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Abstract—In our study, we utilized Intel’s Loihi-2 neuromor-
phic chip to enhance sensor fusion in fields like robotics and
autonomous systems, focusing on datasets such as AIODrive, Ox-
ford Radar RobotCar, D-Behavior (D-Set), nuScenes by Motional,
and Comma2k19. Our research demonstrated that Loihi-2, using
spiking neural networks, significantly outperformed traditional
computing methods in speed and energy efficiency. Compared
to conventional CPUs and GPUs, Loihi-2 showed remarkable
energy efficiency, being over 100 times more efficient than a CPU
and nearly 30 times more than a GPU. Additionally, our Loihi-
2 implementation achieved faster processing speeds on various
datasets, marking a substantial advancement over existing state-
of-the-art implementations. This paper also discusses the specific
challenges encountered during the implementation and optimiza-
tion processes, providing insights into the architectural innova-
tions of Loihi-2 that contribute to its superior performance.

Index Terms—Sensor Fusion, Neuromorphic Computing,
Loihi-2, Spiking Neural Networks, Energy Efficiency, Au-
tonomous Systems, Reconfigurable Computing

I. INTRODUCTION

The rapid advancement of computational science and en-
gineering has perpetually driven the quest for enhanced ef-
ficiency and processing speed, particularly in sensor fusion.
Sensor fusion, a pivotal component in cutting-edge applica-
tions such as autonomous vehicles, robotics, and sophisticated
monitoring systems, epitomizes the need to process complex
data from diverse sources efficiently. Traditional computa-
tional paradigms, while effective, grapple with challenges in
scalability, speed, and energy efficiency when it comes to
the multifaceted nature of sensor fusion. This integration of
sensory data from multiple sources is crucial for creating a
more comprehensive understanding of the environment, which
is paramount in modern technological applications, enabling
enhanced perception and decision-making capabilities in au-
tonomous systems [1]–[4]. However, the traditional compu-
tational methods for sensor fusion are increasingly strained
by the demands for real-time processing, accuracy, and the
handling of large volumes of diverse data. These challenges
necessitate a paradigm shift to more capable and efficient

computing methods. In this context, neuromorphic computing
emerges as a transformative solution. Inspired by the neural
structure and functioning of the human brain, neuromorphic
computing offers a novel approach to data processing. Its
ability to mimic biological neural networks promises signif-
icant improvements in speed and energy efficiency, crucial
for real-time and complex tasks like sensor fusion [5]–[8].
Intel’s Loihi-2, a leading-edge neuromorphic chip, exemplifies
this technological leap. Characterized by its spiking neural
networks (SNNs), Loihi-2 offers an innovative architecture
tailored to the complexities of sensor fusion tasks. This study
focuses on Loihi-2, exploring its capabilities in enhancing the
efficiency and speed of sensor fusion processes. The potential
benefits of employing Loihi-2 for sensor fusion are manifold
and hypothesized to include accelerated processing speed,
heightened energy efficiency, and improved adaptability to di-
verse sensor modalities and dynamic environments. However,
there is a gap in the current research literature, particularly
in applying neuromorphic computing like Loihi-2 in sensor
fusion tasks. This paper aims to bridge this gap by providing
empirical insights into the performance and advantages of
Loihi-2 in sensor fusion applications [9]–[11]. Our research
objectives are twofold: firstly, to demonstrate the efficacy of
Loihi-2 in accelerating sensor fusion processes, and secondly,
to contribute novel findings to the field of neuromorphic
computing, underlining its practical applications and potential
in various technological domains. Through this study, we aim
to set a precedent for future research and development in neu-
romorphic computing, particularly in its application to sensor
fusion and related fields. The exploration of sensor fusion
through the lens of neuromorphic computing, specifically via
the capabilities of Loihi-2, presents an opportunity to address
the limitations of traditional computational methods. It opens
a pathway to more efficient, accurate, and real-time processing
of sensory data, which is essential in the rapidly evolving
landscape of technology and automation. We propose a design
methodology for sensor fusion applications consisting of three



components.
• Our research introduces a cutting-edge approach for in-

tegrating data from various sensors like visual, auditory,
and inertial, using the Loihi-2 chip.

• We conducted comprehensive evaluations using multiple
datasets (AIODrive, Oxford Radar RobotCar, etc.) to
demonstrate the effectiveness of our methods in different
real-world scenarios.

• Our study provides a detailed comparison of the Loihi-2
chip’s performance against traditional CPUs and GPUs,
showcasing its superior energy efficiency and processing
speed.

Each component of our approach contributes to the en-
hanced performance of sensor fusion tasks and exemplifies
the potential of neuromorphic computing to revolutionize real-
time data processing in various applications.

II. BACKGROUND

This section provides a comprehensive overview of the fun-
damental concepts essential to our study and its related work.
It encompasses the domains of sensor fusion, neuromorphic
computing, and the Intel Loihi-2 chip.

A. Sensor Fusion

Sensor fusion involves integrating data information from
multiple sensors to produce more accurate, reliable, and
contextual information than possible from any single sensor
source. This technology is fundamental in applications ranging
from autonomous vehicles and robotics to healthcare and
environmental monitoring [2], [12].

Various algorithms drive sensor fusion processes, aiming
to merge data streams intelligently. These algorithms include
rule-based systems, statistical methods such as Kalman filters,
and machine learning techniques like neural networks. Rule-
based systems establish decision-making guidelines based on
predefined rules, while statistical methods focus on optimizing
estimates by considering both the sensor measurements and
their uncertainties. Machine learning algorithms enable sys-
tems to learn and adapt to dynamic environments, providing
a more flexible approach to sensor fusion [1], [13], [14].

Sensor fusion often suffers from the diversity and hetero-
geneity of sensor data as different sensors generate information
in different formats and rates. Integrating data from different
sensors requires sophisticated algorithms and computational
approaches to ensure accuracy and reliability. Additionally,
the real-time nature of many applications demands efficient
data processing and the ability to handle dynamic and unpre-
dictable environments. Calibration discrepancies, sensor noise,
and uncertainties compound the complexity of sensor fusion
tasks, necessitating robust methods to filter and interpret data
accurately. The sheer volume of data generated by modern
sensors poses scalability challenges, straining from traditional
computing architectures. Overcoming these challenges is cru-
cial for unleashing sensor fusion’s full potential in enhancing
technological systems’ capabilities [2], [12], [15].

B. Neuromorphic Computing

This subsection explores the foundational principles of neu-
romorphic computing, tracing its evolution and examining its
transformative potential in addressing the limitations inherent
in traditional computing methods. Neuromorphic computing
is inspired by the architecture and functionality of the human
brain, leveraging parallel processing, adaptive learning, and ef-
ficient energy utilization. Unlike traditional computing, which
often relies on sequential processing, neuromorphic systems
excel in handling parallel information, making them partic-
ularly well-suited for data-intensive tasks like sensor fusion
[16]–[20]. The evolution of neuromorphic computing has seen
advancements in hardware architectures, such as Intel’s Loihi
processor, designed to emulate the brain’s neural networks.
These systems offer a departure from conventional binary
logic, introducing spiking neural networks and event-driven
computation to mimic the brain’s processing mechanisms
better [10], [21]. The potential of neuromorphic computing
lies in its ability to overcome the limitations of traditional
computing methods, especially in scenarios demanding real-
time processing and adaptability. In data-intensive tasks like
sensor fusion, where diverse information streams must be
seamlessly integrated, neuromorphic systems showcase advan-
tages in parallelism, efficiency, and the ability to learn from
experience [22], [23]. By mimicking the brain’s sophisticated
processing, neuromorphic computing holds promise for revolu-
tionizing sensor fusion applications. It can enhance the speed,
accuracy, and adaptability of processing sensor data, lead-
ing to more robust and intelligent decision-making systems.
As research and development in neuromorphic computing
continue progressing, its potential to redefine the landscape
of computational methodologies, particularly in data-intensive
tasks like sensor fusion, becomes increasingly evident [24].

C. Intel’s Loihi-2 Neuromorphic Chip

Loihi-2, the latest iteration in Intel Labs’ series of advanced
neuromorphic chips, represents a significant leap forward from
its predecessor, Loihi. Released in 2022 as a cutting-edge
neuromorphic research test chip, Loihi-2 offers enhanced scal-
ability, processing speed, and energy efficiency. Fabricated on
an Intel 4 process, Loihi-2 boasts 128 neuromorphic cores and
is classified as a multi-core IC. It incorporates an asynchronous
SNN for adaptive, self-modifying, and event-driven parallel
computations, optimizing efficiency for learning and infer-
ence processes. The inclusion of a programmable microcode
learning engine facilitates on-chip SNN training. The accom-
panying board, Kapoho Point, exemplifies Loihi-2’s prowess
with its 2-stacked configuration housing eight chips in a 4x4
arrangement, resulting in an impressive ensemble of 1,024
neuromorphic cores, 960,000,000 synapses, and 8.4 million
neurons [10], [21]. Loihi-2’s architecture, with its SNNs, offers
a unique and efficient approach to processing information,
mimicking the parallelism and adaptability of the human brain.
This intrinsic capability aligns seamlessly with the demands
of sensor fusion, where real-time integration of diverse data
sources is paramount. The asynchronous and event-driven



nature of Loihi-2’s SNNs enhances its suitability for handling
sensor data’s dynamic and time-sensitive nature. Moreover,
the chip’s increased scalability and processing speed empower
it to manage the complexities of merging information from
multiple sensors in real-time. As we delve into the intricacies
of Loihi-2’s architecture, it becomes evident that its design
nuances make it an ideal candidate for advancing the field of
sensor fusion, offering a promising avenue for more efficient
and intelligent information integration [21], [22], [25].
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Fig. 1. System architecture integrating the Loihi-2 neuromorphic chip for
advanced sensor fusion.

Figure 1 presents a simplified computing system diagram
incorporating the Intel Loihi-2 chip, designed to combine data
from different sensors. The main computer interface allows
users to see visual representations of data and control what is
displayed. This part of the system effectively manages how
data is shown to users. The Loihi-2 chip is central to the
system’s architecture, showcasing the system’s ability to pro-
cess information. This chip has a ’Sensor Fusion’ capability,
which means it can take in and integrate data from various
sensors. It also manages the incoming and outgoing data,
a process essential for controlling the flow of information.
On the diagram’s right side, we see various sensors acting
as the system’s starting points for data collection. They are
shown as capturing and sending out information, likely in
spikes, a specialized signal used in systems like Loihi-2. The
’Communication Interface’ connects the main computer to the
Loihi-2 chip. It represents the system’s method for exchanging
data, possibly through a standard communication protocol like
Ethernet, facilitating a smooth and integrated data flow.

III. METHODS

This section outlines the methodology employed in our
study to explore the efficacy of Intel’s Loihi-2 neuromorphic
chip in accelerating sensor fusion.

A. Dataset

The data used in our experiments are carefully selected
from renowned datasets in autonomous driving and sensor
fusion, reflecting a range of real-world scenarios and sensor
modalities. These datasets are complemented by synthetic
data generated to test specific conditions and hypotheses. The
datasets include:

• AIODrive Dataset: Offers a comprehensive collection
of multimodal sensory data, including high-resolution
camera images, LIDAR point clouds, GPS trajectories,
and IMU data across diverse environments such as urban,
suburban, and highways [26].

• Oxford Radar RobotCar Dataset: Specializes in radar
data complemented by LIDAR, camera, and GPS, cru-
cial for autonomous navigation research, especially in
adverse weather conditions and for radar-LIDAR fusion
algorithms [27], [28].

• D-Behavior Dataset (D-Set): Provides data on driver
behavior and traffic interaction, including cameras, radars,
and CAN-Bus information, valuable for analyzing driv-
ing behaviors and developing advanced driver-assistance
systems [29].

• nuScenes Dataset by Motional: The nuScenes dataset
is a comprehensive resource for autonomous driving
research developed by Motional. It provides a rich collec-
tion of multimodal sensor data, including 3D bounding
boxes, camera images, RADAR, and LiDAR point clouds.
The dataset covers many urban driving scenarios and is
particularly valuable for object detection, prediction, and
segmentation tasks in complex urban environments [30],
[31]. The diverse and detailed nature of the dataset makes
it highly suitable for developing and testing advanced
algorithms in perception, sensor fusion, and autonomous
navigation.

• Comma2k19 Dataset: Features extensive real-world
driving data, primarily from highway scenarios, including
high-definition video, CAN data, and GPS, suitable for
developing cruise control algorithms and lane-keeping
systems [32].

Each dataset provides a unique perspective and data for
advancing research in autonomous driving and sensor fusion,
with specific focuses ranging from environmental perception
to driver behavior analysis. Given their complex, multimodal
nature, they are particularly well-suited for testing and de-
veloping algorithms for neuromorphic hardware like Intel’s
Loihi-2.

Figure 2 emphasizes the integration and processing of data
from multiple sensors through a neuromorphic computing unit,
which is a type of computing architecture inspired by the
human brain, known for its efficiency in processing complex
data sets, a key feature in autonomous driving systems. It
underscores the integration of these diverse sensory inputs
through advanced computing techniques, which is critical for
the sophisticated task of autonomous driving.

B. Overview of the Proposed Framework

We employ SNNs, optimized for Loihi-2, for data process-
ing. We have successfully implemented five distinct SNN mod-
els, each tailored to a specific dataset. These implementations
were initially executed on conventional CPU/GPU architec-
tures to validate their performance and functional integrity.
Our primary focus has been optimizing these models for
efficient computation while ensuring their compatibility with
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Fig. 2. Sensory data from cameras, LIDAR, RADAR, GPS, and IMU,
processed through a neuromorphic computing unit, exemplified for advanced
autonomous driving applications.

neuromorphic hardware, specifically Intel’s Loihi-2 chip. The
current phase of our research involves the critical step of
generating an HDF5 file, a format necessary for interfacing
with the Loihi-2 programming environment. This file encap-
sulates the trained SNN models’ parameters and architecture
in a format compatible with the neuromorphic hardware.
Generating this file is a nuanced process, demanding careful
consideration of the specific requirements and constraints of
the Loihi-2 platform. Further, we are in the process of scripting
the implementation for Loihi-2. This script is crucial for
setting up the computational environment on the Loihi-2 chip,
particularly for executing a model trained on the CIFAR-10
dataset. A significant challenge in this phase is the discrepancy
in the data loader’s output/input formats when interfacing
with the Loihi-2 architecture. This challenge underscores the
complexities of adapting neural network models from con-
ventional computing paradigms to neuromorphic platforms.
To address these challenges, our approach involves lever-
aging the Lava-DL library (including Slayer and Bootstrap
libraries) specifically designed to develop and train SNNs
for neuromorphic hardware like Loihi-2. Lava-DL offers a
conducive environment for training SNNs and facilitating their
transition to neuromorphic platforms. Our implementation
script includes critical components for interfacing with the
Loihi-2 chip. These components include defining input/output
ports, ensuring the seamless exportation of the HDF5 file,
and leveraging various Lava libraries such as lava-dl netx,
lava.magma.core, lava.process, and lava.util. These libraries
provide a rich set of tools and functionalities essential for
tailoring SNNs to the unique computational architecture and
processing capabilities of the Loihi-2. Adapting SNNs for
execution on Intel’s Loihi-2 neuromorphic chip represents
a significant advancement in neuromorphic computing. It
highlights the potential of neuromorphic hardware in handling
complex computational tasks, particularly those involving real-
time data processing and energy-efficient computation. The
successful implementation of these models on Loihi-2 would
validate the versatility and robustness of the SNN architectures

we have developed and underscore the practical applications
and benefits of neuromorphic computing in various domains.

ML, AI, DL
Algorithms.

Data
Collection UI/UX Real-time

Application

NxLink, AER

Software Frameworks and Standards
LAVA, Neurokernel, PyNN, Brian2, Nengo, NEURON

Sensors
Neuromorphic

Processing
Units

SpiNNcloud Actuators

H
ar

dw
ar

e
So

ftw
ar

e

External interaction: neuromorphic-
compatible mapping, rule engines,

and status monitoring systems

Sensors
Neuromorphic

Processing
Units

SpiNNcloud

System Supervision

ActuatorsSensors

Fig. 3. Overview of a Neuromorphic Computing System Architecture,
integrating specialized software framework. The system employs advanced
communication protocols and hardware components designed for real-time
data processing and interaction with the environment.

Figure 3 illustrates an integrated neuromorphic computing
system designed for advanced machine learning, artificial
intelligence, and deep learning applications. At the software
level, it employs a suite of specialized frameworks and stan-
dards such as LAVA, Neurokernel, PyNN, Brian2, Nengo, and
NEURON, which are pivotal for the development and exe-
cution of neuromorphic algorithms. These tools facilitate the
algorithmic translation necessary for neuromorphic computing
and manage data collection, user interaction, and real-time
application deployment. The system leverages communication
protocols like NxLink and AER, tailored to the neuromorphic
paradigm, particularly handling spike-based data transmission.
At the hardware core, sensors gather real-world data, which
is then processed by neuromorphic units that execute brain-
inspired computational models. Actuators in the loop respond
to the computational directives, and platforms such as SpiN-
Ncloud suggest an infrastructure for distributed neural network
simulations. The architecture also incorporates external inter-
faces for neuromorphic-compatible mapping, rule engines, and
systems for status monitoring, ensuring the system’s adaptabil-
ity and responsiveness to dynamic environmental conditions.

The diagram in Figure 4 outlines implementing a machine
learning model on the Loihi-2 chip, specialized in neuro-
morphic computing. This sequence begins with the trained
model in a development environment and moves through
stages of preparation and compatibility adjustments via a front-
end interface. The model is then compiled into an executable
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form for the Loihi-2 chip using dedicated drivers and tools.
Finally, the model is operational on the neuromorphic hard-
ware, ready to perform tasks with efficiency reminiscent of
biological neural systems, leveraging the unique capabilities
of neuromorphic computing to process data in a brain-inspired
manner.

C. Additional Considerations:

• Sparsity: Leverage the inherent sparsity of neuromorphic
computing in our model to reduce computational load and
increase efficiency.

• Neuron Model Simplification: Simplify the neuron mod-
els to fit the dynamics of the Loihi-2 chip, which might
involve using fewer synaptic operations or adjusting the
neural dynamics for the hardware.

• Software-Hardware Compatibility: Ensure that our
model is compatible with Loihi-2’s software stack, which
includes NxSDK and other Loihi-specific programming
tools.

• Neuromorphic Debugging Tools: Utilize neuromorphic-
specific debugging tools provided by Intel for the Loihi-2
chip to troubleshoot and optimize the deployment of the
model.

IV. EVALUATION

The experiments are designed to evaluate the performance
of sensor fusion using Loihi-2 in various aspects such as speed
and efficiency, power and energy consumption.

Table I presents a detailed comparison across several crucial
hardware specifications and performance metrics, including
technology node, core count, precision, operational frequency,
memory technology, power consumption, and other critical
parameters like throughput and power efficiency. This com-
parison elucidates the distinctive features and advantages of
the Intel i9 12900H CPU, NVIDIA RTX 3060 GPU, and
Intel Loihi 2 ASIC. A notable aspect of this comparison
is the power efficiency and throughput metrics, particularly
for the Intel Loihi 2 ASIC. The Loihi 2 exhibits an ex-
ceptional power efficiency of 103.94 GOP/s/W, significantly
outperforming the CPU and GPU. This is accompanied by a
modest power requirement of only 1.55 Watts, a fraction of the
power consumed by the other two devices. Despite its lower

operational frequency of 1000 MHz and a relatively smaller
core count of 128, the Loihi 2 ASIC demonstrates a throughput
of 161.11 GOP/s, highlighting the specialized capabilities of
ASICs in efficiently handling specific computational tasks.
In contrast, the GPU shows a higher throughput of 304.76
GOP/s, benefitting from its large core count of 3,584 and
a higher operational frequency of 1320 MHz. However, this
comes at the cost of increased power consumption, evident
from its 80-watt power requirement. With its balanced core
count and precision, the CPU offers moderate performance
in both throughput and power efficiency, suitable for a wide
range of general-purpose computing tasks.

Table II presents an in-depth analysis of the performance
metrics of the Loihi-2 neuromorphic computing platform
across various datasets. This table methodically details the
power consumption (in watts), inference time (in seconds),
throughput (in Giga Operations per second), energy efficiency
(in picojoules per operation), computational complexity, and
the neural network’s capacity in terms of neurons and synapses
for each dataset. The datasets included, such as AIODrive,
Oxford Radar RobotCar, D-Behavior (D-Set), nuScenes by
Motional, and Comma2k19, cover a range of applications from
autonomous driving to real-world driving scenarios. This com-
parison highlights the adaptability and efficiency of the Loihi-2
in processing diverse and complex datasets. It underscores the
chip’s capability in high-speed processing while maintaining
energy efficiency, which is crucial in advanced AI and machine
learning applications.

Table III compares various implementations in terms of
their inference times on different datasets, specifically focusing
on advanced technologies in autonomous driving and image
processing. The implementations by researchers are contrasted
with our Loihi-2 implementation. The comparison underscores
the performance capabilities of these diverse computational
platforms in handling complex data processing tasks in real-
world scenarios.

V. CONCLUSION

The conclusion drawn from our study indicates that the
Loihi-2 neuromorphic chip excels in sensor data integration
tasks. Our extensive evaluations have demonstrated that the



TABLE I
SPECIFICATIONS AND EVALUATION RESULTS OF HARDWARE DEVICES

Specification Intel i9 12900H (CPU) NVIDIA RTX 3060 (GPU) Intel Loihi 2 (ASIC)

Model Core i9-12900HA GeForce RTX 3060 Loihi 2
Technology Node 10nm 8nm 7nm
Core Count 14 3,584 128
Precision Float32 Float32 Fixed32
Operation Frequency (MHz) 3700 1320 1000
Memory Technology DDR5 GDDR6 On-chip
Maximum Power (W) 157 170 Low Power
# of MAC (MOP) 960 960 960
Throughput (GOP/s) 8.67 304.76 161.11
Power (Watt) 28 80 1.55
Power Efficiency (GOP/s/W) 0.30 3.80 103.94

Oxford Radar RobotCar dataset was implemented on these models.

TABLE II
PERFORMANCE METRICS OF LOIHI-2 ON VARIOUS DATASETS

Power (W) Inference Time (s) Throughput (GOP/s) Efficiency (pJ/OP) Complexity Neurons Synapses

AIODrive 2.50 0.00080 141 10.12 110K 1200 120K
Oxford Radar RobotCar 1.50 0.00058 161 11.52 95K 1100 100K
D-Behavior (D-Set) 1.78 0.00061 159 11.38 100K 1100 100K
nuScenes by Motional 2.38 0.00070 143 10.38 105K 1200 120K
Comma2k19 1.98 0.00065 149 11.38 100K 1200 120K

TABLE III
COMPARISONS WITH PREVIOUS IMPLEMENTATIONS ON VARIOUS DATASETS (INFERENCE TIMES IN MS)

Dataset Inference Time (ms)

Lopez et al. Burnett et al. Stacker et al. RVF-Net CRF-Net RVNet CRAFT Liu et al. Chen et al. Echterhoff et al. Ours

Hardware FPGA V100 GPU & Xeon CPU RTX 2080 GPU Titan X Titan XP GeForce 1080 RTX 3090 RTX 2080Ti GTX 1080 RTX A6000 Loihi-2

Oxford Radar RobotCar - 70 - - - - - - - - 0.58

D-Behavior (D-Set) - - - - - - - 330 - - 0.61

nuScenes by Motional 18 700 36.7 44 43 17 244 - - 50 0.70

Comma2k19 - - - - - - - - 0.01 4.1 0.65

Fig. 5. Comparison of energy efficiency, measured as giga-operation per
second per billion transistors, against the energy required for one operation
(giga-operation per second per watt) across various computing hardware. This
plot illustrates the efficiency trade-offs between CPUs, GPUs, and Loihi-2 in
processing.

chip performs these tasks faster and more efficiently than
conventional computing methods. Notably, its low power
consumption stands out, positioning it as an ideal candidate

for high-demand computational applications where energy
efficiency is paramount. The Loihi-2 chip’s ability to rapidly
and effectively process complex data streams suggests it could
play a pivotal role in the evolution of autonomous systems,
potentially leading to more advanced and sustainable techno-
logical solutions.

VI. FUTURE WORK

This paper mainly uses the data generated for testing
purposes to compare the chips in an ideal environment. In
future work, we plan to use a real-time sensor fusion task
to illustrate the practical results. Using real-time data will be
enlightening while comparing the performance of Loihi-2 and
others in the long run. Various domains, like defense, health,
and the automotive industry, focus on improving their sensing
capability using optical sensing and radar imaging [2], [33].
For example, new-generation autonomous vehicles combine
Vision Cameras, Lidar, and Radar sensors to increase the
sensing performance for safety issues, and processing power
has a critical role in the sensor fusion [2]. In future work,
we plan to continue with the industry to use Loihi-2 in their
sensor fusion tasks, which will also be useful for real-time
data generation.



VII. ACKNOWLEDGMENT

We acknowledge the Temsa Research R&D Center for their
generous financial support and the reviewers for their invalu-
able insights and suggestions that significantly contributed to
the enhancement of our paper.

REFERENCES

[1] W. Elmenreich, “An introduction to sensor fusion,” Vienna University of
Technology, Austria, vol. 502, pp. 1–28, 2002.

[2] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and
sensor fusion technology in autonomous vehicles: A review,” Sensors,
vol. 21, no. 6, p. 2140, 2021.

[3] Y. Yu, J. Li, J. Li, Y. Xia, Z. Ding, and B. Samali, “Automated
damage diagnosis of concrete jack arch beam using optimized deep
stacked autoencoders and multi-sensor fusion,” Developments in the
Built Environment, vol. 14, p. 100128, 2023.

[4] S. Yao, R. Guan, X. Huang, Z. Li, X. Sha, Y. Yue, E. G. Lim, H. Seo,
K. L. Man, X. Zhu et al., “Radar-camera fusion for object detection
and semantic segmentation in autonomous driving: A comprehensive
review,” arXiv preprint arXiv:2304.10410, 2023.

[5] S. W. Cho, C. Jo, Y.-H. Kim, and S. K. Park, “Progress of materials and
devices for neuromorphic vision sensors,” Nano-Micro Letters, vol. 14,
no. 1, p. 203, 2022.

[6] Z. Zou, H. Alimohamadi, Y. Kim, M. H. Najafi, N. Srinivasa, and
M. Imani, “Eventhd: Robust and efficient hyperdimensional learning
with neuromorphic sensor,” Frontiers in Neuroscience, vol. 16, p. 1147,
2022.

[7] M. Isik, H. Vishwamith, K. Inadagbo, and I. Dikmen, “Hpcneuronet:
Advancing neuromorphic audio signal processing with transformer-
enhanced spiking neural networks,” arXiv preprint arXiv:2311.12449,
2023.

[8] K. Inadagbo, B. Arig, N. Alici, and M. Isik, “Exploiting fpga capabilities
for accelerated biomedical computing,” in 2023 Signal Processing: Al-
gorithms, Architectures, Arrangements, and Applications (SPA). IEEE,
2023, pp. 48–53.

[9] S. Harbour, B. Sears, S. Schlager, M. Kinnison, J. Sublette, and
A. Henderson, “Real-time vision-based control of swap-constrained
flight system with intel loihi 2,” in 2023 IEEE/AIAA 42nd Digital
Avionics Systems Conference (DASC). IEEE, 2023, pp. 1–6.

[10] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T.
Sommer, and M. Davies, “Efficient neuromorphic signal processing with
loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2021, pp. 254–259.

[11] A. Marchisio and M. Shafique, “Embedded neuromorphic using intel’s
loihi processor,” in Embedded Machine Learning for Cyber-Physical,
IoT, and Edge Computing: Software Optimizations and Hardware/Soft-
ware Codesign. Springer, 2023, pp. 137–172.

[12] J. Z. Sasiadek, “Sensor fusion,” Annual Reviews in Control, vol. 26,
no. 2, pp. 203–228, 2002.

[13] J. P. Amaro and S. Patrão, “A survey of sensor fusion algorithms for
sport and health monitoring applications,” in IECON 2016-42nd Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 2016,
pp. 5171–5176.

[14] J. Dong, D. Zhuang, Y. Huang, and J. Fu, “Advances in multi-sensor
data fusion: Algorithms and applications,” Sensors, vol. 9, no. 10, pp.
7771–7784, 2009.

[15] N. Van Dinh and G.-W. Kim, “Multi-sensor fusion towards vins: A
concise tutorial, survey, framework and challenges,” in 2020 IEEE
International Conference on Big Data and Smart Computing (BigComp).
IEEE, 2020, pp. 459–462.

[16] S. Furber, “Large-scale neuromorphic computing systems,” Journal of
neural engineering, vol. 13, no. 5, p. 051001, 2016.

[17] P. K. Huynh, M. L. Varshika, A. Paul, M. Isik, A. Balaji, and A. Das,
“Implementing spiking neural networks on neuromorphic architectures:
A review,” arXiv preprint arXiv:2202.08897, 2022.

[18] M. Isik, “A survey of spiking neural network accelerator on fpga,” arXiv
preprint arXiv:2307.03910, 2023.

[19] M. Isik, H. Vishwamith, Y. Sur, K. Inadagbo, and I. C. Dikmen,
“Neurosec: Fpga-based neuromorphic audio security,” in International
Symposium on Applied Reconfigurable Computing. Springer, 2024, pp.
134–147.

[20] M. Isik, S. Miziev, W. Pawlak, and N. Howard, “Advancing neuromor-
phic computing: Mixed-signal design techniques leveraging brain code
units and fundamental code units,” arXiv preprint arXiv:2403.11563,
2024.

[21] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic com-
puting with loihi: A survey of results and outlook,” Proceedings of the
IEEE, vol. 109, no. 5, pp. 911–934, 2021.

[22] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, 2019.

[23] Z. Yu, A. Zahid, W. Taylor, H. Heidari, M. A. Imran, and Q. H. Abbasi,
“Multi-sensing data fusion for human activity recognition based on
neuromorphic computing,” in 2021 IEEE USNC-URSI Radio Science
Meeting (Joint with AP-S Symposium). IEEE, 2021, pp. 64–65.

[24] J. B. Aimone, P. Date, G. A. Fonseca-Guerra, K. E. Hamilton, K. Henke,
B. Kay, G. T. Kenyon, S. R. Kulkarni, S. M. Mniszewski, M. Parsa et al.,
“A review of non-cognitive applications for neuromorphic computing,”
Neuromorphic Computing and Engineering, vol. 2, no. 3, p. 032003,
2022.

[25] W. A. Pawlak, M. Isik, D. Le, and I. C. Dikmen, “Exploring liquid
neural networks on loihi-2,” arXiv preprint arXiv:2407.20590, 2024.

[26] X. Weng, Y. Man, D. Cheng, J. Park, M. O’Toole, and K. Kitani, “All-
in-one drive: A large-scale comprehensive perception dataset with high-
density long-range point clouds. arxiv,” 2020.

[27] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
km: The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[28] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The oxford
radar robotcar dataset: A radar extension to the oxford robotcar dataset,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 6433–6438.

[29] Y. Chen, J. Wang, J. Li, C. Lu, Z. Luo, H. Xue, and C. Wang,
“Lidar-video driving dataset: Learning driving policies effectively,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5870–5878.

[30] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[31] Q.-H. Pham, P. Sevestre, R. S. Pahwa, H. Zhan, C. H. Pang, Y. Chen,
A. Mustafa, V. Chandrasekhar, and J. Lin, “A 3d dataset: Towards
autonomous driving in challenging environments,” in 2020 IEEE In-
ternational conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 2267–2273.

[32] H. Schafer, E. Santana, A. Haden, and R. Biasini, “A commute in data:
The comma2k19 dataset,” arXiv preprint arXiv:1812.05752, 2018.

[33] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning
sensor fusion for autonomous vehicle perception and localization: A
review,” Sensors, vol. 20, no. 15, p. 4220, 2020.


	Introduction
	Background
	Sensor Fusion
	Neuromorphic Computing
	Intel’s Loihi-2 Neuromorphic Chip

	Methods
	Dataset
	Overview of the Proposed Framework
	Additional Considerations:

	Evaluation
	Conclusion
	Future Work
	Acknowledgment
	References

