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Abstract—From Snap Score in social media, to ResearchGate 

score in professional networks, to College Football Playoff ranking 

in sports, networks everywhere are home to opaque measurements 

with unknown factors. Thus far, standard techniques in 

explainable AI, such as Grad-CAM, have allowed the fitting and 

inspection of models based on black-box data. This work aims to 

do the same with these black-box rankings in directed networks. 

The proposed work uses the DiGCN architecture, a directed and 

multi-scale variant of the vanilla Graph Convolutional Network, 

for learning-to-rank tasks based on black-box input and output. 

Then, we extract multi-scale activation maps from the network to 

determine what factors at each neighborhood size contribute to the 

ranking of nodes. By leveraging intuitive ideas from existing 

centrality measures, this work allows the decomposition of black-

box node influence functions in a more granular fashion than 

standard attention map analysis. 
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I. INTRODUCTION 

Across social, sports, and academic networks, we encounter 
opaque metrics that are comprised of unknown factors. Snapchat 
score measures a user’s activity, ResearchGate score measures 
an academic’s influence, and the College Football Playoff (CFP) 
ranking measures the power of college football teams. None of 
these metrics has a public formula, and in the case of the human 
CFP committee, a formula may not even exist. To begin to 
understand these metrics, models can be fit to their inputs and 
outputs and inspected further. For graph data, the model is 
chosen from a variety of Graph Neural Networks (GNNs) 
architectures. After training, their parameters are inspected 
using standard explainable AI techniques based on class 
activation mapping (CAM). Through this training and analysis 
process, we can begin to decompose the factors behind these 
opaque graph metrics and extract relevant substructures from 
these networks. To give an example, we might like to highlight 
the that the five most cited authors cite one another in a circular 
structure, and that this structure draws high activations in the 
ranking network.  

To train the graph model on influence scores, such as the 
ones output by these opaque systems, we adjust the output layer 
from its initial classifier configuration to a single centrality score 
output. Then, we employ Grad-CAM to view the learned model 
activations and decompose the opaque centrality measure. 

II. RELATED WORK 

A. Graph Neural Networks 

A message-passing graph neural network serves as the most 
generalized template for a metric on graph nodes, allowing the 
aggregation of neighborhood data at different scales, and 
considering graph topology as well. Here, we compare three 
different variants of the GNN architecture. 

First, the Graph Attention Network (GAT) [1]. This is an 
immediate candidate for an explainability-focused task in 
network science, as the attention map serves as an immediate 
entry for analysis. However, a single layer of the standard GAT 
implementation captures only 1-hop information around each 
node. While this receptive field can be enlarged by cascading 
multiple GAT layers, just as in a CNN, this provides for a less 
direct analysis of multi-scale activations. The GAT architecture 
also does not directly account for digraph information, though 
there are workarounds in encoding that can be employed. 

Graph Convolutional Networks (GCN) [2] are another 
common option for representation learning on graphs, with 
some notable differences to GATs. This method is based on 
spectral convolution rather than 1-hop attention, and so can be 
set for a fixed neighborhood size. Similarly to GATs, however, 
edge directionality must be represented via a complex Hermitian 
adjacency matrix or another workaround. 

Digraph Inception Graph Convolutional Networks (DiGCN) 
[3] seem to be best suited to this application, with natural support 
for directed graphs and with multi-scale information aggregated 
within a single layer. This allows us to simultaneously analyze 
activations at each scale, rather than the sequential layer-by-
layer analysis characteristic of CNNs that would also be required 
in a GCN or GAT architecture. Because of its multi-scale 
consideration, DiGCN also encodes more topological 
information about the network than GAT, which is an enormous 
consideration for learning-to-rank. 

B. Learning to Rank with GNNs 

The Learning to Rank is a task that applies machine learning 
to ranking tasks, and this has been explored in graph contexts in 
[6] and [7]. These works extend machine learning ranking 
(MLR) theory to relational data for ranking nodes, but to the best 
of our knowledge, this has not been done with multi-scale 
DiGCNs prior to this work. The work in [7] is also tailored to 
information retrieval, which is inherently much more dependent 



on node-level information than on network topology. This is 
opposite to what we expect in social and academic networks. 

C. Explainability for GCNs 

[5] provides a survey for explainability methods in graph 
convolutional networks, comparing various activation 
mapping strategies, as well as other methods for 
understanding GCN intrinsics. To focus the experiments on 
probing the fit model, rather than on engineering the model 
inputs, we pursue only activation mapping, which has become 
a standard in AI explainability. This allows viewing the 
numerical values of a slice of the model during inference time. 

III. METHODS 

For learning to rank nodes, first consider that the output 
layer must be able to output unbounded scores from the node 
embeddings. This leads us to avoid common activations like 
sigmoid and SoftMax in favor of a linear layer with no output 
constraint. This learnable mapping also captures the 
relationship between network topology and rank, somewhat 
isolating the multi-scale proximity maps to learn intuitive 
topological properties of the ranking. 

Second, consider that we are training from partial 
information about the black-box process; often, as in sports 
networks, we are provided only the rank of nodes rather than 
their raw values. In training from rank-order statistics, we 
must either partially recover the lost information of raw values 
or be agnostic to them entirely. ListMLE loss is designed 
primarily for this purpose and computes a listwise comparison 
between positions within rankings. 
 

 
Fig.1. Single block architecture adapted from [3], including ListMLE loss 

IV. EXPERIMENTS 

As this work defines a new task on graphs of fitting to an 
unknown ranking function, and that opaque ranking data is low-
volume, synthetic data was generated for training and analysis. 

A. Data Generation 

 From the intuitive idea that black-box node rankings have 
some correlations with centrality measures, we generate a 
ranking derived from eigenvector, betweenness, and degree 
centrality. The centrality measures are computed for each node 
in the standard CORA dataset, then they are combined (reduced) 
to one measure with SVD. This hybrid centrality score is finally 
ordered and ranked. 

B. Activation Mappings 

We expect to see components of all three basis centrality 
measures in the activation mappings. Initial analysis suggests 
that the network fits to first-order measures like degree and 

betweenness centrality well, while higher-order proximity 
information exhibits more global eigenvector-like behavior. 

V. FUTURE WORK 

A. Multi-Scale via GAT and GCN 

An open avenue for further research is extending this work 
to GCN and GAT models which do not directly contain multi-
features in parallel within the same layer. This would require 
pulling out sequential activation maps from sequential layers 
and separating their overlapping information. This is a more 
difficult task than in DiGCNs and may also require some post-
processing before visual analysis due to more complex 
differing methods necessary to encode edge directionality. 

 

B. Causality and Propensity 

Any method that seeks to explain the factors behind a 
black-box process essentially seeks to perform some kind of 
causal analysis on the data. This analysis has not been 
performed here, so the conclusions we draw can at best be 
correlational with the opaque process at hand. To extend this 
analysis, possible confounders need to be identified in the 
specific network context and included in the node feature set 
to condition the learning on those variables. An in-depth 
explanation of this can be found in [8]. 

We must also address the question of confounded analysis 
within the black box itself. Does the CFP committee perform 
this sort of analysis when considering input factors? How 
much should our proxy model also include those oversights to 
remain true to the black box? These questions can be 
addressed with a propensity score estimation of the opaque 
process, also left as a future topic here. 
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