hashtable, ensuring efficient use of resources.

• Hashtable of hashtable excels at both efficiently man-
aging packet add/remove (O(1) in Fig. 2b) and swiftly
accessing a vertex’s neighbors. However, the size of the
inner hashtable that holds these neighbors is unbounded,

3

IP0 … IP3 … IPx …

IP0 IP1 IP2 …
1

IP0 IP1 IP2 …
3 4 → 5 …

IP0 … IPy …
2 …

ADD O(1)

(IP0, IP1) … (IP3, IP1)(IP3, IP2) … (IPx, IPy) …
1 3 4 → 5 2

ADD O(1)

IP0 … IP3 … IPx …

ADD O(d(v))

IP1
1

IP1
3

IP2
4 → 5

IPy
2

(b) HT of HT(a) HT for edge (c) HT of list

Fig. 2: Three data structures for the dynamic hypersparse network.

accommodating the varying number of neighbors a vertex
may have across different windows.

• Hashtable of list effectively retrieves a vertex’s neighbors
but struggles with the inefficiency of packet add and
remove (O(d(v)) in Fig. 2c), requiring a list traversal
to locate the specific edge. Notice, that by pre-allocating
a list pool and having all lists in the hashtable share
this pool’s memory, we can ensure that memory usage
remains bounded.

B. Our solution

Firstly, the hashtable of hashtable is dismissed due to its
potential for unbounded memory growth, which conflicts with
the compression needs of hypersparse network. Given the pros
and cons of the remaining two solutions, a clever approach is
to blend them, harnessing the strengths of both to achieve an
optimal balance.

Specifically, as shown in Fig. 3, we maintain a hashtable
for all edges as well as a hashtable for adjacency lists corre-
sponding to individual vertices. The hashtable for edges is re-
sponsible for adding and deleting packets, while concurrently
maintaining the weight of each edge. On the other hand, the
hashtable of list can be treated as a copy that facilitates access
to the neighbors of a vertex. The synchronization between
these two data structures is paramount; any modifications
made to the hashtable for edges—be it the insertion of a novel
edge (there is no corresponding edge for added packets), or the
deletion of an edge upon its count dwindling to zero—trigger
an automatic update to the corresponding adjacent list within
the hashtable of list. Further, the synchronization is seamlessly
achieved through pointers interconnecting them, enabling even
the hashtable of list to perform addition and deletion opera-
tions with a time complexity of O(1).

Constant memory chaining. Noticing the deletion operation
is a frequent operation in our case, we choose chaining instead
of open addressing to handle the collision in the hashtable. We
allocate a fixed-size memory for the data structure, where the
chained slots in the hashtable are pre-allocated as there are at
most |B| edges in the sliding window. When a link is freed
from the data structure, the memory is not freed but will be
reused for the next insertion.

(d) Our method

IP0
…
IP3
…
IPx
…

(IP0, IP1) … (IP3, IP1)(IP3, IP2) … (IPx, IPy) …
…

ADD O(1)

IP1
1

IP1
3

IP2
4 → 5

IPy
2

Fig. 3: Sans, combining HT for edge and HT of list.

C. Dynamic Sliding Window Analysis

When the stride is narrow, leading to numerous windows
waiting for analysis, it is impractical to analyze each window
from scratch. A more efficient way is to perform dynamic
incremental analysis, continuously refining the results based
on the previous window’s analysis. The incremental focusing
is easy to implement by tracking the packet count for each
subnet. Therefore, we focus on the incremental calibration in
this paper.

In the calibration phase, we aim to fit the weight of the links
in the focused area to the Zipf-Mandelbrot distribution [16]:

P (d) =
1

Z

(
1

d+ θ

)α

, (1)

where d is the weight of the link and P(d) is the probability of
the link with weight d 1. The calibration step determines the
rest of the parameters α, θ, and Z to fit the distribution to the
data. We adopt the maximum likelihood estimation (MLE) to
estimate the parameters. Specifically, we minimize the mean
squared error (MSE) between the empirical distribution and
the Zipf-Mandelbrot distribution by gradient descent [8].

Instead of fitting the distribution for each window, we can
fit the distribution for the first window. For the subsequent
windows, we can reuse the parameters from the previous
window and update the parameters by gradient descent.

IV. PARALLELIZATION

To further accelerate the computation, we develop a parallel
version of the algorithm.

1Instead of considering the probability for each individual d, we consider
the probability for a range of d, as suggested by [1].

4

1 128 217

Stride

0

250

500

750

Ti
m

e
(s

)

3.7 Years 249 Hours

HT of HT
Sans

HT of list
CSR (GraphBLAS)

Fig. 4: Time consumption of four data structures.

Parallel Data Structure Design Two mainstream approaches
for designing parallel data structures are the shared-memory
lock-based and the distributed-memory lock-free models. The
former employs locking mechanisms, such as atomic oper-
ations, to efficiently handle parallel updates. The latter, on
the other hand, circumvents the need for locks by cleverly
partitioning the data structure and workload. To facilitate our
discussion, we take the hashtable for edge as an example.

• Shared-memory lock-based. The shared-memory lock-
based design is straightforward by letting all threads
access the data structure concurrently. As we employ
the chaining method to handle hash collisions, we can
lock the bucket where the edge is located. Subsequently,
adding or deleting an edge, i.e., a slot in the bucket,
can be done when the bucket is locked. However, the
lock-based design may suffer from the contention issue,
as multiple threads may access the same bucket concur-
rently.

• Distributed-memory lock-free. Firstly, we partition the
hashtable into multiple segments, where each thread is
responsible for a segment as well as the corresponding
workload in this segment. When a batch of updates is
received, we will distribute the updates to the correspond-
ing threads maintaining the corresponding edges. The
threads can update the edges concurrently without locks,
as the edges are in different segments. However, it may
suffer from the load imbalance issue, as the workload in
different segments may vary.

To accelerate network analysis, we offer parallel version
implementations of our algorithm in Sans using these two
different strategies. Through corresponding scalability experi-
ments (Section V-C), we explore the performance advantages
and disadvantages of each strategy.

V. EXPERIMENTS

A. Experimental setting

Sans is implemented with approximately 1000 lines of C++
code, utilizing the std::thread library. We evaluate Sans on

0.25 0.50 0.75 1.00
Percentage of packets processed

0

50

100

150

200

M
em

or
y

(G
B

)

HT of HT
Sans
HT of list

Fig. 5: Memory consumption of three methods with processed
packets.

a server with a 56-core 2.0GHz Xeon Gold 6330 CPU, and
512 GB main memory. The dataset provided by GraphChal-
lenge [6] is a 56 GB packet capture (PCAP) file, which
consists of 230 synthetic packets using randomly generated
data.

In the following experiments, we assume that the packets
are already stored in the main memory, meaning the time
consumed by reading the PCAP file is ignored. Unless oth-
erwise specified, the programs tested use 4 threads to update
the hash tables, with a stride of 1 and a window size of
217 following [1]. Moreover, as evaluated in Section V-C, the
distributed-memory lock-free design is more efficient than the
shared-memory lock-based design, so we choose the former
for the parallel version of Sans. The experiments are repeated
3 times, and the average results are reported.

B. Compare with SOTA

The details of the data structures and algorithms used in the
experiments are as follows:

• CSR (GraphBLAS): We extend the blocking method
in [1] which uses GraphBLAS to generate the CSR format
of the graph to support the streaming sliding window
analysis. Specifically, for each window, we generate the
CSR format of the graph and analyze it from scratch. For
small stride values, this strategy can not be finished in a
reasonable time, and we estimate the time consumption
by extrapolating the results of larger stride values.

• HT of list and HT of HT: We follow Section III to im-
plement these dynamic data structures for the streaming
network sensing data. Notice, for the HT of list approach,
we pre-allocate the memory for the list to avoid the
memory allocation overhead.

• Sans: We implement the proposed Sans algorithm which
combines the advantages of HT for edge and HT of list
to support the streaming network sensing data. Notice,
since the HT for edge is the critical part of Sans, i.e.,
Sans has similar performance with HT for edge, we omit
the HT for edge in the evaluation.

5

1 2 4 8 16 32
Number of threads

0

200

400

600

800
Ti

m
e

(s
)

Distributed
Lock

Fig. 6: Scalability.

Fig. 4 shows the comparison of the performance of these
data structures. Obviously, the CSR (GraphBLAS) approach is
significantly slower than the other approaches (a million times
with stride=1), which is attributed to the fact that it generates
the CSR format of the graph from scratch. However, even with
a stride equal to the block size (217), the CSR (GraphBLAS)
approach is still slower than Sans by 9.9×.

The HT of list approach is also slower than Sans by
1.1× average due to the high complexity of add and remove
operations, whose time complexity is related to the degree
of the vertex. In contrast, the HT of HT achieves a similar
performance with Sans, which is attributed to the fact that the
HT of HT approach has the same time complexity O(1) as
Sans.

As mentioned in section III, the memory usage of the HT
of HT design is not bounded. Fig. 5 reveals that it uses more
than 200 GB of memory to process all the packets, which is
significantly larger than the other approaches (125 MB). The
memory allocation process also takes time, this is partially
why the HT of HT approach has a relatively low performance
than the HT for edge approach, despite they have the same
theoretical time complexity.

C. Scalability

As mentioned in Section IV, we have two parallel designs,
shared-memory lock-based (Lock) and distributed-memory
lock-free (Distributed). We evaluate the scalability of the two
designs by varying the number of threads from 1 to 32. We
notice that even with 1 thread, the shared-memory lock-based
design is significantly slower than the distributed-memory
lock-free design (1.85×), as it requires locking and unlocking
the bucket for each edge when updating the hashtable, where
the update operation is only increasing or decreasing the
weight of the edge. With 32 threads, the shared-memory lock-
based design is 7.8× slower than the distributed-memory lock-
free design, which is attributed to the contention issue when
multiple threads access the same bucket concurrently.

From 1 to 32 threads, the shared-memory lock-based design
has a speedup of 5.6×, while the distributed-memory lock-free

1 4 16 64 256 1024
Stride

0

200

400

600

Ti
m

e
(s

)

1 thread
4 threads
16 threads

Fig. 7: Performance of Sans with varying strides.

design has a speedup of 1.3×. The relatively low performance
of lock-based design is partially owing to the performance
overhead of mutex locks when there is only 1 thread. Besides,
when there are multiple threads, they may compete for shared
resources of the hash table (e.g. the queue to store unused
nodes), while the distributed-memory lock-free design does
not have this issue.

D. Varying stride

As the stride will impact the number of analyzed sliding
windows for anomaly detection, we evaluate the time con-
sumption under different strides. We vary the stride from
1 to 1024 and observe that the time consumption slightly
descends as the stride increases. Specifically, stride equals
block size is only 5% faster than stride equals 1. This is
attributed to our design of the dynamic data structure and
incremental calibration algorithm, which avoids redundant
computation. However, there still exists additional overhead
when the stride decreases, because the parameters’ gradients
must be calculated at least once (to judge whether the current
parameters fit well) for each window.

VI. CONCLUSION

To conclude, we propose a streaming anonymized network
sensing system, Sans, which addresses the issue of missing
anomalies between two consecutive blocks in the existing
network sensing algorithm. Sans combines the advantages of
directly maintaining edges in the hashtable and maintaining the
vertices as well as the adjacent edges in the hashtable of list
to develop a dynamic, efficient, and compressed data structure
for hypersparse network sensing data. We also develop an
incremental calibration algorithm based on gradient descent by
leveraging the previous analysis parameters. Finally, we extend
the algorithm to support parallelization. Extensive experiments
are conducted to evaluate the performance of Sans, which
demonstrates Sans outperforms the static CSR (GraphBLAS)
approach by 1, 647, 156×.

6

REFERENCES

[1] J. Kepner, M. Jones, P. Dykstra, C. Byun, T. Davis, H. Jananthan,
W. Arcand, D. Bestor, W. Bergeron, V. Gadepally et al., “Focusing and
calibration of large scale network sensors using graphblas anonymized
hypersparse matrices,” in 2023 IEEE High Performance Extreme Com-
puting Conference (HPEC). IEEE, 2023, pp. 1–9.

[2] C. F. Garcı́a-Hernández, P. H. Ibarguengoytia-Gonzalez, J. Garcı́a-
Hernández, and J. A. Pérez-Dı́az, “Wireless sensor networks and appli-
cations: a survey,” IJCSNS International Journal of Computer Science
and Network Security, vol. 7, no. 3, pp. 264–273, 2007.

[3] I. Kawaminami, A. Estrada, Y. Elsakkary, H. Jananthan, A. Buluc,
T. Davis, D. Grant, M. Jones, C. Meiners, A. Morris, S. Pisharody,
and J. Kepner, “Large Scale Enrichment and Statistical Cyber Charac-
terization of Network Traffic,” pp. 1–8, Sep 2022.

[4] J. Kepner, M. Jones, D. Andersen, A. Buluc, C. Byun, k. claffy, T. Davis,
W. Arcand, J. Bernays, D. Bestor, W. Bergeron, V. Gadepally, D. Grant,
M. Houle, M. Hubbell, H. Jananthan, A. Klein, C. Meiners, L. Milechin,
A. Morris, J. Mullen, S. Pisharody, A. Prout, A. Reuther, A. Rosa,
S. Samsi, D. Stetson, C. Yee, and P. Michaleas, “Temporal Correla-
tion of Internet Observatories and Outposts,” in Workshop on Graphs,
Architectures, Programming, and Learning (GrAPL), May 2022.

[5] W. Zhou, Y. Zhou, J. Li, and M. H. Memon, “Lsrec: Large-scale social
recommendation with online update,” Expert Systems with Applications,
vol. 162, p. 113739, 2020.

[6] “Graph Challenge,” https://graphchallenge.mit.edu.
[7] A. George and J. W. Liu, Computer Solution of Large Sparse Positive

Definite. Prentice Hall Professional Technical Reference, 1981.
[8] S. Ruder, “An overview of gradient descent optimization algorithms,”

arXiv preprint arXiv:1609.04747, 2016.
[9] Daqscribe, “Introduction to packet capture (pcap),” n.d., accessed:

2024-07-14. [Online]. Available: https://daqscribe.com/wiki/resources/
introduction-to-packet-capture-pcap/

[10] J. Kepner, V. Gadepally, L. Milechin, S. Samsi, W. Arcand, D. Bestor,
W. Bergeron, C. Byun, M. Hubbell, M. Houle et al., “Streaming 1.9
billion hypersparse network updates per second with d4m,” in 2019 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2019, pp. 1–6.

[11] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques
in large sparse real-world graphs,” ACM J. Exp. Algorithmics, vol. 18,
nov 2013. [Online]. Available: https://doi.org/10.1145/2543629

[12] H. Singh and R. Sharma, “Role of adjacency matrix & adjacency list in
graph theory,” International Journal of Computers & Technology, vol. 3,
no. 1, pp. 179–183, 2012.

[13] P. Kumar and H. H. Huang, “Graphone: A data store for real-time
analytics on evolving graphs,” ACM Transactions on Storage (TOS),
vol. 15, no. 4, pp. 1–40, 2020.

[14] M. Jones, J. Kepner, A. Prout, T. Davis, W. Arcand, D. Bestor, W. Berg-
eron, C. Byun, V. Gadepally, M. Houle, M. Hubbell, H. Jananthan,
A. Klein, L. Milechin, G. Morales, J. Mullen, R. Patel, S. Pisharody,
A. Reuther, A. Rosa, S. Samsi, C. Yee, and P. Michaleas, “Deploy-
ment of real-time network traffic analysis using graphblas hypersparse
matrices and d4m associative arrays,” in 2023 IEEE High Performance
Extreme Computing Conference (HPEC), 2023, pp. 1–8.

[15] M. E. Crovella, M. S. Taqqu, and A. Bestavros, “Heavy-tailed probability
distributions in the world wide web,” A practical guide to heavy tails,
vol. 1, pp. 3–26, 1998.

[16] T. M. Łapiński, “Law of large numbers unifying maxwell–boltzmann,
bose–einstein and zipf–mandelbort distributions, and related fluctua-
tions,” Physica A: Statistical Mechanics and Its Applications, vol. 572,
p. 125909, 2021.

[17] M. Dohler, Y. Li, B. Vucetic, A. H. Aghvami, M. Arndt, and D. Barthel,
“Performance analysis of distributed space-time block-encoded sensor
networks,” IEEE Transactions on Vehicular Technology, vol. 55, no. 6,
pp. 1776–1789, 2006.

[18] D. Eppstein, Z. Galil, and G. F. Italiano, “Dynamic graph algorithms,”
Algorithms and theory of computation handbook, vol. 1, pp. 9–1, 1999.

[19] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic
graph representation,” in 2018 IEEE High Performance extreme Com-
puting Conference (HPEC). IEEE, 2018, pp. 1–7.

7

