Hypersparse Traffic Matrices from Suricata
Network Flows using GraphBLAS

Michael Houle!, Michael Jones!, Dan WallmeyerZ, Risa Brodeur?, Justin Burr2,
Hayden Jananthan!, Sam Merrell2, Peter Michaleas?, Anthony Perez2, Andrew Prout!, Jeremy Kepner1
IMIT, 2Center for Internet Security, Inc.

Abstract—Hypersparse traffic matrices constructed from net-
work packet source and destination addresses is a power-
ful tool for gaining insights into network traffic. SuiteS-
parse:GraphBLAS, an open source package for building, ma-
nipulating, and analyzing large hypersparse matrices, is one
approach to constructing these traffic matrices. Suricata is a
widely used open source network intrusion detection software
package. This work demonstrates how Suricata network flow
records can be used to efficiently construct hypersparse matrices
using GraphBLAS.

I. INTRODUCTION

Large scale analysis of hypersparse network traffic matrices
has been shown to be useful in gaining insight into wide
range of network activity [1], [2]. Traffic matrices provide
significant compression of network data and it can be ad-
vantageous to constructed traffic matrices in network sensors.
The scale of this collection is best addressed by promoting
the ubiquitous deployment of as many network sensors as
possible. GraphBLAS [3], [4] is an open standard software
library that is ideally suited for both constructing and ana-
lyzing anonymized hypersparse traffic matrices. A significant
advantage of traffic matrices is the ability to construct analysis
that are independent of anonymization. Thus, anonymization
of network packet source and destination addresses (e.g., using
CryptoPAN [5]) can be performed at the sensor and helps meet
the requirements of data protection frameworks with minimal
impact on subsequent traffic analysis.

II. SOFTWARE IMPLEMENTATION

Suricata [7] is a leading open source, high performance
network traffic analysis and intrusion detection tool used by
multiple vendors in their products. Suricata performs tradi-
tional network packet inspection by organizing traffic into
packet flows between two hosts, and can be configured to
output this data as JSON formatted flow records to a log file
or a unix domain socket. Each flow record contains a source
address, a destination address, and separate counts for packets
flowing in either direction, plus additional fields not relevant
for building traffic matrices. Suricata can be configured to

Research was sponsored by the Department of the Air Force Artificial
Intelligence Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Department of the
Air Force or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

~10K flows/s file] ~200K flows/s ~6.38M flows/s

~23K flows/s [socket] ~600K flows/s

Time .
Anonymized GraphBLAS
PCAP U} A JSON DSrcIP || Arogymeed || orepreLh
; o DestlP Traffic Matrix
bits/s | packets/s | flowsls' 7 SURICATA” p #Packets

100 Gb 1om 100K

106b ™ 10K
16b 100K 1K

100 Mb 10K 100

Fig. 1. Suricata Traffic Flow Processing. A PCAP file containing CAIDA
network telescope data is read in by the Suricata IDS in offline replay mode,
and Suricata is configured to emit *flow’ records as JSON via an EVE logging
target. This JSON log file is then parsed by our program which converts
Suricata flow records into anonymized GraphBLAS traffic matrices. ! Assumes
100 packets per flow for typical real-world traffic [6].

output flow records through multiple mechanisms, including
through a software plug-in, a standard file system log file, or
a unix domain socket. The log file and unix domain socket
options effectively serialize the flow records and allow for
simpler ingest and processing.

SuiteSparse:GraphBLAS is a full implementation of the
GraphBLAS standard, which defines a set of sparse matrix
operations on an extended algebra of semirings using a
wide range of operators and types. A small utility program
in C, json2grb, was to developed to read and process
Suricata flow records into GraphBLAS hypersparse matrices.
By default, the flow records are parsed to build matrices
representing a window of 2!7 packets, with groups of 64 of
these matrices stored in a Unix TAR file for later collection
and processing. These sizes strike a good balance between
granularity of matrices and files sizes for subsequent parallel
processing. Each GraphBLAS hypersparse matrix represents a
232 x 232 address space, using the IPv4 source and destination
addresses of the network packets as indices. Both the source
and destination addresses can be anonymized using the Cryp-
toPANT [8]. The matrices are built from an array of index
pairs indicating traffic flow direction, source to destination or
destination to source, and the number of packets as indicated
by the flow record. The memory requirement for the source
data used to build the matrix for these sizes is typically less
than 1.5MB, and flushing each constructed matrix to disk
ensures the memory requirement of the json2grb utility
remains low. The GraphBLAS library contains a function to
export hypersparse matrices in an LZ4 compressed format,
minimizing the disk storage requirements. Depending upon the
nature of the traffic, a typical, compressed hypersparse matrix

representing 2'7 packets is less than 420KB in size. A Unix
tar file of 64 hypersparse matrices is less than 26MB. Traffic
dominated by a few flows produce much smaller files.

For our implementation tests, we used a small virtual
machine with 4 virtual CPUs and 4 GB of memory that
is representative of lower-end of the resources allocated to
a typical deployed network sensor. The underlying physical
CPUs were Intel(R) Xeon(R) Gold 6430 operating at 2.1GHz.
Suricata was installed locally on the network sensor, and
a PCAP-format network packet capture file containing 18
million packets was used to provide reliable and repeatable
testing. The packets were sourced from the largest public
Internet observatory, the Center for Applied Internet Data
Analysis (CAIDA) Telescope, that operates a variety of sensors
including a continuous stream of unsolicited packets from a
darkspace representing approximately 1/256 of the Internet.
The CAIDA traffic is almost entirely adversarial traffic and
represents a near worst-case for traffic analysis with a large
number of unique source and destination pairs.

III. TEST ENVIRONMENT AND EXPERIMENTAL RESULTS

The flow record processing pipeline of our virtual test
environment is illustrated in Figure 1. Suricata can read source
packets directly from the network or, for repeatable testing or
deferred processing, from network packets captured in PCAP
files. For our tests, Suricata was configured to output the JSON
flow records to a unix domain socket. The json2grb utility
read records from the unix domain socket, and parsed them
using the yyjson [9] library. The addresses and packet flow
counts were extracted from each flow record. The addresses
were then anonymized using the CryptoPAN library, and two
records were added to the build array for the traffic matrix
from each flow record, one for packets originating from the
source address going to the destination address, and another
for packets flowing from the destination address to the source
address. A count of the packets added to the build list was kept,
and when it reached the predefined window size (default 2'7),
a GraphBLAS hypersparse matrix was created and written to
the output TAR file. A new TAR file was created after every
64 matrices written.

As can be seen from the sample values included in the
figure, on our test virtual environment Suricata output ~23,000
flow records per second. This is likely related to how Suricata
processes traffic flows and, more importantly how it deter-
mines when a particular flow ends, than the actual perfor-
mance of our test environment. The C JSON parsing library
embedded in json2grb could parse those flow records at
about 10 times that rate (~266,000 flow records/second), while
the anonymization occurred even quicker (~600,000 flow
records/second). The highly optimized SuiteSparse Graph-
BLAS routines performed even better, representing the small-
est portion of the processing time, with ~6.38 million flow
records/second saved as traffic matrices. The archived traffic
matrix TAR files can then be retrieved from the sensor system
at a later time and manner dependent on the actual sensor
system and environment.

IV. SUMMARY

Ensuring broad deployment of traffic sensors is vital to
enabling effective and informative analysis using GraphBLAS
hypersparse matrices. Adding traffic collection sensors to
existing network tools helps to achieve this goal. Suricata
is a leading high-performance network traffic analysis and
intrusion detection tool used by multiple vendors in their prod-
ucts. This paper demonstrates how such a collection sensor
can be added to a Suricata based system with minimal effort
or operational impact. Suricata natively supports outputting
network packet flow records in an easily parsable JSON format
that can be processed in a deferred manner through log files, or
immediately via a unix domain socket. Parsing, anonymizing
and building the hypersparse traffic matrices can be completed
faster than the native Suricata flow processing. Data processing
and storage requirements for the individual hypersparse matri-
ces of 217 packets is minimal. The json2grb utility written
to demonstrate the capabilities for this paper never exceeded
512MB of system RAM usage while running. Storage of
the compressed hypersparse traffic matrices by GraphBLAS
required less than 420KB per 2'7 packets, or less than 26 MB
for a full TAR file containing 64 matrices.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals:
D. Anderson, L. Anderson, W. Arcand, S. Atkins, W. Berg-
eron, D. Bestor, C. Birardi, B. Bond, A. Bonn, S. Buckley, A.
Buluc, D. Burrill, C. Byun, K Claffy, C. Conrad, T. Davis, C.
Demchak, A. Edelman, G. Floyd, V. Gadepally, J. Gottschalk,
T. Hardjono, C. Hill, M. Houle, M. Hubbell, C. Leiserson, P.
Luszczek, K. Malvey, C. Milner, S. Mohindra, G. Morales,
L. Milechin, J. Mullen, R. Patel, A. Pentland, H. Perry, S.
Pisharody, C. Prothmann, A. Prout, S. Rejto, A. Reuther, J.
Rountree, A. Rosa, D. Rus, M. Sherman, G. Wachman, S.
Weed, C. Yee, M. Zissman.

REFERENCES

[1] M. Jones and et al, “Graphblas on the edge: Anonymized high perfor-
mance streaming of network traffic,” in 2022 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1-8, 2022.

[2] T. Trigg and et al, “Hypersparse network flow analysis of packets
with graphblas,” in 2022 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1-7, 2022.

[3] J. Kepner and et al, “Mathematical foundations of the graphblas,” in 2016
1IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-
9, 2016.

[4] “The GraphBLAS — Welcome to the GraphBLAS Forum.” https:/
graphblas.org/, 2024. [Online; accessed 2024-07-03].

[5] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip
address anonymization: measurement-based security evaluation and a new
cryptography-based scheme,” Computer Networks, vol. 46, no. 2, pp. 253—
272, 2004.

[6] P.Jurkiewicz, G. Rzym, and P. Boryto, “Flow length and size distributions
in campus internet traffic,” Computer Communications, vol. 167, pp. 15—
30, 2021.

[7]1 “Home - Suricata.” https://suricata.io/, 2024. [Online; accessed 2024-07-
03].

[8] 1. A. of Network Traffic Lab, “cryptopANT IP Address Anonymiza-
tion Library.” https://ant.isi.edu/software/cryptopANT/, 2024. [Online;
accessed 2024-07-03].

[9] “ibireme/yyjson: The fastest JSON library in C.” https://github.com/
ibireme/yyjson, 2024. [Online; accessed 2024-07-03].

