
BB-CVXOPT: Basic Block Execution Count
Estimation and Extrapolation using Constrained

Convex Optimization
Youssef Aly∗, Atanu Barai†, Nandakishore Santhi†, Abdel-Hameed A. Badawy∗†
∗Klipsch School of ECE, New Mexico State University, Las Cruces, NM 80003, USA

†Los Alamos National Laboratory, Los Alamos, NM 87545, USA
∗{youssef, badawy}@nmsu.edu, †{abarai, nsanthi}@lanl.gov

Abstract—Program execution time often scales with input size,
making performance prediction without execution valuable if
the model is efficient and scalable. While machine learning has
been used for such predictions, we propose using Constrained
Convex Optimization at the finer Basic Block (BB) level. Our
BB-CVXOPT system models program performance by breaking
down a target program into BBs and using a numerical solver
to generate polynomial equations for each BB, based on input
size. These equations predict BB execution counts, which can
then estimate runtime when multiplied by BB execution times
for a given system. BB-CVXOPT is architecture-independent,
achieving error rates as low as 1.39e-16 and MAPE below 1.0e-
07 for the largest 30% of the dataset, and a MAPE of 1.30e-03
for 65% of the dataset.

I. INTRODUCTION

Modern multi-core CPUs have grown increasingly com-
plex, making hardware optimization more challenging. Per-
formance modeling and simulation (ModSim) tools are cru-
cial for understanding the impact of architecture changes on
application performance, resource utilization, and power con-
sumption. These tools facilitate hardware-software co-design,
help system designers select optimal configurations, and allow
developers to fine-tune software without physical hardware.
Developing scalable ModSim tools is essential for efficient
design space exploration and performance optimization.

A key ModSim workflow is system performance predic-
tion, which evaluates hardware-software interaction. This is
valuable in both program development and production use, as
it reduces the need for exhaustive program profiling across
large input ranges, avoiding computational bottlenecks and
long run times.

Recent advancements in CPU architecture analysis have
introduced ’basic blocks’ (BBs) as fundamental units of
performance analysis [1], [2], [3], [4]. BBs are single-entry,
single-exit code sections without branching instructions (e.g.
, jump), easily identifiable in assembly code or intermediate
representations (IR) like LLVM-IR. Since BBs in LLVM-IR
are hardware-independent, they offer an architecture-agnostic
approach for performance analysis. BBs provide granular
metrics for application performance, typically correlating
with input size. Modern ModSim tools [1], [4], [5] and
compilers [6] rely on BBs for performance analysis and code
optimization.

Consider a simple matrix addition program as shown in
Figure 1 with matrices of size M ×N and a time complexity
of O(M × N). Examining the BBs, one might identify
tasks such as variable reading, array indexing, addition,
and loop condition checking which includes a branching
instruction. To estimate the execution count of each BB,
quadratic multivariate polynomials in variables m,n such as
a ∗ m ∗ n + b ∗ m + c ∗ n + d can represent each BB’s
execution pattern. After determining coefficients a through d,
the BB counts for specific inputs can be predicted. Runtime
estimation, which involves summing BB counts multiplied by
their execution times, is outside the scope of this paper. This
paper introduces BB-CVXOPT, a generalized approach for
deriving such equations.

BB-CVXOPT uses Convex Optimization techniques to
predict BB execution counts. Our methodology instruments
a target program to create a labeled dataset, where input
parameters serve as features and BB counts as the output. We
generate a set of monomials from the input parameters and
the combinations of their multiplications and exponentiations,
the previous example would have the set m ∗ n,m, n, 1,
potentially including monotone functions like log2 x,

√
x for

the input parameters. These monomials form polynomials,
and a numerical solver minimizes the L2-Norm [7] between
polynomial predictions and actual BB counts by solving
for the coefficients. Infinitesimally small coefficients are
removed, and the model is further refined by the solver.

We demonstrate the feasibility of BB-CVXOPT by eval-
uating its extrapolation capabilities using a sample BB. The
dataset is partitioned, with a polynomial derived from smaller
inputs and extrapolated to larger ones. We also study the
sensitivity of the system by varying the dataset percentage
used to generate the polynomial. Our results indicate the
system performs well in extrapolation, though some BBs
provide more descriptive information than others.

1 for (int i = 0; i < M; i++)

2 for (int j = 0; j < N; j++)

3 a[i][j] = b[i][j] + c[i][j];

Fig. 1: Example code snippet.

The contributions of this paper are as follows:

• This work represents the first attempt, to the best of our
knowledge, to predict BB counts for CPU applications
using Convex Optimization techniques.

• We introduce the BB polynomial model, a mathematical
framework that expresses a target program as a suite of
equations, with each BB represented as a function of the
input parameters. This model enables the extrapolation of
BB counts from larger input sets of a program, guided by
the BB counts from smaller input sets.

• We demonstrate that the model exhibits competitive accu-
racy, even for complex applications.

The rest of the paper is structured as follows: Section II
provides an overview of relevant prior work. Section III
gives the essential background. Section IV details basic
block trace extraction and the architecture of the Convex
Optimization model. Section V describes our experimental
setup. Section VI presents our experimental results. Finally,
Section VII encapsulates our conclusions.

II. RELATED WORK

For both CPU [1], [8] and GPU [5] architectures, re-
search has extensively explored Basic Block-based perfor-
mance analysis and prediction. Various techniques utilize
Basic Blocks to assess and predict performance. The LLVM-
Machine Code Analyzer [6], inspired by the Intel Archi-
tecture Code Analyzer (IACA) tool [9], uses Basic Blocks
to statically measure and predict machine code performance
throughput on a given CPU, aiding in program diagnostics.

Models predominantly use Neural Networks to learn Basic
Block patterns and predict performance. Mendis et al. [10]
proposed Ithemal, which employs a Long Short-Term Mem-
ory (LSTM) recurrent neural network for predicting Basic
Block execution times. Chennupati et al. [1] developed PPT-
AMMP, a regression model focused on scalability, predicts
the impact of large unseen inputs on Basic Block invocation
counts by incorporating machine learning techniques and
Basic Block level data dependency graphs. Aktar et al.
[11] demonstrated a scalable Basic Block invocation count
prediction model for GPUs, achieving accuracies of 97.7%
and 98.1% for random predictions, and 93.6% and 92.8% for
extrapolation predictions.

To our knowledge, no prior work has demonstrated the
scalable modeling of Basic Block invocation counts using
Constrained Convex Optimization (CCO). Our proposed tech-
nique models programs efficiently while maintaining scal-
ability, using smaller inputs to predict counts for larger
inputs with considerable accuracy. This modeling approach
is generic and can be easily applied to both CPU and GPU
applications, given the availability of Basic Block traces.

III. BACKGROUND

A. Basic Blocks

Compilers break applications into Basic Blocks (BBs) for
analysis and optimization. Basic Blocks are contiguous seg-
ments of code without branching instructions such as jump.
The compiler analyzes these blocks to apply optimizations
like loop unrolling. Basic Blocks that are part of loops or
are frequently executed are particularly affected by program
input.

Figure 3 shows a control flow graph of a sample program
with five BBs, separated by branching instructions (e.g. , if
statements). Each if statement forms a single BB, while loops
span multiple Basic Blocks. The program flow starts at the
“Begin” node and ends at the “Terminate” node.

B. Convex Optimization

Convex optimization [12] is a method for solving vari-
ous mathematical problems, one of the most common are
minimization problems. These involve a solver program
finding the global minimum of a function through iterative
adjustments of coefficients until a specific threshold is met.
Various mathematical techniques are used to manipulate these
coefficients internal to the solver.

Like machine learning (ML) models, convex optimization
is versatile and allows interpolation and extrapolation of
numerical values based on input features. It also benefits from
the ability to apply constraints, such as positivity and non-
zero values, which can expedite convergence and improve
predictability. Unlike neural networks, convex optimization
provides more granular control over the problem through
explicitly defined mathematical expressions, often resulting
in fewer trainable parameters and reduced training time.

IV. METHODOLOGY

This section outlines the methodology for modeling Basic
Blocks of a program and predicting their counts. We de-
scribe the process of tracing a program to gather BB counts
for various input sizes, preparing the counts, preparing the

Fig. 2: BB-CVXOPT block diagram

polynomial and formulating the problem. The Basic Block
count dataset, polynomial model, and formulated problem
are fed into a numerical solver. The output model is then
pruned and sent back to the solver for refinement. The final
output is evaluated. Figure 2 depicts the BB-CVXOPT system
workflow.

A. Basic Block Execution Trace Collection and Analysis

Following Chennupati et al. [1], the target program is
compiled into architecture-independent LLVM-Intermediate
Representation (IR) using a compiler like Clang for C or
Flang for Fortran. The IR is analyzed by a Basic Block
Analyzer (BBA) to identify and instrument BBs across a
range of program input settings. BB counts are logged into a
CSV file, along with the current input size, creating a dataset.

BBs may have varying execution patterns: some may
execute once (e.g. , initialization), some may correlate with
input sizes (e.g. , multiply operations in matrix multiply),
and others may not execute at all (e.g. , exiting the program
if the inner dimensions do not match). Invariant BBs that
execute a fixed number of times or occasionally contribute
minimally and statically to the total run time and can be
excluded temporarily. Their effect can be accounted for
when predicting the total run time. These invariant BBs are
identified as dataset columns with zero variance. Figure 4
shows the sorted variance of BB counts for 2667 BBs in a
sample program where more than 50% of the BBs are static.

BBs that are equally affected by the entire input set are
considered duplicates and only need to be modeled once and
the predicted counts can be copied respectively, saving time.
A correlation matrix can identify duplicates, which will show
a correlation factor of 1.0. BBs with non-zero variance but
below a certain threshold, or those with a correlation factor
less than 1.0 but above a defined threshold, can be eliminated,
trading off accuracy to a shorter modeling time.

B. Polynomial Preparation

CvxPy [14] is a Python-embedded modeling language for
convex optimization problems. It aids in preparing, formulat-
ing, and solving these problems. A polynomial representing

Fig. 3: Basic Blocks (BBs) in a small sample program.

Fig. 4: Variance of basic blocks in SNAP[13]

the count of one BB in a program is given by: (BBcountj =
aj0 ∗Mj0 + aj1 ∗Mj1 + ...+ ajn ∗Mjn) , where aj0 - ajn
are coefficients representing how input size affects the BB
count. Mj0 - Mjn are monomials, which are combinations of
inputs multiplied and raised to various powers. Monomials are
prepared for every target program and vary with the number
of inputs. To generalize, mathematical functions like log2 x
and

√
x can also be included in the monomials.

Monomials are generated based on the number of inputs
and a set maximum order. For instance, with three inputs X,
Y, & Z and a maximum order of 4, CvxPy generates terms
such as X0, X1, X2, X3, X4, and similar terms for Y and Z.
All possible multiplicative and exponentiated combinations
of these terms are created, provided their total order does not
exceed the maximum, 4 here. The generated monomials will
be as follows; 1, X4, X3, X3 ∗ Y,X3 ∗ Z,X2, X2 ∗ Y,X2 ∗
Z,X2 ∗Y ∗Z,X,X ∗Y 3, X ∗Y 2, X ∗Y,X ∗Z3, X ∗Z2, X ∗
Z,X ∗Y 2∗Z,X ∗Y ∗Z,X ∗Y ∗Z2, Y 4, Y 3, Y 3∗Z, Y 2, Y 2∗
Z, Y 2 ∗ Z2, Y, Y ∗ Z3, Y ∗ Z2, Y ∗ Z,Z4, Z3, Z2, Z

C. Solver

Once the polynomial for BBcountj is formulated, substi-
tuting the input sizes into the equation (X, Y, & Z in the
example above) should approximate the corresponding BB
count, provided the coefficients (a0 through an) are accurate.

ej =

√∑
∀k

∣∣ <aj ,Mkj> − ykj
∣∣2 (1)

Equation 1 describes the convex optimization problem
given to the numerical solver, where aj represents the vector
of unknown coefficients for BB j, Mkj denotes the vector
of monomials for BB j and k-th parameter setting, and
ykj denotes the measured count for BB j for the k-th
parameter setting. The solver aims to minimize the gap
between the polynomial prediction and actual counts across
all given input settings. Here, ej is called the “L2-norm”
of the fitting error - as is common across a number of
domains and quite popular in machine learning literature[7].
Constrains such as positivity can be applied to the vector of

coefficients aj = [aj1, aj2, . . . , aji, . . . , aj|Mkj |]. These can
assist convergence but may affect accuracy.

D. Evaluation

The accuracy of the polynomial models is evaluated using
the Mean Absolute Percentage Error (MAPE) between pre-
dicted and measured BB counts. Equation 2 describes the
MAPE for BB j, xk denotes the predicted count for the
k-th parameter setting and yk denotes the measured count.
BB execution counts will vary greatly across different target
programs, thus MAPE is chosen so the performance of the
BB-CVXOPT system can be compared.

MAPEj =
1

n

∑
∀k

∣∣∣∣xk − yk
yk

∣∣∣∣ (2)

Due to the nature of equation 2, counts yk of zero in the
dataset lead to infinite MAPE values, which are dismissed
for clarity. The predicted and measured counts are plotted to
visually assess correlation, and the modeling time is recorded.

To demonstrate extrapolation, the dataset is sorted by BB
count and split into two parts. The solver uses the lower count
portion to find coefficients, and the higher portion tests the
polynomial’s extrapolation ability for larger inputs, evaluated
using MAPE calculations.

V. EXPERIMENTAL SETUP

In this section, we prove the viability of the BB-CVXOPT
by conducting a case study on SNAP [13]. We go through
how all the components come together to predict BB counts
and then we evaluate the accuracy as well as extrapolation
power for large unseen inputs. All experiments were run on an
AMD EPYC 7702P processor machine with 64 cores running
at 2 Ghz clock with 16MB L3 cache.

A. Target Program

SNAP, short for SN (Discrete Ordinates) Application proxy,
is a modern discrete ordinates neutral particle transport appli-
cation. A sophisticated computational approach aimed at solv-
ing intricate problems related to the transport of sub-atomic
particles, specifically neutrons and gamma particles. This
method plays a crucial role in understanding the distribution
of these particles across various dimensions, including space,
angle, energy, and time. In SNAP, three-dimensional space
is modeled using a structured Cartesian mesh. This mesh
serves as a fundamental framework for solving the transport
equation, which is at the core of the particle movement
analysis. The methodology hinges on a concept known as
“discrete ordinates”, which entails computing solutions for a
finite set of specific directions or angles. Each angle carries a
corresponding weight, and these solutions are computed for
each individual angle. A total of seven dimensions come into
play, encompassing three dimensions in space, two dimen-
sions in angle, one dimension in energy, and one dimension
in time. The governing transport equation, particularly in

the space-angle dimensions, embodies a hyperbolic nature,
allowing information to propagate from source points to
downstream destinations.

As described in Section IV-A, SNAP was compiled using
Clang v3.9.0 into LLVM-IR with O3 optimization. It was then
analyzed and instrumented to get the BB counts for various
input sizes.

SNAP’s seven inputs correspond to the seven dimensions
(Nx, Ny , Nz , Ichunk, Nmom, Nang , Ng). It has 2667 BBs.
A set of 1296 different combinations of the inputs were used
and the output BB counts were put into a CSV file. BB
number 330 appears to be the most prominent with 3,932,160
executions at input 16, 16, 16, 1, 4, 8, 4.

A Python script was used to process the dataset, invoke
the numerical solver, and analyze the results. The dataset
was loaded into a Pandas DataFrame for manipulation. Re-
moving zero-variance columns resulted in 568 BBs. Figure 4
shows SNAP BB variance. Furthermore, removing duplicate
columns resulted in 93 unique BBs. These reductions are
discussed in Section IV-A.

B. Polynomial Preparation, Formulation & Evaluation

The maximum order of monomials was set to 7 to match
the number of inputs in SNAP, allowing all inputs to con-
tribute through multiplicative combinations. CvxPy takes
about one hour to generate the monomial set for 7 inputs,
a maximum order of 7 and 1296 dataset samples. This time
grows exponentially with the maximum order and number
of inputs. The monomials are saved to disk to be ready for
future modeling sessions.

CvxPy is used to define the expression for the problem
as described in Section IV-C, minimizing for equation 1.
The modelling has three stages, first solver run, pruning
and second solver run. Five mutually exclusive constraint
settings were implemented, ”Positive Coefficients”, ”Positive
Coefficients only after pruning”, ”Positive Polynomial Value”
and ”Positive Polynomial Value only after pruning” as well
as ”No Constraint”. Positive coefficients forces the solver to
find coefficients that are only positive. ”Only after pruning”
constrains the coefficients to be positive only in the second
run. ”Positive Polynomial Value” forces the evaluation figure
of the entire polynomial to be positive irrespective of the
coefficients, corresponding to the natural count nature of BBs,
never negative.

Two solvers were considered: Splitting Conic Solver
(SCS)[15] and GUROBI Optimizer[16]. Both solvers aim to
minimize the “L2-norm” between the polynomial evaluation
value and the BB count from the execution trace. Due to the
large number of monomials, pruning is applied by sorting the
coefficients by their absolute value, selecting a user-defined
maximum number of terms to represent each BB. The pruned
monomials are then passed back to the solver for further
refinement.

The resulting polynomial for each BB is evaluated using
MAPE, as described in equation 2. The solver runs five
times per BB, each with a different constraint setting, and
the run with the lowest MAPE is recorded along with its
corresponding constraint. The MAPE is then plotted. The
dataset and predicted BB counts are also plotted on opposite
axes. The time taken to model and evaluate a BB and the
mean MAPE for each BB are also noted.

The polynomial predicts how often a BB will execute based
on input size. The BB counts can be used with modeling tools
like PPT [17], [4], [18].

VI. RESULTS

A. Validation

After testing several Basic Blocks, some had a lower
MAPE with the SCS solver, while others performed better
with GUROBI. For a few non-intersecting BBs, neither solver
could converge. As a result, a combination of both solvers
was used in all experiments, selecting the one that achieved
the lowest MAPE or converged when the other did not. The
maximum number of solver iterations was set to 10,000, with
the stopping threshold (eta) at the default 1e-8. Coefficients
smaller than 1e-8 were discarded to avoid numerical errors,
and the top 100 coefficients after pruning were kept, a number
chosen arbitrarily.

ek = |xk − yk| (3)

Figure 5 shows a strong correlation between input and
prediction with normalized values. Figure 6 displays the
absolute error, ranging from 8.89e− 11 to 3.33e− 7, defined
by equation 3, where xk is the predicted count and yk is
the dataset count. The average MAPE across all inputs was
3.95e−13, with some data points omitted as in Section IV-D.
This took 32.1 seconds using all 1296 inputs, with the solver
itself running for 7.85 seconds. The dataset maintained the
original factorial order from program instrumentation with no
sorting. The resulting polynomial expression is,

BB330 Count = (2.0 ∗ (N2
mom)− 2.0 ∗ (I2chunk))

∗(Nang ∗Ng ∗Nx ∗Ny ∗Nz)

B. Extrapolation

To extrapolate, the data is sorted in ascending order, with
the lower portion used to calculate the coefficients, and the
solver evaluated on the unseen higher portion. The most
prominent BB count is used for sorting, and the dataset is
split 70:30.

Figure 7 shows a strong correlation, with blue points
representing smaller inputs used to solve the polynomial and
red points showing larger extrapolations.

Figure 8 displays the absolute error, with the red dotted
line marking the split point. Across all the inputs, the average
MAPE is 4.18e−16 for the modeling portion and 1.39e−16

Fig. 5: Normalized dataset measured BB counts (X-axis) vs.
normalized solver approximation (Y-axis) for BB 330 across
all input combinations

Fig. 6: Shows the Absolute Error between the BB column
and the solver approximation for BB 330 across all input
combinations (X-axis)

for novel inputs. Modeling time was 368.2 seconds using 907
input combinations (70% of inputs). The two largest terms of
the resulting polynomial are:

BB330 Count = (2.0∗(N2
mom)−0.67∗(1+Ichunk+I2chunk))

∗(Nang ∗Ng ∗Nx ∗Ny ∗Nz)

C. Program Wide Approximations

The extrapolation power is further investigated across the
remaining BBs of SNAP [13]. The dataset is sorted by the
BB count of the most prominent BB (330).

Fig. 7: Normalized dataset BB counts (X-axis) vs. normalized
solver approximation (Y-axis) for BB 330 across all input
combinations for 70:30 split

Fig. 8: Shows the Absolute Error between the BB column
and the solver approximation for BB 330 across all input
combinations (X-axis) for 70:30 split

Figure 9 shows the MAPE for all 93 Basic Blocks, sorted in
ascending order. Blue represents the portion used to obtain
the polynomial and red represents the extrapolated portion.
Each data point reflects the MAPE of one BB across all input
combinations for that portion. MAPE is on the Y-axis, and
the BB index is on the X-axis. The solving MAPE ranged
from 1.85e− 16 at BB 785 to 9.52e− 9 at BB 2129, with a
mean of 1.32e − 10. The extrapolating MAPE ranged from
1.39e− 16 at BB 330 to 1.27e− 8 at BB 2129, with a mean
of 1.71e− 10.

The 93 BBs were distributed across CPU cores to paral-
lelize the modeling. Some BBs may not accurately represent

Fig. 9: MAPE of all 93 BB columns, X-axis is the index of all
BBs. The upper input 30% is unseen data for extrapolation.
Blue represents the solving portion, red represents the same
BBs when extrapolating.

Fig. 10: MAPE vs testing data percentage for BB 330

the target program’s behavior with respect to input size, po-
tentially leading to higher MAPE; see Sections IV-A and V-A.

D. Sensitivity Study

The partitioning is varied to study how far the model can
extrapolate for our target program. Given the sparsity of the
lower 35% of the dataset, partitioning is varied from 65:35
old:novel to 95:5 old:novel with 10% increments, and the
most prominent BB 330 used for this experiment.

Figure 10 shows the MAPE of BB 330 on the vertical
axis at different partitioning levels (percentage old data) on
the horizontal axis. The MAPE ranged from 1.45e − 16 to
1.30e − 03, highlighting the strong extrapolation power of
BB-CVXOPT with only 35% of the dataset.

Fig. 11: Time (seconds) taken by both solvers to approximate
BB 330 given only 35% to 95% of the data

Figure 11 shows the solving time for BB 330 on the vertical
axis at different partitioning levels on the horizontal axis. The
mean modeling time was 17 seconds for Gurobi and 135 for
SCS. As more data is fed into the solver, outliers average out
as the polynomial generalizes better hence the higher variance
in modelling time given less data.

VII. CONCLUSION

Handling larger input configurations can present compu-
tational complexities and scalability challenges. This work
introduces BB-CVXOPT, a tool designed for predicting the
execution counts of basic blocks in CPU applications. BB-
CVXOPT employs a mathematical framework to generate
polynomials for extrapolating basic block counts and vali-
dates its effectiveness through a case study of a complex pro-
gram. The results indicate that BB-CVXOPT can successfully
extrapolate basic block counts even for larger input values
of the application, demonstrating a high degree of accuracy
across various extrapolation levels. Given only 35% of the
dataset, it was able to achieve 1.30e − 03 MAPE, showcas-
ing its immense extrapolation power. Furthermore, we will
demonstrate the practical utility of BB-CVXOPT when used
in conjunction with a PPT and integrate it into a modeling
and simulation framework, showcasing its versatility.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
feedback. Triad National Security LLC partially supports
this work, under subcontracts # 581326 and # C4975. Any
opinions, findings, or conclusions expressed in this paper do
not necessarily represent the views of the DOE or the US
Government. This paper has been approved for public release
under LAUR # LA-UR-24-27278.

REFERENCES

[1] G. Chennupati, N. Santhi, P. Romero, and S. Eidenbenz, “Machine
learning–enabled scalable performance prediction of scientific codes,”
ACM Trans. Model. Comput. Simul., vol. 31, no. 2, apr 2021.

[2] A. Abel and J. Reineke, “Accurate throughput prediction of basic blocks
on recent intel microarchitectures,” 2021.

[3] W. Zhang, M. Hao, and M. Snir, “Predicting hpc parallel program
performance based on llvm compiler,” Cluster Computing, vol. 20, 06
2017.

[4] A. Barai, Y. Arafa, A.-H. Badawy, G. Chennupati, N. Santhi, and
S. Eidenbenz, “Ppt-multicore: performance prediction of openmp ap-
plications using reuse profiles and analytical modeling,” The Journal
of Supercomputing, pp. 1–32, 2022.

[5] A. Betts and A. Donaldson, “Estimating the wcet of gpu-accelerated
applications using hybrid analysis,” in 2013 25th Euromicro Conference
on Real-Time Systems, 2013, pp. 193–202.

[6] LLVM. (2023) Llvm machine code analyzer. [Online]. Available:
https://llvm.org/docs/CommandGuide/llvm-mca.html

[7] X. Luo, X. Chang, and X. Ban, “Regression and classification
using extreme learning machine based on l1-norm and l2-norm,”
Neurocomputing, vol. 174, pp. 179–186, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S092523121501139X

[8] A. Barai, N. Santhi, A. Razzak, S. Eidenbenz, and A.-H. A. Badawy,
“Llvm static analysis for program characterization and memory reuse
profile estimation,” in Proceedings of the International Symposium
on Memory Systems, ser. MEMSYS ’23. New York, NY, USA:
Association for Computing Machinery, 2024.

[9] Intel, “Intel architecture code analyzer,” 2019. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/articles/tool/
architecture-code-analyzer.html

[10] C. Mendis, A. Renda, D. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using
deep neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 4505–4515. [Online]. Available:
https://proceedings.mlr.press/v97/mendis19a.html

[11] S. Aktar, H. Abdelkhalik, N. H. Turja, Y. Arafa, A. Barai, N. Panda,
G. Chennupati, N. Santhi, S. Eidenbenz, and A.-H. Badawy, “Bb-
ml: Basic block performance prediction using machine learning tech-
niques,” 2022.

[12] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[13] B. R. Zerr Joe. (2015) Snap: Sn (discrete ordinates) application
proxy. los alamos national laboratory (lanl). [Online]. Available:
https://github.com/lanl/SNAP

[14] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016. [Online]. Available:
https://www.cvxpy.org/

[15] B. O’Donoghue. (2021) Splitting conic solver. [Online]. Available:
https://www.cvxgrp.org/scs/

[16] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[17] A. Barai, G. Chennupati, N. Santhi, A.-H. Badawy, Y. Arafa, and
S. Eidenbenz, “PPT-SASMM: Scalable Analytical Shared Memory
Model: Predicting the Performance of Multicore Caches from a Single-
Threaded Execution Trace,” in The International Symposium on Mem-
ory Systems, ser. MEMSYS 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 341–351.

[18] Y. Arafa, A.-H. Badawy, A. ElWazir, A. Barai, A. Eker, G. Chen-
nupati, N. Santhi, and S. Eidenbenz, “Hybrid, scalable, trace-driven
performance modeling of gpgpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

https://llvm.org/docs/CommandGuide/ llvm-mca.html
https://www.sciencedirect.com/science/article/pii/S092523121501139X
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://proceedings.mlr.press/v97/mendis19a.html
https://github.com/lanl/SNAP
https://www.cvxpy.org/
https://www.cvxgrp.org/scs/
https://www.gurobi.com

	Introduction
	Related Work
	Background
	Basic Blocks
	Convex Optimization

	Methodology
	Basic Block Execution Trace Collection and Analysis
	Polynomial Preparation
	Solver
	Evaluation

	Experimental Setup
	Target Program
	Polynomial Preparation, Formulation & Evaluation

	Results
	Validation
	Extrapolation
	Program Wide Approximations
	Sensitivity Study

	Conclusion
	References

