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Abstract—Systems involving signal processing produce large
amounts of data, requiring an efficient computing architecture
to measure data characteristics on feasible time frames. Grid
processing offers scalability and user-controlled resource opti-
mization, making it a viable method for large-scale computing
applications, such as machine-learning, financial modeling, and
data analytics. In this paper, we focus on grid processing of
collected signal data. In this work, we adapted a cross-correlation
algorithm to be compatible with grid processing, improving
runtime by several orders of magnitude. This paper measures
the performance of the MIT Lincoln Laboratory Supercomputing
Center (LLSC) cluster using Intel Xeon 64-core processors for
signal cross-correlation. To the best of our knowledge, this is
the first successful implementation of fast Fourier transform
(FFT)-based signal cross-correlation utilizing CPU-based grid
processing.
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I. INTRODUCTION

Cross-correlation is a mathematical technique used to mea-
sure the degree to which two signal sequences are similar as a
function of their time lag. By systematically shifting one signal
relative to a reference signal, cross-correlation can be used to
extract similar features or delays between the two signals, even
in the presence of noise. Cross-correlation is often encountered
in applications such as radar, sonar, digital communications,
image and video processing, as well as various other areas of
science and engineering [1].

This study investigates the runtime performance of a cross-
correlation algorithm designed to measure temporal alignment
between two signals. The authors measured real signal data
with the objective of collecting cross-correlation metrics. This
required computing multiple cross-ambiguity function (CAF)
surfaces per minute of data. However, initial attempts to gener-
ate each CAF took several hours on an Intel Xeon w7-2495X
processor, leading to an intractable sequential processing time
for the entire collect.

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Department of the Air Force under Air Force Contract No. FA8702-15-D-
0001. Any opinions, findings, conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the Department of the Air Force. © 2024 Massachusetts Institute
of Technology. Delivered to the U.S. Government with Unlimited Rights, as
defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding
any copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of
this work other than as specifically authorized by the U.S. Government may
violate any copyrights that exist in this work.

To solve this computational challenge, the authors designed
a parallelized FFT-based cross-correlation pipeline using the
LLSC cluster’s multi-core, multi-threaded architecture to sig-
nificantly increase runtime efficiency. The calculation of cor-
relation for each signal shift is computationally expensive for
large signals, scaling as O(N?), where N is the length of the
signal. By using an FFT-based correlation algorithm, this time
complexity can be reduced to O(NlogN). The goal of this
parallelized pipeline is to demonstrate the feasibility of cross-
correlating large volumes of signal data.

II. PROCESSING

The CAF serves to generalize the correlation process for
signal feature estimation. The CAF can be expressed as:

T
A(r, f) = /o s1(t) * so(t + 7) exp(—j2n ft)dt (1)

Where s1(t) and s2(t) are complex signals that have similar
envelopes, and 7 and f are parameters that represent time lag
and frequency offset, respectively. For aperiodic signal features
within the integration period 7', a maximum occurs in the CAF
surface when the parameters 7 and f compensate exactly for
the offset in time and frequency between the envelope features
of s1(t) and sa(t).

Each 7 in the CAF surface is represented by the difference
frequency components extracted from the product of s;(¢) and
s2(t), and may be represented as a mixing product r(¢; 7):

r(t;m) = s1(t) * s2(t + 7) 2)

Taking the FFT of this mixing product yields a spectrum
where the maximum indicates the frequency offset between
the two signals. Collating the FFTs of the mixing product
at varying time lags builds up the full CAF surface. The
computational complexity of this operation may be mitigated
by reducing FFT bin size and restricting the range of lags to
be evaluated. However, these techniques can severely constrain
the utility of this function, especially for cases where large
time lags or frequency offsets are expected.

Although other techniques exist to improve computational
efficiency under certain signal conditions [2], parallelization
is a particularly effective solution for this paradigm. The
composite CAF construction can be naturally subdivided and
distributed across myriad cores.
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Fig. 1. Cross-correlation pipeline integrated with LLSC cluster.

III. IMPLEMENTATION

The MIT LLSC cluster offers high-performance on-demand
supercomputing capabilities. User-submitted jobs are automat-
ically scheduled by the free open-source Simple Linux Utility
for Resource Management (SLURM) scheduler. This study
used the Intel Xeon 64-core processor compute nodes, which
support the Intel AVX-512 instruction set. Each process on
these nodes is allocated 2 cores, and each user is allocated a
maximum of 8192 cores at once. Although these nodes are
not the fastest computational resource on the cluster, such as
the Intel Xeon Gold 6248 CPUs and NVIDIA Volta V100
GPUs, they were selected as the baseline for this work due
to their large scalability. Additionally, job parameters can also
be customized by the user to optimize multi-core and multi-
processing parameters on the LLSC cluster [3].

The cross-correlation processing pipeline, displayed in Fig-
ure 1, was developed locally with MATLAB 2023b, then
integrated with the LLSC MATLAB environment. Signal data
was first pre-processed on Intel Xeon w7-2495X processors
(hereafter referred as local processing), and CAF processing
parameters were computed before being packaged as data
structures and passed to the LLSC cluster. The CAF computa-
tion was then submitted as a job array on the Grid’s SLURM
scheduler, where each process was assigned to a batch of CAFs
proportional to number of cores allocated. The computation,
hereafter referred to as grid-side processing, was spread over
128 cores, allowing for 64 processes to be executed simultane-
ously. Parameters affecting runtime included signal integration
time, CAF width, and FFT bin size. Each resulting CAF and its
associated metadata were then packaged into individual data
structures. These are passed back to sequential Intel Xeon w7-
2495X processors and aggregated for further analysis of cross-
correlation metrics.

IV. RESULTS

The comparison of CAF computing capacity shows that the
LLSC cluster can generate CAFs at a significantly higher rate
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Fig. 2. Comparison of CAF speedup factor from local to grid-side across
increasing CAF width.

as compared to the Intel Xeon w7-2495X machine. Note that
the CAF width greatly impacts the time to generate a CAF,
as larger sizes reduce the the need for a high quality initial
peak estimate. The authors compare relative computation size
increasing from a baseline CAF width of 10 microseconds. As
shown in Figure 2, the LLSC Intel Xeon 64-core processors
demonstrate superior CAF computing efficiency across the en-
tire search space, and reach a maximum speedup factor of 80x.
The authors compared the worst-case runtime performance,
assuming a 100 ms signal integration time, generation of 50
CAFs per minute of data, and 1 millisecond CAF width. The
local Intel Xeon w7-2495X processor would require 1.5 years
to complete the task, whereas the grid-side LLSC Intel Xeon
64-core processors would accomplish it in just over a week,
approximately a 75x improvement in runtime.

V. CONCLUSION

The runtime performance of a distributed signal cross-
correlation algorithm was evaluated on the MIT LLSC cluster.
By developing the algorithm to be compatible with a grid
architecture, a massive performance increase on the order of
several magnitudes was achieved. Grid computing has enabled
tractable signal cross-correlation which has potential appli-
cations across communication systems, pattern recognition,
signal processing, and other areas in science and engineering.
To the best of our knowledge, this is the first successful im-
plementation of a supercomputer-supported FFT-based cross-
correlation algorithm.
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