
Exploring the Trade-off Between Repair Time and
Reliability in Large Scale Cluster Computers: A

Simulation-Based Approach
Leslie A. Horace∗

College of Computing
Georgia Institute of Technology

Atlanta, GA, USA
lhorace3@gatech.edu

Nathan A. DeBardeleben
High Performance Computing Design

Los Alamos National Laboratory
Los Alamos, NM, USA

ndebard@lanl.gov

Craig S. Walker∗
Department of Computing Sciences

Coastal Carolina University
Conway, SC, USA

cswalke1@coastal.edu

Vivian E. Hafener
High Performance Computing Env.
Los Alamos National Laboratory

Los Alamos, NM, USA
vhafener@lanl.gov

William M. Jones†
Department of Computing Sciences

Coastal Carolina University
Conway, SC, USA

wjones@coastal.edu

Steven T. Senator†
High Performance Computing Env.
Los Alamos National Laboratory

Los Alamos, NM, USA
sts@lanl.gov

Abstract—As the size of high performance computing (HPC)
computational clusters continues to increase in performance,
scale and component count, the role that reliability and par-
ticularly the repair time plays a significant role in system spec-
ification, procurement, and ultimate operation of such systems.
System administrators must find a balance among competing
factors: initial capital investment, operational costs and observed
system performance and utility from the end users’ perspectives
are chief among them. In this paper, we explore the trade-off
between reliability, performance and node repair times in large-
scale high performance computing (HPC) computational clusters
using real historical workloads from Los Alamos National Lab-
oratory (LANL). We enhance an existing cluster simulator to
more quickly perform the large-scale parameter sweeps necessary
to obtain meaningful results for these studies, in some cases
by several orders of magnitude. Our results show that these
simulations can be parameterized to identify trends that can be
used to make decisions about system procurement and operation
as a function of the operational parameters and constraints.

Index Terms—parallel job scheduling, resilience, simulation,
modeling.

I. INTRODUCTION

Supercomputers have long been important fixtures in the
scientific community. The size, scope and capability of these
systems have grown considerably over the last two decades.

This manuscript has been approved for unlimited release and has been
assigned LA-UR-24-25237. This work has been authored by an employee of
Triad National Security, LLC which operates Los Alamos National Laboratory
under Contract No. 89233218CNA000001 with the U.S. Department of
Energy/National Nuclear Security Administration. The publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of the manuscript, or allow others to do so, for
United States Government purposes.

∗Graduate students & Coastal Carolina University staff members.
†Corresponding authors.

It is becoming more common that these capabilities are pro-
vided by specialized components, including general-purpose
graphics processing units (GPGPUs), tensor processing units
(TPUs), high-bandwidth memory (HBM) and high-capacity
interconnects. The typical scientific supercomputer cluster
fielded today is changing from one composed of larger vol-
umes of lower-cost, identical, homogeneous nodes to lower
volumes, denser sets of higher-value high-capability special-
ized nodes. High capability nodes composed of a greater
number of components have higher integration complexity.
Higher integration complexity has a consequent increase in
operational costs. Costs of operations are borne by the user
community, the system owner and by the HPC administrative
staff. These costs may be measured in time or dollars and
include: repair, replacement, immediacy and validation.

Unavailability is quantifiably consequential to consumers of
these scientific calculations, the end-user scientist, the system
owner and the funding entity. End users experience the impact
as reduced workflow, greater turn-around time and greater con-
tention for a reduced set of resources. System owners see less
efficient, reduced utilization and greater scheduling contention.
A variety of metrics are used by the differing communities (i.e.
mean time to job interruption, mean time between failures,
mean time to repair) but all describe an effective reduction
in in service. Funding agencies may quantify this as greater
variance in predictable costs (i.e. power, cooling.)

In this paper, we contribute to the HPC community by
• extending BatSim [1], a state of the art high performance

computer system simulator, to allow it to checkpoint itself
as well as improving the runtime performance of the built
in EASY Backfill algorithm resulting in a 5X to 40X
overall simulation speedup.

• conducting large-scale parameter studies (over 900,000



individual simulations) to characterize the trade-off
among reliability, repair time, and performance. We use
three data sets: two separate years of real production
workload HPC accounting data from a 1500-node com-
putational cluster (”Grizzly”) and statistically similar
synthetic HPC accounting data.

• providing the modifications [2] and these data sets for
use by the general HPC community [3].

The rest of the paper is organized as follows: Section II
provides relevant background for recent developments in the
field of parallel job scheduling as well as supercomputer
reliability studies. Section III provides a detailed description
of our initial experimental setup and preliminary results that
show significant simulation speedup factors that enable the
intended trade-off analysis central to this paper. Section IV
details the central trade-off experimentation and results that
show how the simulation framework can be used to enable
decision-makers to make more informed decisions about the
procurement, deployment and operation of large-scale cluster
computers. Section V provides a discussion and overarching
summary of the contributions of this paper, and Section VI
discusses the conclusions, limitations of this work, and future
directions.

II. RELATED WORKS

The initial motivation for this work centered on exploring
the trade-off space between reliability and performance in
large-scale cluster computing systems [4]. Specifically, due
to our prior work in particle-induced transient soft errors in
memory [5], an interesting project was initially identified [6]
that explored the DRAM failures and protection schemes on
the total cost of ownership of a data center that appeared to
also take into account the performance of such systems as a
function of reliability.

Consequently, an extensive review of existing open-source
cluster simulation frameworks was conducted that included
installation, execution, and evaluation against the needed
criteria, including two main criteria beyond the simulation
of the cluster and job scheduling and resource management
functionality, specifically, the ability to model and control
component failures as well as the concept of job checkpoint-
restart. The investigation included Alea [7], Desmo-j [8],
MaGate [9], SlurmSim [10], [11], and finally, BatSim [1], [12],
[13]. Of these, BatSim covered many of the capabilities needed
and was the closest match for a number of reasons, including
that BatSim is well-documented, modular, and extensible. It
also appears to have ongoing support and code updates as
reported in the Git repository. Furthermore, it is built on top
of SimGrid [14], a well-known cluster platform simulation
framework, thus adding an additional level of configurability
and fidelity.

III. INITIAL EXPERIMENTATION AND IMPROVEMENTS

Based on our prior experience in HPC cluster simulation
[4], [15] we decided to make use of BatSim [1], [13] as the
basis for our parameter studies. Once we began our specific

TABLE I
SPECIFICATIONS OF THE CHICOMA SUPERCOMPUTER

Attribute Description

System Type HPE Cray EX system
Networking HPE Slingshot
Total Nodes 688
Memory More than 300TB

Node Configuration 560 nodes with dual AMD Epyc 7H12 CPUs
128 nodes with single AMD Epyc 7713 CPUs
and quadruple Nvidia A100 GPUs

Computing Power More than eight petaflops

sets of experiments (Section IV), we noticed that we were
not able to conduct individual experiments in BatSim fast
enough to obtain results in a timely manner, especially given
the stochastic nature of many of our simulations that depend
on obtaining converged statistics across thousands of trials in
order to have confidence in the generality of our results.

In some cases, experiments took on the order of days to
complete on a single node of the Chicoma supercomputer at
LANL, with specifications as shown in Table I. As such, before
we were able to conduct our parameter studies on a large
scale, our first objective was to profile the BatSim simulator,
determine where the bulk of the time was being spent, and
determine if we could speed up the simulation at all.

This lead to two significant improvements in the BatSim
code base:

1) Dramatic timing improvement of the EASY backfilling
[16] scheduler used across our simulations.

2) Integration of checkpointing [17] directly into Bat-
Sim, allowing our simulations to continue running after
restarting from a previous saved state.1

Checkpointing is particularly important for LANL cluster
resources, where jobs may only run continuously for a defined
amount of time, such as 16 hours in the case of the standard
batch partition on the Chicoma supercomputer. These improve-
ments are discussed in Sections III-A and III-B, respectively.

A. EASY backfilling

BatSim’s counterpart program, Batsched [18] is a sched-
uler that provides a set of scheduling algorithms, including
different variants of backfilling. After profiling many of these
algorithms, we discovered that the particular implementation
of the provided EASY backfilling was the source of a relatively
large fraction of the overall simulation runtime. This prompted
a deeper investigation into the algorithm’s implementation,
with a goal of improving its performance.

The scheduling system of the original EASY backfilling
algorithm is centered around the concept of Time Slice Fitting.
Time slice fitting is a scheduling strategy that uses time
segments to manage the schedule. The slices are represented

1To clarify, in our prior work, we implemented simulated checkpointing
into BatSim, e.g. BatSim simulates parallel jobs, and we previously integrated
simulated job checkpointing inside the BatSim simulator; however, in this
work, we modified BatSim, the application itself, to checkpoint itself.



as nested objects, which hold the current state of system
resources, list of scheduled jobs, and other metadata. This
strategy was designed around the intricacies of managing
resources with job reservations in conservative backfilling
where jobs behind the head of the queue are reserved time
slots and allocated resources for the future. In contrast, tra-
ditional EASY backfilling does not require reservations, its
only constraint is that backfilled jobs cannot prevent the job
waiting at the head of the queue from running at the next
possible future time. Note, their specific implementation of
EASY backfill appears to have been derived for their more
complex and capable conservative backfill algorithm. This
derivation introduced a feature in their algorithm that we do
not need while incurring a very large overhead to maintain the
schedule data structures.

Algorithm 1 represents a high-level overview of how the
time slices were used to decide if a job can be backfilled.
The general flow is to search for the first time slice where
there is enough nodes for the job to run. In the case the job
cannot finish before the time slices ends, future time slices that
make up the remaining wall time are evaluated. The primary
constraint is the job must be able to retain its node allocation
across all time slices. This strategy provides little flexibility
in the implementation, resulting in tightly coupled code and
traversals over large, nested data structures.

An important observation in the algorithm is that jobs are
appended to time slices as they are evaluated. The time slice
fitting logic is completely agnostic to whether a job is a
priority job or not. In the cases where a non-priority job
cannot retain its node allocation, the job and its node allocation
are later removed from each slice where it was previously
determined to fit. The inefficiencies in memory management
and decision processes are reflective of the slow simulation
behavior observed during experimentation. These overhead
costs increase with the problem size and queue complexity,
resulting in nondeterministic delays in simulation progress.

The problems presented by the former implementation in-
spired a new backfilling strategy and other modifications made.
The time slices data structures were traded for simple job
objects holding the minimal necessary metadata. The updated
approach consists of two cases for scheduling decisions, one
for priority jobs and another for backfill jobs. The following
algorithms demonstrate how priority jobs can be leveraged
to make decisions for if a job should be backfilled or not.
Algorithm 2 details how priority jobs are handled. The key
logic is when a priority cannot run initially, we predict the
next possible future time it can run.

The approach is to sort running jobs by estimated end
time and search for the first such job where once completed,
enough nodes are released for the priority job to run. After, the
priority jobs predicted start time and leftover nodes are saved
determine which jobs may be backfilled as shown in Algorithm
3. Non-priority jobs whose estimated end time is before the
current priority jobs predicted start time are immediately
scheduled given that there is enough available nodes in the
system. Otherwise, we evaluate if the jobs requested nodes

Algorithm 1 Easy Backfill (Original) - Time slice Fitting
Require: Schedule TS[0 . . . Z], New Job job, Simulator Date Tdate,

Free Nodes Nfree, Max Nodes Nmax

Ensure: Q ̸= ∅, TS[0]← new timeSliceObject, Tnow ← Tdate

1: procedure ADDJOBTOSLICE(TS, j, job, Nfree)
2: Nfree ← Nfree − job.ReqNodes
3: job.NodeIds← AllocateNodeIds(job.ReqNodes)
4: TS[j]← TS[j] + job
5: if j == (Z − 1) then
6: endDate← TS[j].Begin + job.WallT ime
7: Split Last Time Slice TS[j] by endDate
8: end if
9: end procedure

10: function CHECKTIMESLICES(job, Nfree, Tnow)
11: canRun← FALSE
12: for i = 0 to Z − 1 do
13: if TS[i].F reeNodes ≥ job.ReqNodes then
14: if TS[i].Duration ≥ job.WallT ime then
15: AddJobToSlice(TS, i, job, Nfree)
16: canRun← (i == 0)
17: return canRun
18: else
19: for k = i to Z − 1 do
20: timeSum← (timeSum+ TS[k].Duration)
21: if job.ReqNodes≥ TS[k].F reeNodes then
22: return canRun
23: else if timeSum ≥ job.WallT ime then
24: AddJobToSlice(TS, k, job, Nfree)
25: return canRun
26: end if
27: end for
28: end if
29: end if
30: end for
31: return canRun
32: end function

Algorithm 2 Easy Backfill (Modified) - Priority Jobs
Require: Schedule S[0 . . . Z], Priority Job pj, Free Nodes Nfree,

Max Nodes Nmax

Ensure: Q ̸= ∅, pj.ReqNodes ≤ NMax

1: function CHECKPRIORITYJOB(pj, Nfree)
2: if pj.ReqNodes ≤ Nfree then
3: canRun← TRUE
4: else
5: canRun← FALSE
6: Nfuture ← Nfree

7: for i = 0 to Z − 1 do
8: Nfuture += S[i].ReqNodes
9: if S[i].ReqNodes ≥ Nfuture then

10: pj.PredictedStart← S[i].EstimatedEnd
11: pj.LeftoverNodes← (Nfree − pj.ReqNodes)
12: return canRun
13: end if
14: end for
15: end if
16: end function

is less than the minimum of the systems currently free nodes
and the priority jobs leftover nodes. This constraint ensures
backfilled jobs do not prevent priority jobs from running,
eliminating the risk of starvation for resource intensive jobs.

The final modifications entailed replacement of the original



Algorithm 3 Easy Backfill (Modified) - Backfill Jobs
Require: Backfill Job bj, Priority Job pj, Simulator Date Tdate, Free

Nodes Nfree, Max Nodes Nmax

Ensure: Q ̸= ∅, bj.ReqNodes ≤ NMax, Tnow ← Tdate

1: function CHECKBACKFILLJOB(bj, Nfree)
2: bj.EstimatedF inish← (Tnow + bj.WallT ime)
3: if bj.EstimatedEnd ≤ pj.PredictedStart then
4: Nfuture ← Nfree

5: else
6: Nfuture ←MIN [Nfree, pj.ExtraNodes]
7: end if
8: canRun← (bj.ReqNodes ≤ NFuture)
9: return canRun

10: end function

reservation queuing system, composed of a linked list of newly
allocated job objects, each sequentially sorted by submission
time. The improved queue now employs a maximum heap
with flexibility to sort different attributes based on specific
scenarios. For instance, when simulating node failures, jobs
can be sorted by original submission time. This adjustment
prioritizes resubmitted jobs, enhancing queue fairness and
mitigating the risk of starvation for repeatedly killed jobs.

While the performance aspect of the new EASY backfilling
strategy proved to beneficial, it was vitally important to verify
the impacts these modifications would have on the simulated
results. In other words, would the updated algorithm make
the same decisions as the original and would it perform as
well from a parallel job scheduling point of view? The ideal
outcome would be that the modified version is no different
from the original, but this was not entirely the case. After
several tests, one deviation was found which impacted the
decisions when a job could be backfilled in certain scenarios.
This was found to be a by-product of the original algorithm’s
time slice fitting logic, in particular the pre-allocation of node
IDs for waiting priority jobs.

Fig. 3 represents the normalized differences in simulated
waiting times between algorithms for the Grizzly 2022 work-
load shown in Fig. 6. One initial observation reveals an
outlier in bin [512, 1024) for Backfilled Jobs, where the new
version’s mean wait times are approximately ∼ 58% worse.
This anomaly can be attributed to the fact that only ∼ 1.06%
of all backfilled jobs in the new version fell within that bin,
obscuring the weighted mean. Observing All Jobs, we see
that bins with the most backfilled jobs, [1, 2) and [32, 64),
performed better with the old algorithm by ∼ 12−17%. The
remaining bins show the new algorithm is better or very close
to Zero Difference. The Overall Difference indicates that the
modified algorithm’s simulated waiting times are only ∼ 4%
worse on average.

Fig. 4 depicts the normalized differences in simulated
waiting times for the Grizzly 2018 workload shown in Fig. 5.
Examining All Jobs, we see that the older algorithm had better
simulated waiting times on average by ∼ 22.5% for one-
node jobs. The remaining job bins alternate, revealing marginal
differences of less than ∼ 10%, where the new algorithm is
better or worse. This results in an Overall Difference of the

0

1

N
od

es
 (n

)

Easy Backfill (Old)

2

2

4

6

8

0

10

5 10 15 20

Time (mins)

25 30 35 40 45

4

3

5

5

6

7

Fig. 1. Gantt chart demonstrating how the original EASY backfilling
algorithm chooses when a job can be backfilled. It assumes that all seven jobs
arrived sequentially at time zero, and the resulting schedule is generated using
the time-slicing procedure outlined in Algorithm 1. Note: since the original
algorithm pre-allocated node resources Job 6 prevents Job 7 from being
backfilled alongside Job 5, where as in the new, much faster, implementation,
Job 7 can be backfilled with no impact to Job 6’s original start time as shown
in Figure 2.

0

1

N
od

es
 (n

)
Easy Backfill (New)

2

2

4

6

8

0

10

5 10 15 20

Time (mins)

25 30 35 40 45

4

3

5

5

6

7

7

6

Fig. 2. Gantt chart illuminating how the modified EASY backfilling sched-
uler’s decisions differ in contrast to originals from Fig. 1. The schedule
is generated based the backfilling conditions shown in Algorithm 3, which
depends on priority-based logic in Algorithm 2. Note: In contrast to the
behavior shown in Figure 1, here, Job 7 backfills ahead of Job 6 with no
detrimental impact to its original start time.

new algorithm being under ∼ 2.5% worse than the original.
Considering the observations made in both Figs. 3 and 4, the
differences in the new algorithm show negligible impact on
the simulated queue waiting time.

In short, the two algorithms do not make identical schedul-
ing decisions; however, the original EASY backfill imple-
mentation in the BatSim source code was more constrained
than it needed to be as far as pre-allocating specific nodes
in the future schedule, versus simply ensuring that sufficient
nodes would be available at that given time to satisfy the
priority job request. By relaxing this constraint, we still allow
jobs to be backfilled which also prevents starvation, but with



[1,2) [2,4) [4,8)
[8,16)

[16,32)
[32,64)

[64,128)
[128,256)

[256,512)
[512,1024)

[1024,1490]
[1,1490]

Squared Bins (# Nodes)

0.83

0.92

1.00

1.08

1.17

1.25

1.33

1.42

1.50

1.58

0.79

0.88

0.96

1.04

1.12

1.21

1.29

1.38

1.46

1.54

No
rm

al
ize

d 
M

ea
n 

W
ai

t T
im

e 
(Ne

w
Ol

d
)

Normalized Mean Wait Time - Easy BF (New vs Old) - Grizzly 2022
All Jobs
Backfilled Jobs
Priority Jobs
Overall Difference
Zero Difference

New

Old

Ea
sy

 B
F 

Ve
rs

io
n

45.54% 28.52% 30.34% 35.11% 16.62% 59.12% 16.63% 8.19% 17.35% 1.06% 0.00% 39.60%

44.63% 27.33% 29.18% 32.87% 16.29% 63.42% 14.87% 8.77% 15.31% 2.96% 0.00% 38.66%

0% 10% 20% 30% 40% 50% 60%
Backfilled Jobs (%)

Fig. 3. Normalized mean wait times for 2022 Grizzly jobs, shown in Fig. 6,
revealing the impacts of modification made to EASY backfilling to queued
jobs with varying node allocations. Data points that fall below the Zero
Difference line represent where the modified algorithm version is better. Below
the plot is the percentage of backfilled jobs per bin, for insight on the density
of affected jobs. Note, despite cases where the new algorithm performed
worse, the Overall Difference is very close to Zero Difference.

[1,2) [2,4) [4,8)
[8,16)

[16,32)
[32,64)

[64,128)
[128,256)

[256,512)
[512,1024)

[1024,1490]
[1,1490]

Squared Bins (# Nodes)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

No
rm

al
ize

d 
M

ea
n 

W
ai

t T
im

e 
(Ne

w
Ol

d
)

Normalized Mean Wait Time - Easy BF (New vs Old) - Grizzly 2018

All Jobs
Backfilled Jobs
Priority Jobs
Overall Difference
Zero Difference

New

Old

Ea
sy

 B
F 

Ve
rs

io
n

43.46% 67.86% 45.06% 62.04% 52.56% 39.39% 25.36% 20.48% 16.69% 22.88% 6.78% 44.77%

43.66% 67.83% 44.12% 59.63% 51.09% 38.04% 26.41% 21.80% 17.29% 19.61% 6.78% 44.46%

0% 10% 20% 30% 40% 50% 60%
Backfilled Jobs (%)

Fig. 4. Additional insight on the normalized mean wait times shown in Fig. 3,
examining the impacts to another workload from Grizzly in 2018, shown in
Fig. 5. Below the plot is the percentage of backfilled jobs per bin, showing
on the density of affected jobs. Similar to Fig. 3 the Overall Difference is
also extremely close to Zero Difference. The main takeaway here is that the
overall difference between the mean job waiting time for original and new
algorithms is negligible, while the speed of the new algorithm is far superior.

the new implementation, the execution times of our large-
scale simulations are much shorter, allowing us to conduct
simulations much faster and with increased accuracy through
a larger number of Monte Carlo trials.

Table II highlights the performance results of each algorithm

TABLE II
PERFORMANCE ANALYSIS OF EASY BACKFILLING

Mean Elapsed Times (seconds) and Speedup
Workload Algorithm Overall Time (s) Decision Time (s)

Grizzly
2018

EBF Old 32,917.05 27,577.03
EBF New 6,095.06 11.80
Speedup 5.40 2,336.30

Grizzly
2022

EBF Old 476,276.35 467,990.22
EBF New 12,047.28 41.51
Speedup 39.53 11,273.23

∗ Mean results approximated from 100 serial node-exclusive trials

version for both Grizzly workloads. The mean elapsed time
(µTime), was calculated for both the overall time spent and
the time dedicated solely to decision-making as: µTime =∑

TAlgorithm

NRuns
. The mean speedup (µSpeedup), was computed

with the original captured times before approximation as:
µSpeedup = µTimeOld

µTimeNew
. Examining the mean elapsed times for

old algorithm, it is evident the time spent making decisions
accounted for a substantial portion of the overall time in both
workloads. Conversely, the mean decision times in the new
algorithm were less than one minute in both cases. This con-
tributed to overall mean speedup factor of 5.4X for the Grizzly
2018 workload and 39.53X for the Grizzly 2022 workload.
An interesting observation is the mean speedup factor for the
more intensive Grizzly 2022 workload was 7X higher than
Grizzly 2018. As the queue depth increases, we observe larger
improvements and thus higher associated speedups over the
original algorithm. These findings suggest the new algorithm
is effective in terms of scalability for increasing problem sizes,
workloads, cluster scope and complexity.

B. Simulation checkpointing

In large-scale parallel systems, application checkpointing is
the primary means of guarding long-running jobs against faults
that interrupt the execution of these programs. In these cases,
the entire state of an application is written to non-volatile
storage so that the application can be restarted from the last
checkpoint, rather than losing all the work it has completed
since it began execution. While checkpointing is largely used
to restart an application that has been interrupted by such a
failure, it can also be used to allow long-running simulations
to run on batch systems that have a limit to how long a job can
run. Most organizations have such “wall limits” that prevent
jobs from running “indefinitely”. Many of the applications of
interest to LANL run for weeks before they are complete,
but are only allowed to run in time-limited intervals on the
supercomputer systems. For example, this limit might be 24
hours, and to get a 3-week job completed, the job will need to
be checkpointed and restarted many times over possibly many
weeks (depending on system load) to complete the job.

In this work, we have added the capability for BatSim to
checkpoint itself and to restart the simulation, thus allowing
us to make use of LANL compute resources for some of our
long-running simulations that would not otherwise complete



(0,1]
(1,2]

(2,4]
(4,8]

(8,16]
(16,32]

(32,64]
(64,128]

(128,256]

(256,512]

(512,1490]

Nodes (n)

(20,24]

(16,20]

(12,16]

(8,12]

(6,8]

(4,6]

(3,4]

(2,3]

(1,2]

(0,1]

Du
ra

tio
n 

(H
ou

rs
)

0.46 %
0.1 %

0.1 %

0.01 %
0.3 %

0.07 %
0.04 %

0.01 %
0.31 %

0.04 %
0.06 %

0.01 %
0.18 %

0.04 %
0.01 %

1.3 %
0.23 %

1 % 1.6 %
0.94 %

1.1 %
0.74 %

0.62 %
0.03 %

0.03 %

0.41 %
0.24 %

1.6 % 1 %
0.29 %

0.76 %
0.22 %

0.95 %
0.02 %

0.01 %

0.8 %
0.23 %

0.85 %
0.7 %

0.4 %
0.25 %

0.44 %
0.69 %

0.08 %
0.02 %

1.4 %
0.45 %

0.95 %
1.2 %

0.88 %
0.48 %

0.45 %
0.54 %

0.04 %
0.02 %

0.01 %

46 %
2.5 %

4.2 %
8.8 %

4.3 %
3.5 %

1.7 % 3 %
0.32 %

0.23 %
0.16 %

10 2

10 1

100

101

Grizzly 2018: Percent Distribution of Jobs Binned by [Duration] × [Nodes]

Fig. 5. Percentage distribution of jobs ran on Grizzly in 2018, binned by
duration times and requested nodes. This set consists of approximately 130K
jobs ran over the span of 11 months in 2018 [19].

during the time LANL allows on the systems to which we
have access. Naturally, this has the added benefit of providing
adding a degree of resilience to BatSim, in the event that Bat-
Sim fails while running. BatSim has been configured to allow
it to checkpoint itself at regular intervals, or in response to a
signal received from SLURM, a common resource manager
and job scheduler used on modern cluster computing systems.
Our experimentation has shown that these additions have had
zero negative impact to BatSim’s runtime performance when
checkpointing is not used, and in the cases where it is, the
impact is very small, at least for the simulations that we ran
with an overhead of less than 2%.

IV. TRADE-OFF EXPERIMENTATION AND ANALYSIS

After incorporating the improvements discussed in Sec-
tions III-A and III-B into BatSim, we were then able to
conduct a large-scale parametric study on the LANL Chicoma
supercomputer to help us better understand the trade-offs
between reliability, repair time and performance.

In these studies, we made use of 2 years of real work-
load data from the LANL 1500-node supercomputer, Grizzly.
Figs. 5 and 6 show the distribution of the jobs in these
workloads as a function of their runtimes and widths (i.e.
number of nodes they require) for the 2018 and 2022 calendar
years, respectively. We see that Grizzly is mostly uses as a
capacity machine, with many of the submitted jobs (around
45%-50%) making use of only a single node in the cluster,
with the remaining 50% being for big parallel jobs.

In these experiments the baseline Grizzly system was as-
sumed to have a system mean time between failure (SMTBF)
that was proportional to an equivalent of 24 hours on a
20,000 node system. This was chosen since LANL’s Trinity

(0,1]
(1,2]

(2,4]
(4,8]

(8,16]
(16,32]

(32,64]
(64,128]

(128,256]

(256,512]

(512,1490]

Nodes (n)

(24,169]

(20,24]

(16,20]

(12,16]

(8,12]

(6,8]

(4,6]

(3,4]

(2,3]

(1,2]

(0,1]

Du
ra

tio
n 

(H
ou

rs
)

0.067 %

0.193 %

0.005 %

0.053 %

2.27 %
0.28 %

0.491 %
0.3 %

0.748 %

0.173 %

0.051 %

0.067 %

0.084 %

0.006 %

0.001 %

1.65 %

0.622 %

0.396 %

0.237 %

0.377 %

0.033 %

0.031 %

0.028 %

0.016 %

0.067 %

2.09 %

0.546 %

0.142 %

0.263 %

0.811 %

0.048 %

0.063 %

0.01 %

0.004 %

1.35 %

0.026 %

0.615 %

0.075 %
0.1 %

0.581 %

0.036 %

0.024 %

0.004 %

0.001 %

0.006 %

6.02 %

0.082 %

0.976 %

0.158 %

0.171 %

0.36 %

0.047 %

0.021 %

0.003 %

0.001 %

0.837 %

0.036 %

0.556 %

0.585 %

0.217 %

0.379 %

0.045 %

0.007 %

0.002 %

0.001 %

0.003 %

2.4 %
0.704 %

0.652 %
1.6 %

0.242 %

0.216 %

0.027 %

0.02 %

0.002 %

0.001 %

0.002 %

3.28 %
2.38 %

1.89 %
1.64 %

1.07 %

0.524 %

0.068 %

0.095 %

0.01 %

0.002 %

0.001 %

41.7 %
1.82 %

7.62 %
1.79 %

1.3 %
1.56 %

1.15 %

0.092 %

0.021 %

0.012 %

0.167 %

10 3

10 2

10 1

100

101

Grizzly 2022: Percent Distribution of Jobs Binned by [Duration] × [Nodes]

Fig. 6. Percentage distribution of jobs ran on Grizzly in 2022, binned by
duration times and requested nodes. This set is composed of approximately
190K jobs from 7 months of job data in 2022.

supercomputer [20] was around 20,000 nodes and had this
same average publicly failure rate. This baseline failure rate
is referred to as “1X” in our results.

The failure rates were increased from 1X to 32X, in powers
of two, (i.e. 6 different failure rates) representing decreasing
levels of reliability with 32X indicating a system that that had
a 32 times higher failure rate, for example. Additionally, in
the event of failure, the time to repair a node was varied from
1 minute (simulating a transient error with a quick reboot)
all the way to 20 days (i.e. 23 different repair times), thus
simulating a much more significant problem to repair.

These repair times are derived from internal measurements
of node failures. For example, the predominant node failure
mode is detected by an end-of-job node health check. 2 These
are repairable by an automated process to reboot and return
the node to service, yielding an effective repair time measured
in minutes. Repairs that require human inspection, analysis or
physical repair or replacement constitute the long tail of repair
modes.

For the 2022 data, Overall 276 distinct parameter combina-
tions were completed. Due to the random nature of failures, in
order to provide a more statistically relevant set of results, each
of the 276 combinations were executed 1000 times resulting
in 276K simulations. For the 2018 data, around 624 distinct
parameter combinations were performed 1000 times each for a
grand total of around 900K Monte Carlo simulated year-long
supercomputer experiments across both datasets. These sim-

2These transient failures are the consequence of many faults. Such latent
faults exist at the hardware, kernel software and system service layers, un-
derlying the application-visible HPC substrate. Examples include fragmented
kernel memory maps, transient network driver errors, unreleased buffered
IO memory (parallel filesystem) space and complex dependencies among
underlying system and Kubernetes services.



2h 4h 6h 8h10
h

12
h

14
h

16
h

18
h

20
h

22
h

24
h

1.
5d

2.
0d

2.
5d

3.
0d

3.
5d

4.
0d

4.
5d

5.
0d

5.
5d

6.
0d

6.
5d

7.
0d

7.
5d

8.
0d

8.
5d

9.
0d

9.
5d

10
.0

d

10
.5

d

11
.0

d

11
.5

d

12
.0

d

12
.5

d

13
.0

d

13
.5

d

Repair Time (hours or days)

104

105

106

107

Av
er

ag
e 

W
ai

tin
g 

Ti
m

e 
(s

ec
on

ds
)

32x
31x
30x
29x
28x
27x
26x
25x
24x
23x
22x
21x
20x
19x
18x
17x
16x
15x
14x
13x
12x
11x
10x
9x
8x
7x
6x
5x
4x
3x
2x
1x

Average Waiting Time vs Repair Time vs Reliability Factor (2018 Grizzly data)

Fig. 7. This figure illustrates the average job waiting time on the Grizzly supercomputer across all jobs in 2018 as a function of both the normalized node
reliability as well as the average node repair time when failures do occur. We can see that as node reliability decreases from 1X (the base-line system
reliability that is proportional to a 24 hour MTBF on a 20K node system, like LANL’s Trinity supercomputer) to 32X (i.e. 32 times less reliable than the
base-line system) the allowable node repair time decreases that will allow the given system to maintain the same performance from an end-user perspective.
For example, the highest reliability system (1X) with a 13-day node repair time produces the same performance as a system that is 2X less reliable with a
1-minute node repair time. Furthermore, for a given quality of service (queue waiting time target i.e. horizontal line), this simulation campaign can be used
to determine the required repair times for a system as the reliability factor changes from more reliable to less reliable. As such, it enables a clear trade-off
analysis between repair time and reliability.

ulations were executed on LANL’s Chicoma supercomputer
(Table I).

Fig. 8 shows the average waiting times seen across all
submitted jobs as a function of system reliability and node
repair time for the 2018 workload. The waiting times are
normalized with respect to the 1-minute repair time waiting
time values for each node reliability curve. We see the more
reliable systems can afford to have much longer repair times
compared to less reliable systems. This is not particularly a
surprising result; however, the contribution here is that our
simulation framework can be used by procurement teams,
deployment teams as well as operations personnel to make de-
cisions about how specify, produce and operate such systems,
given hardware quality of service contractual agreements as
well as for input parameters for models for the total cost of
ownership under varying conditions.

Fig. 7 provides a quick way to identify performance-based
break-even points. For example we can see that a system with
a 4X relative reliability and an average node repair time of 5
days has the same performance (average job waiting time) as
a much less reliable system with an 8X relative reliability, but
with a much shorter required node repair time of 1 minute.
This experimentally obtained break-even analysis can be used
to make informed data-driven decisions about the procurement
and operation of such large scale systems with targeted relative

quality of service. In fact, in general, any arbitrary cluster
configuration, input workload, fault model, checkpoint-restart
model, and node reliability characteristic can be modeled
against required end-user qualities of service to enable to
determine where these break-even points are located.

V. DISCUSSION

We have extended and improved the existing BatSim cluster
computer system simulation and job scheduling framework to
allow users to much more quickly evaluate the trade-off space
that exists among such parameters as performance (queue wait-
ing time), node repair time, and intrinsic node reliability. With
the major improvement in the EASY backfilling scheduler
implementation, we can now run tens of thousands of Monte
Carlo simulations in a fraction of the time it previously took.
In fact, based on the workloads we have studied in this paper,
the overall simulation time has seen a speedup of between 5X
to 40X. As the simulated systems become more loaded, the
longer the queue depths are, the larger the speedup factor is
over the prior EASY Backfill implementation. This will be
particularly important for applying BatSim on larger parallel
systems with longer queues, since the runtime of the old EASY
backfill implementation is extremely sensitive to the depth of
the waiting job queue.



1m 6h 12
h

18
h 1d 2d 3d 4d 5d 6d 7d 8d 9d 10

d
11

d
12

d
13

d
14

d
15

d

Repair Time (minutes, hours, or days)

5

10

15

20

25

No
rm

al
ize

d 
Av

er
ag

e 
W

ai
tin

g 
Ti

m
e

32x
31x
30x
29x
28x
27x
26x
25x
24x
23x
22x
21x
20x
19x
18x
17x
16x
15x
14x
13x
12x
11x
10x
9x
8x
7x
6x
5x
4x
3x
2x
1x

Normalized Average Waiting Time vs Repair Time vs Reliability Factor (2018 Grizzly data)

Fig. 8. This figure illustrates the normalized average job waiting time on the Grizzly supercomputer across all jobs in 2018 as a function of both the
normalized node reliability and the average node repair time when failures do occur. (Note: Non-normalized waiting times are shown in Fig. 7). In these
figures, 1X represents a base-line system reliability that is proportional to a 24 hour MTBF on a 20K node system, like LANL’s Trinity supercomputer which
is used a reference point in our reliability work at LANL. As such, 32X means as a system that is 32 times less reliable than the base-line system. Our
simulation framework allows system procurement teams to weigh the relative importance of buying a more reliable and expensive system against the time
associated with the number repairing nodes when they fail. This can then be used to drive a total cost of ownership analysis that factors in both initial capital
investments along with operational costs that include the “allowable” time and money needed to repair the system, while concurrently providing a prescribed
average quality of service (average waiting time in this case).

As such, this improvement has allowed us to explore a much
larger and more complete parameter space, as evidenced in
Section IV. In the case of the Grizzly supercomputer, there is
a strong trend that as the node reliability is improved, that the
amount of time that one is allowed to have to repair a given
node dramatically increases. With our tool, different types
of failures, from transient faults with relatively quick repair
times such as a simple reboot, to more extensive faults that
potentially require much more time to fix can be explored with
our updates to the BatSim framework. This type of exploration
allows users of to make more informed data-driven decisions
about how to target bids, set quality of service expectations
and to drive further financial total cost of ownership studies to
more fully understand the performance trade-off for different
types of equipment and recurring operational expenses.

The specific questions addressed in this work constitute a
first pass at quantifiably exploring the data that production
HPC sites have about their own problem space. For example,
the specific plot in fig. 8 implies that job waiting time is the
desired and optimizable value metric, at the expense of the
quantity or unreliability of the computational nodes. Using
such analysis one may quantifiably compare this to an alternate
control value, such as an increase in the number of available,
but unreliable, nodes. An alternate analysis may be driven by

the time to repair, governed by the implied operating expense
of having humans in the loop effecting the repair. Another
example would be from the perspective of consumers of HPC
services, their service level requirements could include the
minimum acceptable waiting time for jobs to launch. This
may be viewed as a horizontal slice across this diagram. An
alternate perspective might be that of the provider of on-
site HPC repair. This is a vertical slice through these data,
constituting a limit on the localized operating expense. Repair
exceeding this time limit could be defined by an external
contractual service level requirement.

This work has been motivated by production-oriented ques-
tions arising from LANL’s considerable investment in its own
and the US DoE HPC ecosystem. Quantifiably analyzing
problems such as these begins the process of engineering
operating processes and procedures.

This and prior work has guided production HPC job sched-
uler configuration and optimized human system administration
processes, increasing reliability. Questions that follow from
this work include:

• If a cluster were to be expanded, doubling its node count,
how should those nodes be included? Should an alternate
cluster be built for A/B redundancy or should a single
cluster be doubled in size? What are the impacts on the



workflow?
• The work shown was for a 1500 node cluster. Given a

sweep of the sizes of affordable clusters, smaller then
Grizzly, can we characterize the distinctly different popu-
lations and ecosystems of clusters? (ex. start-up company
vs. academic clusters vs. national initiatives) How might
these data be fed into external models? (acquisition,
power and cooling operating budget)

• Given the availability of non-local data centers, how may
we quantifiably model a multivariate (I/O transport and
computational resources) constrained workflow?

• Does this analysis apply to a two-level computational
resource, such as a node with CPU and GPUs?

VI. CONCLUSIONS AND FUTURE WORK

The work presented in this paper is both experimental
and applied. We have extended and improved the existing
BatSim cluster computer system simulation and job scheduling
framework to allow users to much more quickly evaluate
the trade-off space that exists among such parameters as
performance, node repair time, and node reliability. With the
improvement in the EASY backfilling scheduler, we can now
run tens of thousands of Monte Carlo simulations in a fraction
of the time it previously took. This improvement has allowed
us to explore a larger and more complete parameter space,
as evidenced in Section IV. This type of exploration allows
users of the tool to make more informed data-driven decisions
about how to target bids, set quality of service expectations
and to drive further financial total cost of ownership studies to
more fully understand the performance trade-off for different
types of equipment and recurring operational expenses. We
have also published the production job accounting data sets.
Our goal, in doing so, is to grow the referenceable body of
HPC scientific and research job and workflow data. We are
using this in our own follow-on studies and as training data.
We hope that others will find it useful as well.

One of the current limitations of our study includes the
need to provide an analysis across a more varied set of cluster
computer workloads at LANL. LANL and other US DoE
sites have a range of supercomputers. Our future work will
include applying BatSim to workloads from several of these
computers; however, most of these workloads are not publicly
available and will be used internally by the US DoE.

REFERENCES

[1] P.-F. Dutot, M. Mercier, M. Poquet, and O. Richard, “Batsim:
a Realistic Language-Independent Resources and Jobs Management
Systems Simulator,” in 20th Workshop on Job Scheduling Strategies
for Parallel Processing, Chicago, United States, May 2016. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01333471

[2] Los Alamos National Laboratory. (2024) Simulator repo – batsim
extensions. https://github.com/hpc/simulator.git.

[3] ——. (2024) Los Alamos National Laboratory Grizzly Log Data.
https://github.com/hpc/LANL-grizzly-data.

[4] C. Walker, B. Slade, G. Bailey, N. Przybylski, N. DeBardeleben, and
W. M. Jones, “Exploring the tradeoff between reliability and perfor-
mance in hpc systems,” in 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 2021, pp. 1–7.

[5] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira,
J. Stearley, J. Shalf, and S. Gurumurthi, “Memory errors in modern
systems: The good, the bad, and the ugly,” in Proceedings of
the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’15,
Istanbul, Turkey, March 14-18, 2015, Ö. Özturk, K. Ebcioglu, and
S. Dwarkadas, Eds. ACM, 2015, pp. 297–310. [Online]. Available:
https://doi.org/10.1145/2694344.2694348

[6] P. Nikolaou, Y. Sazeides, L. Ndreu, and M. Kleanthous, “Modeling the
implications of dram failures and protection techniques on datacenter
tco,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015, pp. 572–584.

[7] D. Klusáček, v. Tóth, and G. Podolnı́ková, “Complex job scheduling
simulations with alea 4,” in Proceedings of the 9th EAI Interna-
tional Conference on Simulation Tools and Techniques, ser. SIMU-
TOOLS’16. Brussels, BEL: ICST (Institute for Computer Sciences,
Social-Informatics and Telecom. Engr.), 2016, p. 124–129.

[8] J. Göbel, P. Joschko, A. Koors, and B. Page, “The discrete
event simulation framework DESMO-J: review, comparison to other
frameworks and latest development,” in Proceedings of the 27th
European Conference on Modelling and Simulation, ECMS 2013,
Ålesund, Norway, May 27-30, 2013, W. Rekdalsbakken, R. T. Bye, and
H. Zhang, Eds. European Council for Modeling and Simulation, 2013,
pp. 100–109. [Online]. Available: https://doi.org/10.7148/2013-0100

[9] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, and P. Kuonen,
“Magate simulator: A simulation environment for a decentralized grid
scheduler,” in Advanced Parallel Processing Technologies, Y. Dou,
R. Gruber, and J. M. Joller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 273–287.

[10] N. A. Simakov, M. D. Innus, M. D. Jones, R. L. DeLeon, J. P. White,
S. M. Gallo, A. K. Patra, and T. R. Furlani, “A slurm simulator:
Implementation and parametric analysis,” in High Performance Com-
puting Systems. Performance Modeling, Benchmarking, and Simulation,
S. Jarvis, S. Wright, and S. Hammond, Eds. Cham: Springer Interna-
tional Publishing, 2018, pp. 197–217.

[11] N. A. Simakov, R. L. DeLeon, M. D. Innus, M. D. Jones, J. P. White,
S. M. Gallo, A. K. Patra, and T. R. Furlani, “Slurm simulator: Improving
slurm scheduler performance on large hpc systems by utilization of
multiple controllers and node sharing,” in Proceedings of the Practice
and Experience on Advanced Research Computing, ser. PEARC ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3219104.3219111

[12] M. Poquet, “Simulation approach for resource management,” Theses,
Université Grenoble Alpes, Dec. 2017.

[13] Inria, “BatSim,” Institut National de Recherche en Sciences et Tech-
nologies du Numérique - https://batsim.readthedocs.io/, accessed: 2024-
05-14.

[14] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing,
vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[15] W. M. Jones, C. S. Walker, V. E. Hafener, W. D. Graham, N. A.
DeBardeleben, and S. T. Senator, “Incorporating staggered planned
maintenance reservations to improve performance in computational
clusters,” in 2023 IEEE International Conference on Cluster Computing
Workshops (CLUSTER Workshops), 2023, pp. 32–36.

[16] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in Pro-
ceedings. International Conference on Parallel Processing Workshop,
2002, pp. 514–519.

[17] J. T. Daly, “A higher order estimate of the optimum
checkpoint interval for restart dumps,” Future Gener. Comput.
Syst., vol. 22, no. 3, pp. 303–312, 2006. [Online]. Available:
https://doi.org/10.1016/j.future.2004.11.016

[18] Inria, “Batsched,” Institut National de Recherche en Sciences et
Technologies du Numérique – https://gitlab.inria.fr/batsim/batsched, ac-
cessed: 2024-05-14.

[19] Los Alamos National Laboratory, “Grizzly 2018 log data – tinyurl
links to lanl ftp server,” https://tinyurl.com/LANL-grizzly-data, 2018,
accessed: 2024-05-14.

[20] J. Lujan, M. Vigil, G. Kenyon, K. Sanbonmatsu, and B. Albright,
“Trinity supercomputer now fully operational,” U.S. Department of
Energy Office of Scientific and Technical Information, 11 2017.


