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Abstract — The latest Intel neuromorphic processor, Loihi 2, 

provides a breakthrough in Artificial Intelligence (AI) for 

computing at the edge, where sensor information is collected. 

The computing architecture does this by leveraging 

computations at the transistor level in a fashion analogous to the 

human brain’s biological neural networks (vs. a Von Neumann 

compute architecture). The Loihi 2 high performance, small 

form factor, and low-power consumption make it well-suited for 

a wide-range of real-time, deep learning applications such as 

target classification, object detection, and more. Our technical 

approach and findings support extreme computing needs for the 

internet of things (IoT) and various ground and airborne 

platforms’ applications. The recently released Loihi 2 ecosystem 

and the thorough research study completed on this effort were 

combined to accelerate development, optimization, and 

demonstration of a new concept of operation for machine 

learning at the edge. This 2024 research included training and 

testing Spike-driven YOLO models on data from various 

sensors. Our concept uses representative sensor data to detect 

and classify targets of interest through a combination of image 

processing techniques and machine learning. Importantly, our 

technical approach allowed us to rapidly train and evaluate the 

performance of several models for benchmarking against 

current state-of-the-art algorithms - w/mean average precision 

> 93% in some cases. The use of Intel’s latest Lava framework 

demonstrates the art-of-the-possible in edge computing by 

demonstrating capabilities on several sensor platforms with 

wide extensibility to other domains that can use this 

neuromorphic-computing hardware. In summary, this research 

included the use of new computing frameworks, processing 

algorithms, and a unique concept of operation.  

*Keywords — Extreme Computing, Machine Learning, High 

Performance Embedded Computing, Neuromorphic 

Computing, Deep Learning, Object Detection, Intel Loihi 2, 

Autonomous Operation, Spiking Neural Networks. 

I. INTRODUCTION 

This research advances extreme computing technologies 
(computing hardware, machine learning, algorithms) through 
the development and demonstration of new capabilities to 
support several use cases and applications. The research does 
this by using frameworks utilized by newly invented 
neuromorphic computing to complete new analyses that can 
be directly used to inform future model architectures for object 
detection and classification in the spiking domain. The 
technical considerations and the approaches discussed in this 
paper provide direct insight into the value of spiking neural 
networks in developing more efficient models and machine 
learning algorithms.  

Background and insight into recent research, as well as 
demand signals that make this research appropriate and 
applicable are provided in Section II. The Compute Hardware 
used is introduced in Section III. Section IV describes the 
Compute Software. The algorithms and machine learning 
model are described in Section V. The Data Description is 
introduced in Section VI. The Processing Approach, Results 
Conclusions and Future Research are described in Sections 
VII, VIII and IX, respectively. 

II. BACKGROUND/SIGNIFICANCE 

The Air Force Research Laboratory, Information 
Directorate (AFRL), High Performance Systems Branch is 
developing and demonstrating new computing architectures 
that are providing unique high-performance embedded 
computing (HPEC) solutions meeting the most demanding 
operational and tactical processing requirements for emerging 
and future surveillance operations.  

Sensor capabilities have become less expensive and more 
prevalent; this has resulted in vast quantities of valuable and 
high-quality data becoming more accessible to both 
commercial and government consumers. While this has 
greatly contributed to the rapid advancement in many areas of 
technology, the demands for more advanced computing 
capabilities also continue to grow at an outstanding pace [1]. 
One of the areas that drive these demands is machine learning 
for sensing and robotics. Today’s technology consumers 
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desire to process and use more and more data efficiently and 
effectively to develop and/or improve various machine 
learning applications including the detection, classification, 
and identification of features and objects in imagery or other 
sensor information/data [2].  

These applications often utilize deep learning networks. 
Deep learning networks are generally incredibly complex, 
consisting of multiple layers and millions of parameters which 
allow the network to learn incredibly abstract feature 
information from a dataset and achieve high network 
performance. However, as the scale of these networks 
increases, so do the resources required to successfully train 
models to achieve state-of-the-art results and performance [3].  

Additionally, deploying a deep network application can be 
computationally expensive in terms of memory (large models 
may not fit on smaller, embedded processors), bandwidth 
(loading and transferring models), power (larger models 
require more power), and compute and datatype constraints 
(float32 may not be supported).  

Spiking neural networks (SNNs) and neuromorphic 
hardware provide an alternative to these large models that 
commonly use conventional hardware, such as large banks of 
Graphics Processing Units (GPUs). 

SNNs learn new information through discrete 
spatiotemporal events (or spikes), which can reduce the 
computational demand for model training and inference [4]. 
The focus of this research was to investigate how to leverage 
the use of SNNs to develop faster, more energy-efficient, 
deep learning models for object detection and target 
classification.  

These models were developed and implemented using 
Intel’s latest neuromorphic ecosystem, which includes Lava, 
a custom software framework that provides capabilities such 
as rapid development and optimization of various SNN 
models, and an automated process to deploy trained models 
on Intel’s ultra-low powered neuromorphic hardware, Loihi 
2.  

III. COMPUTE HARDWARE 

In late 2021, Intel released an advanced neuromorphic 
processor called Loihi 2. The Loihi 2 has over 2.3 billion 
transistors with over a million neurons per chip, which 
contain state variable allocation between 0 to 4096. This 
makes Loihi 2 outperform its predecessor by 10x [5].  

The Loihi 2 supports low-power applications, below 1 
Watt with a die area of only 31 mm2. Loihi 2 is an 
advancement to its predecessor, which is a 60-mm2 chip [6]. 
In addition, its intuitive Python-based API for specifying 
SNNs, a compiler and runtime library for building and 
executing SNNs make it a practical solution [7].  

This makes it a favorable compute asset for extreme edge 
computing research and development. Additional details on 
this chip architecture are shown in Fig. 1.  

  

Fig. 1: Loihi 2 Chip Architecture, Benefits and Scalability 

IV. Compute Software 

With Loihi 2 came the release of Lava, a suite of libraries 
designed by Intel’s Neuromorphic Research Community 
(INRC) to optimize models to run on neuromorphic hardware 
[8]. For our application, we used Lava-dl [9] a complete 
framework that enables rapid end-to-end development of 
spiking neural networks. With Lava-dl, we were able to 
complete the following research tasks listed below:  

1. Define a deep convolutional spike-driven model 
architecture similar to the state-of-the-art You Only 
Look Once (YOLO) model using predefined neuron 
models available in Lava-dl.  

2. Direct training of SNNs using Lava-dl Slayer. Direct 

training is often the preferred training method to get the 

best performance from SNNs compared to hybrid ANN-

SNN models (i.e. a pretrained ANN model converted to 

an SNN using python libraries such as Intel’s 
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snntoolbox) or rate-coded SNNs [10, 11]. The workflow 

when using Lava-dl Slayer is illustrated in Fig. 2. 

 
Fig. 2: Workflow Illustration of Direct Training with Slayer [8] 

3. Compile and deploy the trained models for inferencing. 

With Lava-dl NetX, the hdf5 model file is converted into 

a Lava process which enables inferencing on both 

simulation and hardware environment. This workflow is 

illustrated in Fig 3. 

Fig 3: Workflow Illustration of Inferencing with NetX [8] 

V. SPIKE-DRIVEN OBJECT DETECTION ALGORITHM 

Neuromorphic computing aims at a paradigm shift from 
Von Neumann-based architectures to distributed and co-
integrated memory, the granularity at which this paradigm 
shift is achieved in digital implementations strongly varies 
between a distributed Von Neumann or full custom 
approaches [12, 13,14]. These custom chip approaches enable 
the implementation of various algorithms/methods.  

Neuromorphic systems hold a critical position in the 
investigation of novel architectures, as the brain exemplifies 
an exceptional model for accomplishing scalable, energy-
efficient, and real-time embodied computation [15]. It 

promises to realize artificial intelligence while reducing the 
energy requirements of computing platforms [16]. 

The object-detection algorithm utilized for this research 
was a Yolo-Kapoho-Point (Yolo-KP) model defined with 
Lava-dl Slayer. This model is based on the Yolov3-Tiny 
architecture [17] and optimized to run on both CPU 
simulation and Intel’s 8-chip Kapoho Point System. For our 
benchmark comparison, we also trained a YOLOv8s model 
on the same datasets trained with Yolo-KP.  

When pretrained deep learning models are deployed for 
real-time testing/inferencing, they are often used to process 
temporal/sequential data (e.g. video or input stream from a 
sensor). Convolutional neural networks (CNNs) such as 
YOLOv8 process video with a fixed amount of computation 
for each individual frame without consideration to the 
relationship/similarities from one frame to the next. But 
because some degree of spatial and temporal redundancy is 
expected in sequential inputs, performing the same 
computation for each frame can become computationally 
wasteful.  

Yolo-KP provides a more efficient workflow using the 
following methods: taking in a sequence of images as a single 
input; and using Sigma-Delta neurons to define the layers in 
the model.  

With Sigma-Delta networks (SDNN), for each new input, 
each layer in this network sends a discretized form of its 
change in activation to the next layer. Thus the amount of 
computation that the network does scales with the amount of 
change in the input and layer activations, rather than the size 
of the network [18]. Since Yolo-KP takes in temporal input, 
the activations do not change much. Therefore, the message 
between the layers are reduced which in turn reduces the 
synaptic computation in the next layer. In addition, with 
Lava-dl Slayer, the graded event values can encode the 
change in magnitude in one time-step which means there is 
no increase in latency at the cost of time-steps unlike the rate-
coded SNNs.  

VI. DATA DESCRIPTION 

The datasets used for analyses in this paper were 
comprised of images from various sensors including Electro-
optical (EO), Infrared (IR), and Event-based (EBS) imagery. 
These images were taken from public datasets such as DSIAC 
[19], ThermalUAV [20] and M3ED [21]. Samples of targets 
are shown in Error! Reference source not found..  

VII. TECHNICAL AND PROCESSING APPROACHES 

One of the early challenges we faced during the preliminary 
training and testing of Yolo-KP models was small-object 
detection – or when the targets of interest are much smaller 
relative to the rest of the image or relative to other classes. 
One example is shown in Fig. 5 from ThermalUAV dataset.  
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Fig. 4: ‘Car’ (top row) and ‘Person’ (bottom row) classes from different 

sensors. From the left column: IR, EBS, and EO.  
 

 
Fig. 5: Sample Training Image from ThermalUAV Dataset showing small 
targets (person, bicycle) and large targets (car) in a single image. 

To improve training and inferencing results, datasets with 
small targets and/or mixture of large and small targets were 
tiled down to smaller subsets. This allows the model to ‘zoom 
in’ on smaller sections of the images and improve learning 
the features of smaller targets. The ThermalUAV dataset, for 
example, was tiled from the original size of 640x512 down to 
448x448 and the network input size was also set to 448x448.  

VIII. RESULTS 

 Results of training Yolo-KP on tiled images are shown on 
TABLE I. below. We observed that Yolo-KP performed close 
to the baseline YOLOv8s models scores in terms of mAP50 
scores.  

TABLE I.  PERFORMANCE COMPARISON BETWEEN YOLO-KP AND 

YOLOV8S 

 

To further optimize the models and get mAP scores closer to 
the baseline, we implemented an auto-anchor function based 
on the functionality used in YOLOv4/v5/v7 models. Prior to 
training, the bounding boxes for the training set is analyzed 
against the default anchor boxes. If the anchor boxes are 

larger or smaller by no more than 25% of the bounding boxes 
from the training set, then we leave the anchor boxes as is. 
However, if the difference is larger than the threshold, k-
means clustering is used to set new anchor box values. The 
results of using auto-anchor are shown in TABLE II.  

TABLE II.  PERFORMANCE COMPARISON BETWEEN YOLO-KP AND 

YOLOV8S 

 

IX. CONCLUSION AND FUTURE RESEARCH 

The analyses performed for this research helped provide 
insight and emphasis on the value and potential of using 
SNNs to train, develop, and deploy fast and efficient machine 
learning models. These results also serve as a baseline to help 
inform the next steps in both current and future research, 
which includes: exploring other preprocessing methods 
(augmentations) in order to improve the performance of 
Yolo-KP models for small object detection [22], 
implementing an anchorless version of Yolo-KP, similar to 
the latest versions of YOLO (v8 onwards), which may better 
suit Yolo-KP’s architecture of only one output layer.  

 
Lastly, the findings and lessons learned in this research 

illustrates the potential of neuromorphic models in other 
machine learning applications such as object tracking, 
pose/depth estimation, and segmentation and classification.    
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