
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

The Analysis of the Sparse Multi-GPU Parallel 
Method on the Large Sparse Power Flow 

Calculation 
 

 

Lei Zeng   
Electrical & Computer Engineering  

 Oakland University  

Rochester, MI, USA 
leizeng@oakland.edu 

 

 

 

Shadi Alawneh 
Electrical & Computer Engineering  

Oakland University  

Rochester, MI, USA 
shadialawneh@oakland.edu 

Abstract—Power Flow (PF) calculation serves to analyze the 

power system efficiently, aiming to obtain the magnitude voltage 

and phase angle, as the development of multiple energy supplies. 

Due to the high sparsity and increasingly complexity of power 

systems, solving large-scale sparse systems in a parallelized 

fashion has become a bottleneck for power engineers. To 

address this challenge, this paper proposes a sparse multi-GPU 

Fast Decouple (FD) method to accelerate the PF calculation. 

Specifically, data parallelism is designed to enhance scalability 

and maintain the load balancing across the multi-GPUs. 

Additionally, GPUDirect technology is employed to reduce the 

communication overhead between multiple GPUs. As a result, 

this method in the paper achieves nearly 4x on a power system 

with over 10, 000 buses, compared to the MATLAB-based 

optimized library, MATPOWER, on a large-scale power system.  

Keywords—Multi-GPU, FD method, sparse matrix, data 

parallelism 

I. INTRODUCTION 

PF calculation is critical for the power system analysis, 
planning and operation. The PF calculation is applied to solve 
the nonlinear equations of such power systems [1], [2]. Due to 
the introduction of new energy supplies and heavier loading, 
it brings great challenges and pressure for PF calculation [3]. 
In practice, the classic Newton-Raphson (NR) method is 
utilized to evaluate the voltage magnitude and phase angle of 
buses inside the power system, and the sparse NR method is 
often employed on a single CPU or GPU platform, the 
accelerating efficacy is limited due to the high data 
interdependence and irregular sparse format. Furthermore, 
this limitation in the computation architecture severely 
hampers the efficiency, parallelism and scalability in PF 
calculation. As a result, it is a necessity to exploit data 
parallelism and improve scalability of sparse matrix formats 
to accelerate PF calculation,  particularly in the large-scale and 
complicated power systems. 

High performance computing (HPC) cluster provides 
substantial fine-grained parallelism with orders of magnitude 
higher throughput than the CPUs [4]. For instance, each GPU 
node has 4 NVIDIA Tesla V100 GPUs with 5120 cores in 
Matilda HPC cluster, which has a peak performance of over 
15 TFLOPS versus about 200-400 GFLOPS of Intel i9 series 
8 core CPUs [5]. To reduce communication overhead, 
GPUDirect RDMA is introduced to facilitate the 
communication among NVIDIA GPUs in remote systems, 
which eliminates the system CPUs and required buffer copies 

of data via the system memory, resulting in 10x better 
performance [6]. Furthermore, NVIDIA offers a range of 
highly-optimized libraries [7], such as cuBLAS, cuSPARSE, 
and cuSOLVER. These salient features of high-performance 
parallel computing systems provides researchers an 
opportunity to explore data parallelism and devise the parallel 
sparse computing architecture [6]. 

In practice, most methods in PF calculation can generally 
be categorized into two groups, i.e., iteration methods [8-12] 
and direct methods [13-23]. Specifically, although the 
iteration method can save much memory, the execution time 
severely depends on the preconditioning matrix. Generally, 
the initial preconditioning matrix can easily lead to the PF 
calculation divergence, compelling researchers repeatedly to 
test the different preconditioning matrices until finding a 
stable and robust preconditioner for the PF calculation. The 
direct solver, on the other hand, tends to be more robust for 
ill-conditioned problems compared to the iteration methods 
[7]. As for direct methods, most utilize the single GPU 
approaches to accelerate the PF calculation in a vectorization 
manner, improving the performance of PF calculation. 
Reference [3] takes the sparse NR method and achieves a 1.4x 
speedup, compared to its MATLAB counterpart. However, 
the accelerating efficacy is limited, due to the high data 
dependency and irregular memory access in the sparse matrix 
format [24]. Reference [22] introduces a multi-thread and 
multi-GPU method to accelerate the large-scale PF 
calculation. This method, however, suffers from severe data 
race issues in shared memory programming fashion, leading 
to performance degradation, achieving only a modest 2x 
improvement when compared to the optimized CPU 
counterpart.  

Sooknanan and Singh et al. [14], [25] introduce the sing-
GPU method, employing a dense matrix format, which indeed 
accelerates the speedup of PF calculation and enhances the 
scalability of computing architecture. These methods, 
however, may fail to converge as the power system scales up, 
due to the limited global memory of the single GPU. Besides, 
massive nonzero elements in the dense matrix are involved in 
the process of linear system solver, leading to significant 
resource consumption and increased the execution time of PF 
calculation. Reference [6] proposes the multi-process and 
multi-GPU method improve the scalability of the computing 
architecture. The approach achieves notable speedups ranging 
from 9x ~ 33x, compared to the single-GPU counterpart on 
dense large-scale power systems. The method reduces the data 



race when operating on the same elements, but it still faces the 
loading unbalanced challenges, similar to those encountered 
in [14], [25]. 

To address such challenges, this paper proposes a sparse 
multi-GPU parallel computing method, aimed at reducing the 
involvement of nonzero elements in the PF calculation and 
leveraging the floating-operating capability of multi-GPUs, 
leading to performance improvement in both acceleration and 
scalability. Furthermore, GPUDirect technology is employed 
to alleviate communication overhead among multiple GPUs 
by facilitating direct data transfer between them in a peer-to-
peer (P2P) manner. In addition, one of GPUs is designated to 
broadcast and distribute the intermediate data to other GPUs, 
thereby simplifying the complexity of management and 
scheduling for the computing system. 

The rest of this paper is organized as follows: Section Ⅱ 
reviews the heterogeneous HPC cluster and introduces the 
sparse multi-GPU method. In Section Ⅲ, this paper presents 
implementation details of this method. Section Ⅳ presents the 
benchmarking results and analysis. Finally, the overall 
conclusion and future work will be presented in the last 
section.  

II. HPC CLUSTER AND SPARSE FD MULTI-GPU METHOD 

In this section, the heterogeneous HPC cluster mode is 
reviewed, outlining its features and components. 
Subsequently, the sparse multi-GPU method is introduced, 
detailing its strategies for accelerating PF calculation on such 
a computing architecture. 

A. Heterogenous HPC cluster  

HPC cluster can be abstracted as a heterogeneous 
programming model that consists of hosts and devices. Fig. 1 
describes the HPC cluster architecture in the 2D fashion, 
showcasing its components and their interconnections.  
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Fig. 1. HPC cluster heterogeneous architecture. 

Each node in the HPC cluster is grouped through host and 
devices, respectively. The host, CPU, is responsible for data 
preconditioning and scheduling. The computationally 
intensive tasks are then offloaded to the GPUs. Specifically, 
each GPU will simultaneously initiate numerous threads upon 
invoking the CUDA kernel function, which lays the 
foundation for parallelization to accelerate the PF calculation. 
These threads are organized into two-level hierarchy, namely 
grid and block, while each level supports up to 3-dimensions 
[22]. At the grid level, multiple thread blocks are grouped into 
a grid and then massive threads are assigned to a block. A 
warp is formed by 32 consecutive threads within a block, and 
all threads in a warp execute instructions in a lock-step manner 

in accordance with the Single Program Multiple Data (SPMD) 
concept [26]. However, divergences can occur when the parts 
of threads encounter the if-statement within the same warp, 
limiting the program parallelization. Furthermore, the main 
bottleneck becomes communication overhead between GPUs 
rather than computing capability of individual GPUs in the 
multi-GPU architecture. Therefore, GPUDirect technology is 
utilized to facilitate P2P communication among GPUs, 
reducing the cost of data migration, and resulting in 
performance improvement. To further exploit the capability of 
multi-GPUs, a data parallelism approach is adopted, and the 
data tiles are evenly distributed across the multi-GPU 
platforms to maintain the loading balance. One of the GPUs is 
responsible for the data broadcast and distribution, 
minimizing the back-and-forth transmission between host and 
devices and maximizing the parallel processing potential of 
the devices.    

B. Sparse Multi-GPU FD Method 

The sparse FD method, an extension of 
the NR method originally proposed by Stott and Alsac [27], 
simplifies the calculation of Jacobian matrix in the NR 
framework. As a result, the classic NR formulas can be 
expressed as follows: 
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Where ∆P and ∆Q represent the real and reactive power 
mismatch, respectively. J1, J2, J3 and J4 denote the partial 
derivatives with respect to voltage phase angle, ∆δ, and 
magnitude ∆V. Due to the high X/R ration of transmission line 
in the power systems, the submatrices, J2 and J3, are 
approximately zero. With such approximation, equation (1) 
can be modified as follows: 
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Therefore, equation (2) can be further split into two 
independent equations, as follows: 

 1P J δ∆ = ∆   (3) 

 4Q J V∆ = ∆   (4) 

J1 and J4 are stored in compressed sparse row (CSR) 
format, due to the sparse nature of the power system.  

Data GPU 0

Data block 0 Data block 1 Data block N

GPU 1 GPU 2 GPU N

Data block 0 Data block 1 Data block N

GPU 1 GPU 2 GPU N
 

Fig. 2. The data parallelism of the sparse multi-GPU method. 



 

Additionally, the fixed coefficient matrices, J1 and J4, are 
reused throughout the PF calculation process, eliminating the 
necessity for updating them for each iteration. While the CSR 
format conserves a considerable amount of computing 
resources and memory, it restricts the scalability of the multi-
GPU architecture, due to its irregular memory access pattern. 
In practice, the results of (3) and (4) still exhibit dependency. 
Specifically, the results of one equation can facilitate the other,  
and vice versa. Therefore, the task parallelism method in [6] 
will cause the loading unbalanced issues. The sparse data 
parallelism is introduced to mitigate these challenges. 
Specifically, the sparse data are evenly divided into numerous 
consecutive data blocks and distributed across multiple GPUs, 
with one GPU managing the data collection and distribution, 
as illustrated in Fig. 2. Furthermore, the sparse elements are 
stored in the consecutive locations. In the process of the PF 
calculation, the elements in the consecutive location can be 
accessed through a single dynamic random-access memory 
(DRAM) request at extremely high speed. This technique is 
referred to as DRMA burst, leveraging the aligned coalesced 
memory access of the GPUs. 

III. IMPLEMENTATION 

In this section, it presents the specifics of the sparse multi-
GPU method, including the program flowchart and 
implementation details. 

A. Triangular Linear System Solver 

In the process of PF calculation, equation (3) and (4) can 
be expanded into a linear system, using the first-order Taylor 
series at the fixed point, and then they are represented in 
matrix format, as follows: 

 Ax b=   (5) 

Where A and b are Jacobian matrix and power mismatch, 
respectively. The state vector, x, is either the voltage 
magnitude or phase angle. Due to the nature of power systems, 
LU solver is a high efficiency numerical method for the 
numerical stability and acceleration in the process of PF 
calculation [2]. Therefore, the Jacobian matrix, A, can be 
decomposed into lower (L) matrix and upper (U) matrix 
before transferring them to the multi-GPUs, as follows: 

 A LU=   (6) 

Algorithm 1 Triangular Linear System Solver in PF Calculation 

1 Collect the results from other GPUs to GPU0 

2 //Request for workspace 

   cusparseDcsrsv_bufferSize(handle, trans, m, nnz, descr, \ 
                                                csrV, csrP, csrI, \ 
                                                info, &Size);  
3 if (Size != 0) then 
        //allocate the global memory 
        cudaMalloc((void**)&pBuffer, Size); 

end 

4 //Analysis of the sparse matrix 
   cusparseDcsrsv2_analysis(handle, trans, m, nnz, descr, \ 

                                             csrV, csrP, csrI, \ 
                                             info, policy, pBuffer); 

5 //Solve the triangular linear systems 
   cusparseDcsrsv2_solve(handle, trans, m, nnz,  &alpha, \ 
                                            descr, csrV, csrP, csrI, \ 
                                            info, b, x, \ 
                                            policy, pBuffer); 

6 Broadcast the solutions to other GPUs  

7 Update state vectors on the multi-GPUs 

The L and U matrices, resulting from the decomposition 
of the Jacobian matrix, will be transferred to multi-GPU 
global memory, and utilized repeatedly in each iteration of the 
PF calculation, eliminating the need to update the Jacobian 
matrix during the calculation process. The highly optimized 
CUDA library, CUSPARSE, further speeds up the solution of 
the sparse linear equations, as outlined in Algorithm 1. 

B. The Flowchart of the Sparse Multi-GPU Method 

The PF calculation process includes several steps, outlined 
below, with a corresponding flowchart depicted in Fig. 3. 
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Fig. 3. The flowchart of the sparse multi-GPU method. 

• Preprocess: Sparse data is processed and decomposed 
into LU matrices and reused on multi-GPUs. 

• Data Transfer: Sparse data and preconditioner are 
evenly transferred to the multi-GPU global memory. 

• State Vector Solution: the state vectors, phase angle, 
are solved and power mismatch is updated on the 
multi-GPUs. 

• Convergence Check: The norm of the power 
mismatch is checked to determine if it satisfies the 
stop criteria. 

• Termination: The process terminates if the stop 
criteria are satisfied, otherwise 6). 



• State Vector Solution: The state vectors, including 
voltage magnitude, are solved and power mismatch is 
updated on the multi-GPUs. 

• Convergence Check: The norm of power mismatch is 
checked to determine if it satisfies the stop criteria. 

• Termination: Stop when the stop criteria are satisfied, 
otherwise 9). 

• Iteration: Steps from 3) to 8) are repeated until the 
stop criteria are met. 

IV. RESULT AND ANALYSIS 

This subsection introduces the test setup and presents the 
results of the sparse multi-GPU method, comparing it to the 
CPU counterpart. The comprehensive analysis of the results is 
discussed in the subsequent subsection. 

A. Experiment Setup 

The overall experiments were carried out on the Matilda 
HPC cluster, which is equipped with 4 NVIDIA Tesla V100 
GPU nodes. For software libraries, the CUDA toolkit version 
10.2 is utilized to accelerate the PF calculation. The 
convergence tolerance of 1� − 4 was set to ensure both the 
speed and accuracy in the PF calculation. Table Ⅰ presents the 
detailed parameters of the computing platform. 

 TABLE Ⅰ 
TEST PLATFORM PARAMETERS 

Item Description 

CPU Intel(R) Xeon® 2.5GHz 
GPU NVIDIA Tesla V100 

OS Red Hat Enterprise 8.6  

Complier NVCC  

CUDA Tool CUDA Toolkit 10.2 

Library Eigen 3.4 / MATPOWER 7.1  

Also, all the test cases are sourced from the MATPOWER, 
as presented in Table Ⅱ. 

TABLE Ⅱ 
LARGE-SCALE TEST CASES 

Case                             Description 

Case 1354 Test case form MATPOWER, Pan-European system 

Case 3120 Test case form MATPOWER, Polish system 

Case 6515 Test case form MATPOWER, French system 

Case 9241 Test case form MATPOWER, Pan-European system 

Case 13659 Test case form MATPOWER, Pan-European system 

 

B. Results of Implementation 

The sparse multi-GPU method was executed on the HPC 
cluster with varying numbers of GPUs in comparison with the 
optimized MATPOWER. Table Ⅲ presents the 
implementation results of the sparse multi-GPU method, 
including the execution time and speedup. 

TABLE Ⅲ 
EXECUTION RESULTS ON THE MULTIPLE GPUS (UNIT: SECOND) 

 
Case 

 
Platform Time  Speedup 

 

 

    CPU 0.029 1.000 
    Single GPU 0.442 0.066 

Case 1354     Two GPUs 0.714 0.041 
    Three GPUs 1.101 0.026 
    Four GPUs 1.418 0.020 

    
 

 

Case 3120 

    CPU 0.109 1.000 
    Single GPU 1.624 0.067 
    Two GPUs 1.642 0.066 

    Three GPUs 1.781 0.061 
    Four GPUs 1.992 0.055 

    
 

 

Case 6515 

    CPU 2.384 1.000 
    Single GPU 3.684 0.647 
    Two GPUs 2.857 0.834 
    Three GPUs 3.231 0.738 
    Four GPUs 3.557 0.670 

    
 

 

Case 9241 

    CPU 1.770 1.000 
    Single GPU 3.151 0.562 
    Two GPUs 2.948 0.600 
    Three GPUs 4.097 0.432 

    Four GPUs 4.112 0.430 
    
 

 

Case 13659 

    CPU 3.428 1.000 
    Single GPU 0.958 3.578 
    Two GPUs 0.908 3.775 
    Three GPUs 1.288 2.661 
    Four GPUs 1.495 2.293 

 
From Table Ⅲ, it suggests that the execution time of the 

sparse multi-GPU method decreases as the scale of power 
system increases. Also, while the CPU achieves 
outperformance, its accelerating efficacy is constrained as the 
power system exceeds 10, 000 buses. 

 

Fig. 4. The execution time on CPU and multi-GPUs. 

 

Fig. 5. The speedup of CPU in comparision with multi-GPUs. 

Fig. 4 depicts a significant performance enhancement with 
the multi-GPU method when two GPUs are utilized. 
However, it also implies that the addition of more GPUs does 
not necessarily guarantee further performance improvement. 
Curves in Fig. 5 show the speedup of both CPU and multi-
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GPUs on different power systems. The speedup of the sparse 
multi-GPU method maintains a consistent improvement until 
the power system reaches over 9, 000 buses, after which the 
improvements becomes notably significant. These will be 
discussed in the next subsection. 

C. Analysis of Results 

a)  Influence of the sparse format:The sparsity of 
power system, especially those with over 1,000 buses, 
typically reaches around 97% [3]. Consequently, the sparse 
power system data is stored in the CSR format, where the 
non-zero elements are packed in triplets, significantly 
reducing much memory usage. As a result, CPU can 
outperform GPUs when the number of power system buses is 
less than 10, 000. Massive zeros in the data are not involved 
in the PF calculation, when taking the CSR format. However, 
the design philosophy of the GPU is based on the throughput-
oriented principle, meaning that the limited small-scale size 
of the CSR data fails to fully leverage the high floating-point 
computing capabilities of the GPU. As a results, significant 
improvements over multi-GPU performance may not be fully 
realized, even when dealing with the power systems 
exceeding 9,000 buses. 

b)  Influence of the GPU numbers:Theoretically, the 
speedup of the multi-GPU performance will improve as the 
increasing number of GPUs. However, curves in Fig. 5 
suggest that the sparse multi-GPU method achieves the 
outperformance on the parallel devices with just two GPUs. 
In practice, while the multi-GPU method is well-suited for 
the large-scale and data-parallelism programs because it can 
hide the inter-communication latency among the GPUs 
through intelligently scheduling computing resources. Since 
the sparse format and compressed small-scale data are 
employed, the cost of communication experiences a 
significant increase with the addition of more GPUs. That is 
why a single GPU outperforms configurations with three and 
four GPUs when the number of power buses is less than 
9,000. Furthermore, some synchronization operations in the 
sparse multi-GPU method are utilized to guranteen the result 
security and accuracy during the PF calculation, causing an 
increase in execution time. Consequently, the limitations of 
small-scale sparse data hinder the full utilization of multi-
GPU capabilities, increasing the communication burden. In 
spite of using GPUDirect technology to facilitate P2P 
communication among GPUs, the transparent data 
transmission still fails fully to mitigate the communication 
disadvantages inherent in the sparse compressed small-scale 
datasets. Nevertheless, considering the observed trend in Fig. 
5, it is expected that the multi-GPU method will eventually 
achieve overall performance enhancement in future power 
networks, particularly as the current power systems continue 
to expand in size and complexity. 

V. CONCLUSION AND FUTURE WORK 

 This paper introduces a sparse multi-GPU method, 
designed to accelerate the PF calculation through data 
parallelism. As a result, it enhances the scalability of parallel 
computing architecture. By leveraging the CSR format, this 
method efficiently utilizes and saves computing resources 
excluding the zero-entry calculation in the coefficient matrix 
during the PF calculation. Furthermore, it overcomes the 
disadvantages of loading unbalance in [6], achieving almost a 

speedup of almost 4x compared to the optimized 
MATPOWER counterpart.   

To reduce the communication overhead, GPUDirect 
technology is utilized to facilitate P2P communication 
between multi-GPUs. Although it reduces the cost of 
communication between multiple devices, the accelerating 
efficacy is limited when the number of GPUs exceeds two. 
During the state vector update, some synchronization 
operations consume much time for the result security and 
accuracy. Especially, scheduling of multi-GPU fails to hide 
the latency in small-sized power systems. Consequently, inter-
GPU communication becomes the main limited factor rather 
than the computing capabilities of the devices. Future work 
will concentrate on mitigating the communication overhead 
among multi-GPUs, with a focus on leveraging NVSHEM to 
enhance the efficiency of the multi-GPU communication, 
ultimately leading to overall performance enhancement. 
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