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Abstract—This extended abstract investigates the application
of Contrastive Language-Image Pre-training (CLIP) for efficient
knowledge distillation, by utilizing embeddings as teachers. Typ-
ical knowledge distillation frameworks require running forward
passes through a teacher model, which is often prohibitive in the
case of billion or trillion parameter teachers. Our initial findings
show that using only the embeddings of the teacher models to
guide distillation, can outperform full-scale knowledge distillation
using 9× less memory and 8× less training time.

I. INTRODUCTION

Contrastive Language-Image Pre-training (CLIP) [1], in-
volves pre-training an image encoder along with a text encoder
to predict image-text pairings within a dataset. CLIP utilizes a
constrastive objective function that computes scaled pair-wise
cosine similarity between image embeddings (of the image
encoder) and text embeddings (of the text encoder) to generate
output logits. When training, the logits are compared to labels
that match input images to their corresponding ground truth
text embeddings, via a cross entropy loss. This alignment of
image and text modalities enables CLIP to achieve robust zero-
shot performances at image classification.

We explore the application of CLIP for computationally
efficient knowledge distillation (KD) using only teacher em-
beddings. Knowledge distillation is the process of transferring
(or distilling) the knowledge of a larger teacher model into
a smaller, more compressed student model, by comparing the
outputs of the teacher and student models using a distilla-
tion loss. Existing KD approaches require performing several
forward passes through both the teacher and student models
for comparing the corresponding outputs [2]. This can be pro-
hibitive when the teacher models are billion parameters in size,
and we wish to run KD on limited computational resources
(e.g., mobile devices). Intuitively, aligning the teacher and
student feature maps can be likened to the alignment of text
and image embeddings with CLIP. Hence, we investigate: Can
pre-computed embeddings obtained from the teacher model
be used to train the student model in knowledge distillation?

II. CLIP-EMBED-KD

Our approach is shown in Figure 1. We begin by randomly
sampling N samples of data for each class in the dataset. We
obtain teacher embeddings of the [CLS] token (used in models
like ViT [3]) for the sampled data and compute a cumulative
representation of each class’ embeddings by averaging the

Fig. 1. CLIP-Embed-KD uses pre-computed teacher embeddings thus
avoiding the need to run forward passes through the teacher for every sample.

collected embeddings of the class along the embedding di-
mension. This gives a pre-computed, “averaged” embedding
for each class, representative of the teacher embeddings for
that class. These embeddings are projected into the embedding
dimensions of the student model through a learnable projection
layer. We normalize the resultant embeddings and compute the
dot product of the normalized teacher and student embeddings.
We pass the resultant dot product with ground truth labels into
a cross entropy loss (Lclip). The ground truth represents a one-
hot encoding of the labels for each sample in the batch. The
distillation loss is a weighted combination of cross entropy loss
(LCE) of the student logits and ground truth labels (weighted
by α1), and Lclip (weighted by α2). We use α1 = 0.5 and
α2 = (1 − α1) = 0.5 in our experiments. Our detailed code
is available at: https://github.com/lnairGT/CLIP-Distillation/.

III. RESULTS

We evaluate our method using Vision Transformers (ViT)
[3], on CIFAR100 image classification. Teacher models are
HuggingFace ViT checkpoints (architectures in Table I). We
compare the computational efficiency of CLIP-Embed-KD
using teacher embeddings to baseline KD using the full teacher
model (referred to as CLIP-Teacher-KD). CLIP-Teacher-KD
computes embeddings for each input (no averaged embeddings
used), for computing Lclip. The teacher models use patch sizes
16, 32 and student models use patch size 4. We use batch size
of 64. We compute averaged embeddings over N = 100. We
train for 200 epochs, with a learning rate of 0.0001.

Table II compares the accuracy of CLIP-Teacher-KD vs.
CLIP-Embed-KD for different teacher sizes and patch sizes,
given the base student model. We note that for CLIP-Embed-



TABLE I
ARCHITECTURE SPECIFICATION OF THE MODELS.

Student Layers Embed dim Heads MLP
Base 6 256 8 1024
Large 10 512 8 2048

Teacher Layers Embed dim Heads MLP
Base-16/32 12 768 12 3072
Large-16/32 24 1024 16 4096

TABLE II
PERFORMANCE ON BASE STUDENT WITH IMAGE 32× 32.

Teacher CLIP-Embed-KD CLIP-Teacher-KD
Base-16 49.32 51.68
Large-16 49.67 51.92
Base-32 49.34 (17× ↓ mem) 52.61
Large-32 50.33 (59× ↓ mem) 51.95

Fig. 2. Training resource utilization (with Large-32 teacher) of CLIP-Embed-
KD, CLIP-Teacher-KD [student-size][image-size]: CLIP-Embed-KD scales
well (to larger models and larger images) to outperform CLIP-Teacher-KD
for much less memory.

KD, the final accuracy of the student seems to have a small
improvement when using the larger teacher models over the
base ones. This pattern is not explicit with CLIP-Teacher-KD
where the base teacher model has a slightly improved student
accuracy compared to the large teacher at patch size 32. Since
CLIP-Embed-KD uses pre-computed teacher embeddings to
train the student, larger teacher sizes potentially contribute to
improved quality of the average embeddings.

CLIP-Embed-KD is computationally more resource efficient

TABLE III
SCALING CLIP-EMBED-KD TO LARGER MODELS AND IMAGES.

Student Teacher Image sz CLIP-Embed-KD
Base 64 53.28
Large Large-16 32 52.92
Large 64 54.36
Base 64 53.40
Large Large-32 32 52.77
Large 64 54.92

Fig. 3. Accuracy vs. α2 (α1 = 1 − α2): α2 = 0 is the typical supervised
learning that uses cross-entropy loss with ground truth labels (no Lclip).

than CLIP-Teacher-KD, and can scale better to outperform
CLIP-Teacher-KD. In Table II, CLIP-Embed-KD achieves
roughly about ≈2% lesser accuracy than CLIP-Teacher-KD,
since the averaged embeddings result in some loss of infor-
mation per sample compared to CLIP-Teacher-KD. However,
CLIP-Teacher-KD uses more memory as teacher size grows,
whereas, CLIP-Embed-KD uses fixed memory for embeddings
alone, leading to improved scaling behavior (17×, 59× less
memory used). In Figure 2 and Table III, we see that CLIP-
Embed-KD can achieve higher accuracy than CLIP-Teacher-
KD, with larger student models as well as larger image sizes
while staying at a significantly lower computational budget.
In essence, eliminating the need to store the teacher model
and run repeated forward passes through it, allows the freed
resources to be better utilized for training larger student
models instead. Even with slightly larger students, the memory
used is much lesser than the teacher model, and CLIP-Embed-
KD outperforms CLIP-Teacher-KD in accuracy.

To emphasize importance of the CLIP distillation loss Lclip,
we measure validation accuracy for different α2 values, shown
in Figure 3 (for large student; large-32 teacher; and image size
32). CLIP-Embed-KD using non-zero weighting of LCE and
Lclip (α2 = 0.5, 0.25, 0.75) outperforms regular supervised
training (α2 = 0). This highlights that CLIP distillation indeed
improves the student accuracy over typical supervised learning
(that uses only LCE). Using only Lclip (i.e., α2 = 1) leads to
overfitting, due to imbalanced reliance on embeddings alone.
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