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Abstract—This paper investigates the performance of a like-
lihood ratio test in combination with a polynomial subspace
projection approach to detect weak transient signals in broad-
band array data. Based on previous empirical evidence that
a likelihood ratio test is advantageously applied in a lower-
dimensional subspace, we present analysis that highlights how
the polynomial subspace projection whitens a crucial part of the
signals, enabling a detector to operate with a shortened temporal
window. This reduction in temporal correlation, together with a
spatial compaction of the data, also leads to both computational
and numerical advantages over a likelihood ratio test that is
directly applied to the array data. The results of our analysis
are illustrated by examples and simulations.

I. INTRODUCTION

A number of applications require the detection of weak

transient broadband signals in the presence of more dominant

signals or interference. This includes, for example, the task

of detecting an emerging primary user in a cognitive radio

environment [1]–[7], of condition monitoring and and testing

for electromagnetic compatibility [8], or for registering seismic

events [9]. In a defence context, it is often desirable if not vital

to detect a weak transient source in underwater/sonar [10]

or radio frequency domain scenarios [11]. Similarly, there

may be a need to detect the presence of a new speaker in

an audio environment against several stronger, overlapping

speakers [12] or against general background noise [13].

The detection of transient signals can rely on energy-

based criteria and utilise short-time Fourier transform-type or

wavelet-based approaches to identify the correlation structure

that transients may be expected to possess [14]–[16]. Data-

dependent transforms, for example the Karhunen-Loeve trans-

form [17], reached via an eigenvalue decomposition (EVD)

of the data covariance matrix, can attain optimality in terms

energy compaction into a lower-dimensional subspace. Related

subspace partitioning approaches have been used in e.g. [18]–

[22]. More recently, machine learning methods have also been

attempted [10], [23], but require a sufficient amount of data

in order to be trained off-line.

In order to address the problem of broadband transient

signal detection within a reasonable computational error, in the

past we have suggested a broadband or polynomial subspace

approach [11]. It is based on the assumption that L sources

that are stationary for a sufficient amount of time illuminate

M sensors, with M > L. The propagation environment is
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broadband, such that the sources arrive convolutively mixed,

i.e. posses both temporal and spatial correlation. In the

presence of these signals, we would like to detect the presence

of a transient signal. This scenario is outlined in Fig. 1;

all signal sources are assumed to be Gaussian, and we are

only given the measurements x[n] but are blind to the source

model, with the convolutive mixing systems that generate

those measurements.

The statistically optimum test, the likelihood ratio test

(LRT), in the case of Gaussian data is based on the covariance

of the data with and without the transient signal [5], [24], [25].

For broadband signals, temporal averaging in the LRT needs to

take the temporal correlation of the signals into account — this

leads to potentially large space-time covariance matrices that

require inversion [7]. For this reason, in [7], the LRT has been

combined with a relatively inexpensive subspace approach,

where the LRT is applied to a lower-dimensional subspace

projection rather than to the original data. This was motivated

by the fact that the subspace method itself — known for the

narrowband case in [18]–[22] — was successfully deployed

for weak transient signal detection [11]–[13].

For the weak transient signal detection in [11]–[13], it is

assumed that over a past period of time, the statistics of the

stationary signals can be estimated. Going forward in time, a

change point detection would aim to find any change in the

signal energy. This change point detection has been easier to

apply to a lower-dimensional vector s[n], which is a projection

onto the noise-only subspace of the covariance matrix based

on the stationary sources, than on the measurements x[n] [11].

For this approach, the particular statistics of the transient

source were not required to be known. However, in order to

assess how close this approach was to an optimal detection

method, we applied an LRT and a generalised LRT to both the
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Fig. 1. Signal model with measurement x[n] ∈ CM , containing stationary
sources u[n] ∈ CL and a transient source ut[n], and processing by G[n] to
yield a subspace projection y[n] ∈ CM−L.



measurements and the projected data in [7], with significant

empirical benefits for the later.

Therefore, the aim of this paper is to explore why the

polynomial subspace approach is so beneficial for a combi-

nation with the LRT. Particularly two issues have been noted

in [7] with respect to the temporal window T , i.e. basing a

decision not just on a single snap-shot but a sequence of T
time instances:

1) for small T , the subspace-based approach outperforms

an LRT applied directly to the measurements;

2) for larger T , applying the LRT to the data rather than

the projection can result in severe numerical problems.

The contribution of this paper is to provide the theoretical

foundation to understand both points.

Below, the system model, as well as the broadband subspace

decomposition and projection are outlined in Sec. II. Sec. III

reviews the LRT method. The main contribution of this paper

is Sec. IV, which analyses the LRT when applied to both

measurement and projected data, followed by examples and

simulations in Sec. V.

II. SPACE-TIME COVARIANCE AND POLYNOMIAL

SUBSPACE APPROACH

A. Signal Model and Space-Time Covariance

To expand on the signal model of Sec. I in Fig. 1, we

assume that in the stationary case, contributions by L sources

are received by M > L sensors via a convolutive mixing

matrix H[n] ∈ C
M×L. The sources, gathered in a signal vector

u[n] ∈ C
L, are mutually independent, temporally uncorre-

lated, with zero mean and unit variance signals uℓ[n], ℓ =
1, . . . , L, such that u[n] = [u1[n], . . . , uL[n]]

T ∼ CN (0, IL).
Any specific source power spectral densities are captured in the

model of Fig. 1 via the convolutive mixing matrix H[n], which

also operates as an innovation filter [26]. The data received

from the sources is corrupted by additive complex Gaussian

noise v[n] ∼ CN (0, σ2
vIM ). A transient signal potentially

illuminates the array via a vector of filters ht[n] ∈ C
M

to another uncorrelated signal uL+1[n] ∼ CN (0, σ2
t ), whose

presence we would like to detect.

For the space-time covariance, based on the expectation

E{·} and Hermitian transpose operator {·}H, we have R[τ ] =
E
{

x[n]xH[n]
}

of the measurement vector x[n]. We first con-

sider the absence of the transient signal, i.e. uL+1[n] = 0.

In this case, for the cross-spectral density (CSD) R(z) =
∑

τ R[τ ]z−τ , or short R[τ ] ◦ • R(z), we obtain

R(z) = H(z)HP(z) + σ2
vIM . (1)

In (1), H(z) • ◦ H[n] represents a matrix of transfer func-

tions. The parahermitian operator {·}P implies a Hermi-

tian transposition and time reversal, such that HP(z) =
{H(1/z∗)}H [27]. Hence, R(z) is a parahermitian matrix that

satisfies RP(z) = R(z).
If uL+1[n] 6= 0, then this signal’s contribution to the overall

CSD matrix is

Rt(z) = ht(z)h
P
t(z) , (2)

with ht(z) • ◦ h[n]. The overall CSD of the measurement

vector x[n] thus is R(z) + Rt(z), whereby Rt(z) is a rank

one contribution.

B. Analytic Eigenvalue Decomposition

Given the signal model in Fig. 1, the CSD matrix R(z) is

analytic in z and admits an analytic EVD [28]–[31]

R(z) = Q(z)Λ(z)QP(z) . (3)

In (3), Λ(z) = diag{λ1(z), . . . , λM (z)} is a diagonal para-

hermitian matrix holding the analytic eigenvalues λm(z),
m = 1, . . . ,M of R(z). Their corresponding eigenvectors

form the columns of Q(z), which is also analytic in z and

satisfies paraunitarity, such that QP(z)Q(z) = Q(z)QP(z) =
IM ,and therefore Q−1(z) = Q(z) result [27]. Analyticity

of the factors in (3) is important, as this property permits

to approximate Q(z) arbitrarily closely by polynomials of

sufficient order by shift and truncation operations [32]–[34].

Based on (3), we can define subspace decomposition,

Λ(z) =

[

ΛH(z) + σ2
vIL

σ2
vIM−L

]

, (4)

Q(z) = [Q‖(z), Q⊥(z)] , (5)

where ΛH(z) holds the L analytic eigenvalues of

H(z)HP(z) : C → C
L×L, and Q‖(z) contains their

corresponding eigenvectors. The orthogonal complement

Q⊥(z), such that QP
⊥(z)Q‖(z) = 0, contains analytic

eigenvectors that span the noise-only subspace of R(z). This

noise-only subspace does not contain any contributions by

the L stationary sources.

In practice, analytic EVD algorithms [32], [35]–[40] operate

in the DFT domain. In case the eigenvalues are spectrally

majorised, e.g. because of estimation [41]–[44], polynomial

EVD algorithms [45]–[52] can yield similar results. Computa-

tionally efficient implementations of such decompositions have

been considered in e.g. [53], [54]; the order of Q(z) — which

will determine the order and therefore computational cost of

filters in applications — can be reduced through limiting its

order through shifts and truncations [32]–[34], [55], [56].

C. Subspace Projection

With the partitioning of the analytic SVD factors in (4) and

(5), Q⊥(z) • ◦ Q⊥[n] can be used to project the measure-

ment data x[n] into the noise-only subspace,

s[n] =
∑

ν

QH
⊥[−ν]x[n− ν] , (6)

where s[n] ∈ C
M−L is the projected data, as shown in Fig. 1.

In the ideal case, this new signal vector s[n] is now free of

any contributions from the L stationary sources. In contrast,

with the emergence of the transient signal uL+1[n], there are

now L+ 1 signals in the environment, and at least some part

of uL+1[n] will project into s[n], where its presence can be

more easily detected than in the measurements x[n].
Because part of the broadband signal uL+1[n] is projected

into the noise-only subspace vector s[n], the latter has also



been termed a syndrome vector in [11]. This terminology is

borrowed from coding theory and in particular from filter-bank

based source-channel coding methods [57], where a broadband

subspace that is orthogonal to the code subspace is indicative

of impulse noise and other transmission errors. The operation

in (6) represents a generalisation of narrowband subspace

detection approaches [18]; the extension to the broadband

case via (6) has been utilised for voice activity detection in

the presence of stronger speakers [12] or noise [13]. Such

polynomial subspace decompositions have also been applied,

for example, in the context of joint source-channel coding [58],

angle of arrival estimation [59]–[61], source separation [62]

and localisation [63], beamforming [64], [65], and channel

identification [66].

III. LIKELIHOOD RATIO TEST

We now follow the approach in [7], where a likelihood ratio

approach can be applied to either the measurement data x[n]
or to its subspace projection s[n]. We first briefly comment on

the LRT formulation before we focus on the two application

cases.

A. Likelihood Ratio Test

For a general exploration of the likelihood ratio test, we

utilise a test variable yn ∈ C
K , which can later be constructed

from measurement vectors x[n] or syndrome vectors s[n], in-

cluding a concatenation of temporal snapshots. The dimension

K will therefore depend on this choice. We assume that yn

can consist of y0,n ∈ C
K , which is the stationary noise,

and y1,n ∈ C
K , representing the transient component. Both

signals are assumed to be zero mean complex Gaussian with

y0,n ∼ CN (0,R0) and y1,n ∼ CN (0,R1). The aim is thus

to distinguish between the two hypotheses

H0 : yn = y0,n ,

H1 : yn = y0,n + y1,n .

In our context, y0,n holds the contribution from the L sta-

tionary sources and additive noise, while y1,n comprises of

components due to the transient signal. The probability density

functions for yn, under the two hypotheses are then given by

p(yn|H0) = (2π|R0|)
− 1

2 e−
1

2
yH

n
R

−1

0
yn , (7)

p(yn|H1) = (2π|R0 +R1|)
− 1

2 e−
1

2
yH

n
(R0+R1)

−1yn , (8)

where the determinant of a matrix X is denoted as |X|.
For the likelihood ratio L(yn), we have

L(yn) =
p(yn|H0)

p(yn|H1)
=

|R0 +R1|
1

2

|R0|
1

2

e−
1

2
yH

n
Ayn , (9)

where for brevity

A = R−1
0 − (R0 +R1)

−1 . (10)

With its EVD A = QΛQH, the likelihood ratio can be further

expressed as

L(yn) =
|R0 +R1|

1

2

|R0|
1

2

e−
1

2
‖Λ

1

2 QHyn‖
2

2 . (11)

In order to accept or reject the hypothesis, we now need to

find a threshold c such that

L(yn)
H0

≶
H1

c . (12)

Rearranging leads to

‖Λ
1

2QHyn‖
H0

≶
H1

2 ln

{

|R0|
1

2

|R0 +R1|
1

2

c

}

= c′ , (13)

where c′ is a modified threshold. With the term ‖Λ
1

2QHyn‖,

we have defined the test statistic for the likelihood ratio test.

B. Likelihood Ratio Test on Measurements

Applying the LRT directly to the measurement data in prin-

ciple exploits all information that we can possibly draw from

it. For the purpose of temporal averaging the test outcome, for

the LRT variable yn we utilise a concatenation of T snapshots

of x[n],

yH
n = [xH

n ,x
H
n−1, . . . ,x

H
n−T+1] , (14)

such that yn ∈ C
MT .

For the covariance matrices in (10), we introduce extra

subscripts to denote their reference to the measurement vector

via Rx,0 and Rx,1. For the covariance covering the hypothesis

H0, we have

Rx,0 =







R[0] . . . R[T − 1]
...

. . .
...

R[1− T ] . . . R[0]






, (15)

where (1) defines R[τ ] ◦ • R(z). Similarly, Rx,1 can be

constructed from the lag components of Rt[τ ] in (2). Both

covariance matrices Rx,i, i = 0, 1, are of dimension (MT )×
(MT ). Thus the inversions required for (10) can present com-

putational and numerical challenges, which we will address

separately in Sec. IV.

C. Likelihood Ratio Test on Subspace Data

In order to apply the likelihood ratio test to T successive

samples of the projected data vector s[n], we define analo-

gously to (14) the variable

yH
n = [sHn , s

H
n−1, . . . , s

H
n−T+1] , (16)

where now yn ∈ C
(M−L)T . For its space-time covariance

R′[τ ] = E
{

y[n]yH[n− τ ]
}

and the corresponding CSD

matrix R′(z) : C → C
(M−L)×(M−L), we can state

R′(z) = QP
⊥(z)R(z)Q⊥(z) , (17)

with respect to the CSD matrix of the measurement data, R(z),
in Sec. III-B. Analogous to (III-B), we can now obtain Rs,0

from the matrix-valued coefficients of R′[n] ◦ • R′(z).
For the transient component, we can define

R′
t(z) = QP

⊥(z)Rt(z)Q⊥(z) , (18)

based on the rank-one term Rt(z) in (2). Analogously to

(III-B), we can obtain a constant covariance matrix Rs,0



from R′
t[n] ◦ • R′

t(z). Overall, in the subspace-based case

we now have covariance matrices Rs,i, i = 0, 1, of size

T (M − L)× T (M − L).

D. Application and Generalised LRT

The application of the above LRT test to data typically

assumes that the covariance matrices under the two hypothesis

are known — R0 for H0, and the composite (R0 +R1) for

H1 — independent of whether these are derived from the

measurements or the subspace-projected data. The covariance

matrices represent the exact ensemble statistics, i.e. the source

model of Fig. 1 is known a priori. In practise, where only finite

data is available to estimate the statistics, an estimated space-

time covariance R̂(z) will be subject to estimation errors that

depend on both the sample size of the data, as well as on

the ground truth R(z) [41]–[44], thus resulting in estimates

R̂0 and (R̂0 + R̂1). This reliance on potentially inaccurate

estimates turns the LRT into a generalised likelihood ratio test

(GLRT).

Recall that the aim of this paper is to explore the optimality

of the test. For our application outlined in Sec. I, we have

an estimate R̂0, but we are not able to measure R̂1, neither

by itself or in combination with R̂0, ahead of performing a

change point detection. Knowing what is optimally achievable

given either Ri or R̂i provide a useful benchmark for [11] and

applications such as [12], [13].

IV. ANALYSIS OF SUBSPACE-BASED LRT

In this section we explore properties of the covariance

matrices Rx,i, i = 0, 1, for the measurements and of Rs,i,

i = 0, 1, for the projected data, that feed into the LRT

discussed in Sec. III.

A. Consideration of Temporal Correlation

We first focus on the hypothesis H0, where only L station-

ary signals are present. In this case, if the mixing system H(z)
consists of FIR filters of length (J +1), i.e. it is a polynomial

matrix of order J , then R(z) is a Laurent polynomial matrix of

order 2J . Generally, this matrix will be dense in the sense that

generally all its coefficients R[τ ] for |τ | ≤ J will have non-

zero elements. As a result, for the consideration of a temporal

window T < J in the LRT, Rx,0 will be a dense matrix. Only

for the case T > J will we start to see zero corner blocks to

appear.

Inspecting the projected data under hypothesis H0, we have

R′(z) given by (17). With the subspace partitioning in (4) and

(5), this simplifies in the case of an ideal EVD to

R′(z) = σ2
vIM−L , (19)

since the projection we have orthogonality of the signal

subspace, i.e. QP
⊥(z)H(z) = 0. Thus, for the LRT test we

obtain

Rs,0 = σ2
vI(M−L)T . (20)

In contrast to Rx,0 for the measurement data, (20) shows

that under H0, the test variable yn in (16) is spatially and

temporally uncorrelated. Typically temporal correlation will

degrade a test variable [11] which is avoided for the projected

data under H0.

Under hypothesis H1, we have the covariance matrix (R0+
R1). For both the measurement case and the projected data

case, Rx,1 and Rs,1 will now be dense matrices, and the input

data to the LRT, yn, in both cases will be temporally and

spatially correlated. Due to passing through the filter bank

QP
⊥(z), the projected data will be correlated over an even

longer data window compared to the measurement data.

To build the matrix A in (10) for the LRT, consider that both

Rt(z) and R′
r(z) are rank one matrices as evident from the

outer products in (2) and (18), whereby for the latter we can

define R′
t(z) = QP

⊥(z)ht(z)h
P
t(z)Q⊥(z) = h′

t(z)h
′P

t(z)
with the h′

t(z) = QP
⊥(z)ht(z) : C → C

M−L a vector of

functions. As a result of the space-time covariance having rank

one, at least theoretically the covariance matrices Rx,1 and

Rs,0 will have at most rank T [65] and can be factorised as

Rx,1 = HtH
H
t (21)

Rs,1 = H′
tH

′H
t (22)

where Ht ∈ C
MT×T and H′t ∈ C

(M−L)T×T .

Using the Woodbury identity for the low-rank update (R0+
R1)

−1, for (10) we obtain in general

A = R−1
0 Ht(IT +HH

t R
−1
0 Ht)

−1HH
t R

−1
0 . (23)

When (23) specifically for the measurement case, then the

dense nature of Rx,0 does not allow for further simplifications.

In the case of the projected data, here referred to as As, we

have

As =
1

σ2
v

H′
t(σ

2
vIT +H′H

t H
′
t)

−1H′H
t . (24)

Although (23) and (24) do not represent how the processor

for the test statistic in (13) is computed since only R0 and

(R0+R1) are available, (24) provides some insight into how

the projected data case simplifies the underlying procedure

— it provides an outer product between a low rank matrix

H′
t and its regularised left pseudo-inverse, that is free of

any temporal or spatial correlations imposed by the stationary

sources captured in R0.

B. Consideration of Covariance Matrix Conditioning

We now want to assess how the computation of the inverses

for R0 and (R0+R1) are affected by whether we operate the

LRT on the measurements or the projected data. We assess this

via the condition number of a matrix [67], which assesses the

gain w.r.t. any random perturbations — e.g. through estimation

errors [42] — in the inversion process.

For the measurement case, the condition number of Rx,0

can be related to the eigenvalue spread [17] of the signals,

which assesses the ratio between the minimum and maximum



spectral value and here additionally has a spatial component.

For the maximum eigenvalue, we have

max{λx,0} = max
Ω,m

λ{R(ejΩ)} (25)

≈ max
Ω,m

λ{H(ejΩ)HP(ejΩ)} > σ2
s , (26)

where λ{R(z)} returns the analytic eigenvalues of the para-

hermitian matrix R(z) [28], and σ2
s is the maximum power of

a stationary source in a measurement xm[n], assuming for the

SNR σ2
s/σ

2
v ≫ 1. For the smallest eigenvalue, the noise floor

in the noise-only subspace will be given by σ2
v , such that we

obtain

γx,0 > σ2
s/σ

2
v (27)

for the condition number under H0. Under H1, the maximum

eigenvalue is still due to a strong stationary component, while

the minimum possible eigenvalue remains given by the noise

floor. Hence, we have approximately γx,1 = γx,0.

For the case of projected data, ideally the stationary signals

are no longer present. In this case, the maximum eigenvalue

is given by the

max{λs,0} = max
Ω,m

λ{R′(ejΩ)} (28)

= max
Ω,m

λ{Ht(e
jΩ)HP

t(e
jΩ) + σ2

vIT (M−L)}

> σ2
t + σ2

v , (29)

where σ2
t represents the maximum power of the transient

signal in any of the measurement signals xm[n]. Note that

this power is not increased when passing through QP(z), since

this matrix completes to a paraunitary and therefore energy-

preserving system. Since the smallest eigenvalue is still limited

by the noise floor, we therefore have γs,0 > 1 and

γs,1 >
σ2
t + σ2

v

σ2
v

(30)

for the condition number under hypotheses H0 and H1. Note

that in the case that the transient signal is significantly weaker

than the stationary signals, the covariance matrices for the

projected data have a much lower bound for the condition

number and generally will be much better conditioned than

their equivalent quantities based on the measurement data.

V. SIMULATIONS AND RESULTS

A. System Setup and Performance Metrics

To demonstrate the LRT and its analysis, with reference

to Fig. 1 we investigate a scenario where we have M = 10
sensors picking up signals from L = 7 independent stationary

sources via a mixing system H(z) of two different orders

J = {10; 20}. The SNR of these signal is 20 dB w.r.t. additive

complex-valued uncorrelated Gaussian noise of variance σ2
v .

A transient source is undergoing a source model of the same

order as R(z) and at the sensors possess as powers that are

{10; 20} dB below the stationary signals, i.e. in the second

setting the transient signal sits in the noise floor. The mixing

system is generated via source power spectral density models

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

Fig. 2. Separability of distributions for setting with J = 10 and the transient
source 10 dB below the stationary sources.

and a paraunitary mixing system, such that the ground truth

space time covariance matrix R(z) is known for the LRT. It

is also estimated from 105 snapshots of data using the best

linea unbiased estimator in [42] for GLRT results.

To compare the different methods, a good metric for the

separation of distributions is the receiver operating character-

istic (ROC) [68]. Here instead we work with scalar metric

δ =
|µ1 − µ0|

(σ0 + σ1)/2
. (31)

which define the separation distance between the distributions

under hypotheses H0 and H1. This metric δ assesses the ratio

between the distributions’ means µi , normalised by the mean

of their standard deviations σi, for the two hypotheses Hi,

i = 0, 1.

B. Simulations

For the setting with J = 10 and the transient signal sitting

10dB below the stationary signal in power, the results for the

separability δ as defined in (31) is shown in Fig. 2 as a function

of the temporal window T , 1 ≤ T ≤ 10. For small values

of T , decorrelating property of QP
⊥(z) give an advantage to

the LRT operating on the projected data. Even just assessing

the power of the projected data averaged over T snapshot

without taking temporal correlation into account, as exploited

in [11]–[13] and marked as power(s) in Fig. 2, provides and

advantage over the LRT directly applied to the measurement

data. Only as T is increased will the LRT of the measurement

data outperform the other approaches, due to it additionally

exploiting any information on the transient source that resides

within the signal plus noise subspace.

Increasing the temporal correlation via J = 20 and now

dropping the transient signal strength to match the noise floor,

Fig. 3(a) show the separability. Now over the range of T ,

the LRT applied to the measurements is signifantly worse

compared to the LRT operating on the projected data. Also

note that for T > 8, the GLRT results on the measurements

dramatically deteriorate. When inspecting the involved matri-

ces, it is not only that for e.g. T = 10, the LRT involves

the inversion of 100× 100 matrices for the measurement case
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Fig. 3. (a) Separability of distributions and (b) condition numbers of
covariance matrices for setting with J = 20 and the transient source 20 dB
below the stationary sources.

as opposed to 30 × 30 matrices in the case of the projected

data, but also that the condition numbers γx,1 and γs,1 as

defined in Sec. IV-B significantly deviate. In case the condition

numbers are determined for the estimated covariance matrices,

for T > 8 deviations become noticeable in Fig. 3(b), which

agrees with the performed drop for the measurement LRT in

Fig. 3(a).

VI. DISCUSSION AND CONCLUSIONS

To detect a weak broadband transient signal, we have inves-

tigated the application of a likelihood ratio test to polynomial

subspace-projected data rather than directly to the measure-

ments. While for the stronger transient signals, the latter

approach is optimal as it exploits all available information

about the transient signal, the restriction to the noise-only

subspace in the case of weaker transient signals had been

shown to be beneficial. The subspace project approach ideally

suppresses any strong stationary source components. This

firstly removes any strong temporal correlations, which hinder

the test, and secondly also significantly reduce the condition

number of the covariance matrices that the LRT requires

to be inverted, hence providing. As a result, the subspace-

projected LRT operates on matrices that are decreased in

both their dimension and condition number. This effect is the

more pronouced the stronger the temporal correlations of the

measured signals are and the weaker the transient signal is

compared to the stationary sources.
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