
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The Analysis of the Sparse Multi-GPU Parallel
Method on the Large Sparse Power Flow

Calculation

Lei Zeng
Electrical & Computer Engineering

 Oakland University

Rochester, MI, USA
leizeng@oakland.edu

Shadi Alawneh
Electrical & Computer Engineering

Oakland University

Rochester, MI, USA
shadialawneh@oakland.edu

Abstract—Power Flow (PF) calculation serves to analyze the

power system efficiently, aiming to obtain the magnitude voltage

and phase angle, as the development of multiple energy supplies.

Due to the high sparsity and increasingly complexity of power

systems, solving large-scale sparse systems in a parallelized

fashion has become a bottleneck for power engineers. To

address this challenge, this paper proposes a sparse multi-GPU

Fast Decouple (FD) method to accelerate the PF calculation.

Specifically, data parallelism is designed to enhance scalability

and maintain the load balancing across the multi-GPUs.

Additionally, GPUDirect technology is employed to reduce the

communication overhead between multiple GPUs. As a result,

this method in the paper achieves nearly 4x on a power system

with over 10, 000 buses, compared to the MATLAB-based

optimized library, MATPOWER, on a large-scale power system.

Keywords—Multi-GPU, FD method, sparse matrix, data

parallelism

I. INTRODUCTION

PF calculation is critical for the power system analysis,
planning and operation. The PF calculation is applied to solve
the nonlinear equations of such power systems [1], [2]. Due to
the introduction of new energy supplies and heavier loading,
it brings great challenges and pressure for PF calculation [3].
In practice, the classic Newton-Raphson (NR) method is
utilized to evaluate the voltage magnitude and phase angle of
buses inside the power system, and the sparse NR method is
often employed on a single CPU or GPU platform, the
accelerating efficacy is limited due to the high data
interdependence and irregular sparse format. Furthermore,
this limitation in the computation architecture severely
hampers the efficiency, parallelism and scalability in PF
calculation. As a result, it is a necessity to exploit data
parallelism and improve scalability of sparse matrix formats
to accelerate PF calculation, particularly in the large-scale and
complicated power systems.

High performance computing (HPC) cluster provides
substantial fine-grained parallelism with orders of magnitude
higher throughput than the CPUs [4]. For instance, each GPU
node has 4 NVIDIA Tesla V100 GPUs with 5120 cores in
Matilda HPC cluster, which has a peak performance of over
15 TFLOPS versus about 200-400 GFLOPS of Intel i9 series
8 core CPUs [5]. To reduce communication overhead,
GPUDirect RDMA is introduced to facilitate the
communication among NVIDIA GPUs in remote systems,
which eliminates the system CPUs and required buffer copies

of data via the system memory, resulting in 10x better
performance [6]. Furthermore, NVIDIA offers a range of
highly-optimized libraries [7], such as cuBLAS, cuSPARSE,
and cuSOLVER. These salient features of high-performance
parallel computing systems provides researchers an
opportunity to explore data parallelism and devise the parallel
sparse computing architecture [6].

In practice, most methods in PF calculation can generally
be categorized into two groups, i.e., iteration methods [8-12]
and direct methods [13-23]. Specifically, although the
iteration method can save much memory, the execution time
severely depends on the preconditioning matrix. Generally,
the initial preconditioning matrix can easily lead to the PF
calculation divergence, compelling researchers repeatedly to
test the different preconditioning matrices until finding a
stable and robust preconditioner for the PF calculation. The
direct solver, on the other hand, tends to be more robust for
ill-conditioned problems compared to the iteration methods
[7]. As for direct methods, most utilize the single GPU
approaches to accelerate the PF calculation in a vectorization
manner, improving the performance of PF calculation.
Reference [3] takes the sparse NR method and achieves a 1.4x
speedup, compared to its MATLAB counterpart. However,
the accelerating efficacy is limited, due to the high data
dependency and irregular memory access in the sparse matrix
format [24]. Reference [22] introduces a multi-thread and
multi-GPU method to accelerate the large-scale PF
calculation. This method, however, suffers from severe data
race issues in shared memory programming fashion, leading
to performance degradation, achieving only a modest 2x
improvement when compared to the optimized CPU
counterpart.

Sooknanan and Singh et al. [14], [25] introduce the sing-
GPU method, employing a dense matrix format, which indeed
accelerates the speedup of PF calculation and enhances the
scalability of computing architecture. These methods,
however, may fail to converge as the power system scales up,
due to the limited global memory of the single GPU. Besides,
massive nonzero elements in the dense matrix are involved in
the process of linear system solver, leading to significant
resource consumption and increased the execution time of PF
calculation. Reference [6] proposes the multi-process and
multi-GPU method improve the scalability of the computing
architecture. The approach achieves notable speedups ranging
from 9x ~ 33x, compared to the single-GPU counterpart on
dense large-scale power systems. The method reduces the data

race when operating on the same elements, but it still faces the
loading unbalanced challenges, similar to those encountered
in [14], [25].

To address such challenges, this paper proposes a sparse
multi-GPU parallel computing method, aimed at reducing the
involvement of nonzero elements in the PF calculation and
leveraging the floating-operating capability of multi-GPUs,
leading to performance improvement in both acceleration and
scalability. Furthermore, GPUDirect technology is employed
to alleviate communication overhead among multiple GPUs
by facilitating direct data transfer between them in a peer-to-
peer (P2P) manner. In addition, one of GPUs is designated to
broadcast and distribute the intermediate data to other GPUs,
thereby simplifying the complexity of management and
scheduling for the computing system.

The rest of this paper is organized as follows: Section Ⅱ
reviews the heterogeneous HPC cluster and introduces the
sparse multi-GPU method. In Section Ⅲ, this paper presents
implementation details of this method. Section Ⅳ presents the
benchmarking results and analysis. Finally, the overall
conclusion and future work will be presented in the last
section.

II. HPC CLUSTER AND SPARSE FD MULTI-GPU METHOD

In this section, the heterogeneous HPC cluster mode is
reviewed, outlining its features and components.
Subsequently, the sparse multi-GPU method is introduced,
detailing its strategies for accelerating PF calculation on such
a computing architecture.

A. Heterogenous HPC cluster

HPC cluster can be abstracted as a heterogeneous
programming model that consists of hosts and devices. Fig. 1
describes the HPC cluster architecture in the 2D fashion,
showcasing its components and their interconnections.

CPU0

GPU0 GPU1

GPU2 GPU3

CPUn

GPUn0 GPUn1

GPUn2 GPUn3

Fig. 1. HPC cluster heterogeneous architecture.

Each node in the HPC cluster is grouped through host and
devices, respectively. The host, CPU, is responsible for data
preconditioning and scheduling. The computationally
intensive tasks are then offloaded to the GPUs. Specifically,
each GPU will simultaneously initiate numerous threads upon
invoking the CUDA kernel function, which lays the
foundation for parallelization to accelerate the PF calculation.
These threads are organized into two-level hierarchy, namely
grid and block, while each level supports up to 3-dimensions
[22]. At the grid level, multiple thread blocks are grouped into
a grid and then massive threads are assigned to a block. A
warp is formed by 32 consecutive threads within a block, and
all threads in a warp execute instructions in a lock-step manner

in accordance with the Single Program Multiple Data (SPMD)
concept [26]. However, divergences can occur when the parts
of threads encounter the if-statement within the same warp,
limiting the program parallelization. Furthermore, the main
bottleneck becomes communication overhead between GPUs
rather than computing capability of individual GPUs in the
multi-GPU architecture. Therefore, GPUDirect technology is
utilized to facilitate P2P communication among GPUs,
reducing the cost of data migration, and resulting in
performance improvement. To further exploit the capability of
multi-GPUs, a data parallelism approach is adopted, and the
data tiles are evenly distributed across the multi-GPU
platforms to maintain the loading balance. One of the GPUs is
responsible for the data broadcast and distribution,
minimizing the back-and-forth transmission between host and
devices and maximizing the parallel processing potential of
the devices.

B. Sparse Multi-GPU FD Method

The sparse FD method, an extension of
the NR method originally proposed by Stott and Alsac [27],
simplifies the calculation of Jacobian matrix in the NR
framework. As a result, the classic NR formulas can be
expressed as follows:

1 2

3 4

J JP

J JQ V

δ∆ ∆    
=     

∆ ∆    
 (1)

Where ∆P and ∆Q represent the real and reactive power
mismatch, respectively. J1, J2, J3 and J4 denote the partial
derivatives with respect to voltage phase angle, ∆δ, and
magnitude ∆V. Due to the high X/R ration of transmission line
in the power systems, the submatrices, J2 and J3, are
approximately zero. With such approximation, equation (1)
can be modified as follows:

1

4

0

0

JP

JQ V

δ∆ ∆    
=     

∆ ∆    
 (2)

Therefore, equation (2) can be further split into two
independent equations, as follows:

 1P J δ∆ = ∆ (3)

 4Q J V∆ = ∆ (4)

J1 and J4 are stored in compressed sparse row (CSR)
format, due to the sparse nature of the power system.

Data GPU 0

Data block 0 Data block 1 Data block N

GPU 1 GPU 2 GPU N

Data block 0 Data block 1 Data block N

GPU 1 GPU 2 GPU N

Fig. 2. The data parallelism of the sparse multi-GPU method.

Additionally, the fixed coefficient matrices, J1 and J4, are
reused throughout the PF calculation process, eliminating the
necessity for updating them for each iteration. While the CSR
format conserves a considerable amount of computing
resources and memory, it restricts the scalability of the multi-
GPU architecture, due to its irregular memory access pattern.
In practice, the results of (3) and (4) still exhibit dependency.
Specifically, the results of one equation can facilitate the other,
and vice versa. Therefore, the task parallelism method in [6]
will cause the loading unbalanced issues. The sparse data
parallelism is introduced to mitigate these challenges.
Specifically, the sparse data are evenly divided into numerous
consecutive data blocks and distributed across multiple GPUs,
with one GPU managing the data collection and distribution,
as illustrated in Fig. 2. Furthermore, the sparse elements are
stored in the consecutive locations. In the process of the PF
calculation, the elements in the consecutive location can be
accessed through a single dynamic random-access memory
(DRAM) request at extremely high speed. This technique is
referred to as DRMA burst, leveraging the aligned coalesced
memory access of the GPUs.

III. IMPLEMENTATION

In this section, it presents the specifics of the sparse multi-
GPU method, including the program flowchart and
implementation details.

A. Triangular Linear System Solver

In the process of PF calculation, equation (3) and (4) can
be expanded into a linear system, using the first-order Taylor
series at the fixed point, and then they are represented in
matrix format, as follows:

 Ax b= (5)

Where A and b are Jacobian matrix and power mismatch,
respectively. The state vector, x, is either the voltage
magnitude or phase angle. Due to the nature of power systems,
LU solver is a high efficiency numerical method for the
numerical stability and acceleration in the process of PF
calculation [2]. Therefore, the Jacobian matrix, A, can be
decomposed into lower (L) matrix and upper (U) matrix
before transferring them to the multi-GPUs, as follows:

 A LU= (6)

Algorithm 1 Triangular Linear System Solver in PF Calculation

1 Collect the results from other GPUs to GPU0

2 //Request for workspace

 cusparseDcsrsv_bufferSize(handle, trans, m, nnz, descr, \
 csrV, csrP, csrI, \
 info, &Size);
3 if (Size != 0) then
 //allocate the global memory
 cudaMalloc((void**)&pBuffer, Size);

end

4 //Analysis of the sparse matrix
 cusparseDcsrsv2_analysis(handle, trans, m, nnz, descr, \

 csrV, csrP, csrI, \
 info, policy, pBuffer);

5 //Solve the triangular linear systems
 cusparseDcsrsv2_solve(handle, trans, m, nnz, &alpha, \
 descr, csrV, csrP, csrI, \
 info, b, x, \
 policy, pBuffer);

6 Broadcast the solutions to other GPUs

7 Update state vectors on the multi-GPUs

The L and U matrices, resulting from the decomposition
of the Jacobian matrix, will be transferred to multi-GPU
global memory, and utilized repeatedly in each iteration of the
PF calculation, eliminating the need to update the Jacobian
matrix during the calculation process. The highly optimized
CUDA library, CUSPARSE, further speeds up the solution of
the sparse linear equations, as outlined in Algorithm 1.

B. The Flowchart of the Sparse Multi-GPU Method

The PF calculation process includes several steps, outlined
below, with a corresponding flowchart depicted in Fig. 3.

DevicesHost

End

Load datasets

Condition?

&&

Counter<max

iteration?

Initialization

Condition=1

Counter=1

Calculate power mismatch

Start

N

Return Results

Y

Y

Generate L and U

matrices

Update power mismatch

Stop criteria?

GPU 1...N

Update power mismatch

Solve voltage magnitude

GPU0

GPU 1...N

Condition=0

Stop criteria?

Stop criteria?

Solve phase angle

GPU0

N

Y

N

Y

N

Counter++

Fig. 3. The flowchart of the sparse multi-GPU method.

• Preprocess: Sparse data is processed and decomposed
into LU matrices and reused on multi-GPUs.

• Data Transfer: Sparse data and preconditioner are
evenly transferred to the multi-GPU global memory.

• State Vector Solution: the state vectors, phase angle,
are solved and power mismatch is updated on the
multi-GPUs.

• Convergence Check: The norm of the power
mismatch is checked to determine if it satisfies the
stop criteria.

• Termination: The process terminates if the stop
criteria are satisfied, otherwise 6).

• State Vector Solution: The state vectors, including
voltage magnitude, are solved and power mismatch is
updated on the multi-GPUs.

• Convergence Check: The norm of power mismatch is
checked to determine if it satisfies the stop criteria.

• Termination: Stop when the stop criteria are satisfied,
otherwise 9).

• Iteration: Steps from 3) to 8) are repeated until the
stop criteria are met.

IV. RESULT AND ANALYSIS

This subsection introduces the test setup and presents the
results of the sparse multi-GPU method, comparing it to the
CPU counterpart. The comprehensive analysis of the results is
discussed in the subsequent subsection.

A. Experiment Setup

The overall experiments were carried out on the Matilda
HPC cluster, which is equipped with 4 NVIDIA Tesla V100
GPU nodes. For software libraries, the CUDA toolkit version
10.2 is utilized to accelerate the PF calculation. The
convergence tolerance of 1� − 4 was set to ensure both the
speed and accuracy in the PF calculation. Table Ⅰ presents the
detailed parameters of the computing platform.

 TABLE Ⅰ
TEST PLATFORM PARAMETERS

Item Description

CPU Intel(R) Xeon® 2.5GHz
GPU NVIDIA Tesla V100

OS Red Hat Enterprise 8.6

Complier NVCC

CUDA Tool CUDA Toolkit 10.2

Library Eigen 3.4 / MATPOWER 7.1

Also, all the test cases are sourced from the MATPOWER,
as presented in Table Ⅱ.

TABLE Ⅱ
LARGE-SCALE TEST CASES

Case Description

Case 1354 Test case form MATPOWER, Pan-European system

Case 3120 Test case form MATPOWER, Polish system

Case 6515 Test case form MATPOWER, French system

Case 9241 Test case form MATPOWER, Pan-European system

Case 13659 Test case form MATPOWER, Pan-European system

B. Results of Implementation

The sparse multi-GPU method was executed on the HPC
cluster with varying numbers of GPUs in comparison with the
optimized MATPOWER. Table Ⅲ presents the
implementation results of the sparse multi-GPU method,
including the execution time and speedup.

TABLE Ⅲ
EXECUTION RESULTS ON THE MULTIPLE GPUS (UNIT: SECOND)

Case

Platform Time Speedup

 CPU 0.029 1.000
 Single GPU 0.442 0.066

Case 1354 Two GPUs 0.714 0.041
 Three GPUs 1.101 0.026
 Four GPUs 1.418 0.020

Case 3120

 CPU 0.109 1.000
 Single GPU 1.624 0.067
 Two GPUs 1.642 0.066

 Three GPUs 1.781 0.061
 Four GPUs 1.992 0.055

Case 6515

 CPU 2.384 1.000
 Single GPU 3.684 0.647
 Two GPUs 2.857 0.834
 Three GPUs 3.231 0.738
 Four GPUs 3.557 0.670

Case 9241

 CPU 1.770 1.000
 Single GPU 3.151 0.562
 Two GPUs 2.948 0.600
 Three GPUs 4.097 0.432

 Four GPUs 4.112 0.430

Case 13659

 CPU 3.428 1.000
 Single GPU 0.958 3.578
 Two GPUs 0.908 3.775
 Three GPUs 1.288 2.661
 Four GPUs 1.495 2.293

From Table Ⅲ, it suggests that the execution time of the

sparse multi-GPU method decreases as the scale of power
system increases. Also, while the CPU achieves
outperformance, its accelerating efficacy is constrained as the
power system exceeds 10, 000 buses.

Fig. 4. The execution time on CPU and multi-GPUs.

Fig. 5. The speedup of CPU in comparision with multi-GPUs.

Fig. 4 depicts a significant performance enhancement with
the multi-GPU method when two GPUs are utilized.
However, it also implies that the addition of more GPUs does
not necessarily guarantee further performance improvement.
Curves in Fig. 5 show the speedup of both CPU and multi-

0

1

2

3

4

5

Case1354 Case3120 Case6515 Case9241 Case13659

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Matpower Single GPU Two GPUs Three GPUs Four GPUs

0

1

2

3

4

Case1354 Case3120 Case6515 Case9241 Case13659

S
p

e
e

d
u

p

Matpower Single GPU Two GPUs

Three GPUs Four GPUs

Identify applicable funding agency here. If none, delete this text box.

GPUs on different power systems. The speedup of the sparse
multi-GPU method maintains a consistent improvement until
the power system reaches over 9, 000 buses, after which the
improvements becomes notably significant. These will be
discussed in the next subsection.

C. Analysis of Results

a) Influence of the sparse format:The sparsity of
power system, especially those with over 1,000 buses,
typically reaches around 97% [3]. Consequently, the sparse
power system data is stored in the CSR format, where the
non-zero elements are packed in triplets, significantly
reducing much memory usage. As a result, CPU can
outperform GPUs when the number of power system buses is
less than 10, 000. Massive zeros in the data are not involved
in the PF calculation, when taking the CSR format. However,
the design philosophy of the GPU is based on the throughput-
oriented principle, meaning that the limited small-scale size
of the CSR data fails to fully leverage the high floating-point
computing capabilities of the GPU. As a results, significant
improvements over multi-GPU performance may not be fully
realized, even when dealing with the power systems
exceeding 9,000 buses.

b) Influence of the GPU numbers:Theoretically, the
speedup of the multi-GPU performance will improve as the
increasing number of GPUs. However, curves in Fig. 5
suggest that the sparse multi-GPU method achieves the
outperformance on the parallel devices with just two GPUs.
In practice, while the multi-GPU method is well-suited for
the large-scale and data-parallelism programs because it can
hide the inter-communication latency among the GPUs
through intelligently scheduling computing resources. Since
the sparse format and compressed small-scale data are
employed, the cost of communication experiences a
significant increase with the addition of more GPUs. That is
why a single GPU outperforms configurations with three and
four GPUs when the number of power buses is less than
9,000. Furthermore, some synchronization operations in the
sparse multi-GPU method are utilized to guranteen the result
security and accuracy during the PF calculation, causing an
increase in execution time. Consequently, the limitations of
small-scale sparse data hinder the full utilization of multi-
GPU capabilities, increasing the communication burden. In
spite of using GPUDirect technology to facilitate P2P
communication among GPUs, the transparent data
transmission still fails fully to mitigate the communication
disadvantages inherent in the sparse compressed small-scale
datasets. Nevertheless, considering the observed trend in Fig.
5, it is expected that the multi-GPU method will eventually
achieve overall performance enhancement in future power
networks, particularly as the current power systems continue
to expand in size and complexity.

V. CONCLUSION AND FUTURE WORK

 This paper introduces a sparse multi-GPU method,
designed to accelerate the PF calculation through data
parallelism. As a result, it enhances the scalability of parallel
computing architecture. By leveraging the CSR format, this
method efficiently utilizes and saves computing resources
excluding the zero-entry calculation in the coefficient matrix
during the PF calculation. Furthermore, it overcomes the
disadvantages of loading unbalance in [6], achieving almost a

speedup of almost 4x compared to the optimized
MATPOWER counterpart.

To reduce the communication overhead, GPUDirect
technology is utilized to facilitate P2P communication
between multi-GPUs. Although it reduces the cost of
communication between multiple devices, the accelerating
efficacy is limited when the number of GPUs exceeds two.
During the state vector update, some synchronization
operations consume much time for the result security and
accuracy. Especially, scheduling of multi-GPU fails to hide
the latency in small-sized power systems. Consequently, inter-
GPU communication becomes the main limited factor rather
than the computing capabilities of the devices. Future work
will concentrate on mitigating the communication overhead
among multi-GPUs, with a focus on leveraging NVSHEM to
enhance the efficiency of the multi-GPU communication,
ultimately leading to overall performance enhancement.

REFERENCES

[1] Yoon, D.H. and Han, Y., “Parallel power flow computation trends and
applications: A review focusing on GPU,” Energies, vol. 13, pp. 2147,
2020.

[2] Alawneh, S.G., Zeng, L. and Arefifar, S.A., “A Review of High-
Performance Computing Methods for Power Flow Analysis,”
Mathematics, vol. 11, pp. 2461, 2023.

[3] Zeng, L., Alawneh, S.G. and Arefifar, S.A., “GPU-based sparse power
flow studies with modified Newton’s method,” IEEE Access, vol. 9,
pp.153226-153239, 2021.

[4] Peng S., and Tan SX., “GLU3. 0: Fast GPU-based parallel sparse LU
factorization for circuit simulation,” IEEE Design & Test. Vol. 37, pp.
78-90, Feb 2020.

[5] B. David Kirk and Wen-Mei Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, 2nd ed. Morgan Kaufmann
Publiishers Inc., San Francisco, CA, 2013.

[6] Zeng, L., Alawneh, S.G., and Arefifar, S.A., “Parallel multi-GPU
implementation of fast decoupled power flow solver with hybrid
architecture,” Cluster Computing, pp. 11-12, Jun 2023.

[7] Huang, S., and Dinavahi V., “Performance analysis of GPU-
accelerated fast decoupled power flow using direct linear solver,” IEEE
Electrical Power and Energy Conference, pp. 1-6, Oct 2017.

[8] Y. Saad, Iterative Methods for sparse Linear Systems, 2nd ed.
PWS:Boston, MA, 2004.

[9] Green, RC., Wang, L., and Alam, M., “High performance computing
for electric power systems: Applications and trends,” IEEE Power and
Energy Society general meeting, pp. 1-8, Jul 2011.

[10] Dag, H., and Semlyen, A., “A new preconditioned conjugate gradient
power flow,” IEEE Transactions on Power Systems, vol. 18, pp. 1248-
55, Nov 2003.

[11] Chen, Y., and Shen, C., “A Jacobian-free Newton-GMRES (m) method
with adaptive preconditioner and its application for power flow
calculations,” IEEE Transactions on Power Systems, vol. 21, pp. 1096-
103, Jul 2006.

[12] Flueck, A.J., and Chiang, H.D., “Solving the nonlinear power flow
equations with a Newton process and GMRES,” IEEE International
Symposium on Circuits and Systems, vol. 1, pp. 657-660, May 1996.

[13] T.A., Davis, Direct Methods for Sparse Linear Systems, SIAM:
Philadelphia, PA, USA, 2006.

[14] Singh, J., and Aruni, I., “Accelerating power flow studies on graphics
processing unit,” Annual IEEE India Conference, pp. 1-5, Dec 2010.

[15] Guo, C., Jiang, B., Yuan, H., Yang, Z., Wang, L., and Ren, S.,
“Performance comparisons of parallel power flow solvers on GPU
system,” IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 232-239, Aug 2012.

[16] Li, X., Li, F., and Clark, J.M., “Exploration of multifrontal method with
GPU in power flow computation,” IEEE Power & Energy Society
General Meeting, pp. 1-5, Jul 2013.

[17] Gopal, A., Niebur, D., and Venkatasubramanian, S., “DC power flow
based contingency analysis using graphics processing units,” IEEE
Lausanne Power Tech, pp. 731-736, Jul 2007.

[18] Su, X., He, C., Liu, T., and Wu, L., “Full parallel power flow solution:
A gpu-cpu-based vectorization parallelization and sparse techniques
for newton–raphson implementation,” IEEE Transactions on Smart
Grid, vol. 11, pp. 1833-44, Sep 2019.

[19] Huang, S., and Dinavahi, V., “Performance analysis of GPU-
accelerated fast decoupled power flow using direct linear solver,” IEEE
Electrical Power and Energy Conference, pp. 1-6, Oct 2017.

[20] Schäfer, F., and Braun, M., “An efficient open-source implementation
to compute the Jacobian matrix for the Newton-Raphson power flow
algorithm,” IEEE PES Innovative Smart Grid Technologies
Conference Europe, pp. 1-6, Oct 2018.

[21] Gnanavignesh, R., and Shenoy, U.J., “Parallel sparse LU factorization
of power flow Jacobian using GPU,” IEEE Region 10 Conference, pp.
1857-1862, Oct 2019.

[22] Wang, Z., Wende-von Berg, S. and Braun, M., “Fast parallel Newton–
Raphson power flow solver for large number of system calculations
with CPU and GPU,” Sustainable Energy, Grids and Networks, vol. 27,
pp.100483, Sep 2021.

[23] Chen, X., Wu, W., Wang, Y., Yu, H. and Yang, H., “An escheduler-
based data dependence analysis and task scheduling for parallel circuit
simulation,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 58, pp.702-706, Sep 2011.

[24] He, K., Tan, S.X.D., Wang, H. and Shi, G., “GPU-accelerated parallel
sparse LU factorization method for fast circuit analysis,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
pp.1140-1150, Apr 2015.

[25] Sooknanan, D.J. and Joshi, A., “GPU computing using CUDA in the
deployment of smart grids. SAI Computing Conference,” pp. 1260-
1266, Jul 2016.

[26] S. Cook, CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs. Waltham, MA: Morgan Kaufmann, 2012.

[27] Stoot, B., Alsac, O., "Fast decoupled load flow." Power Appar. Syst.,
pp. 859-869, May 1974.

