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Abstract—In the rapidly advancing field of neuromorphic com-
puting, integrating biologically-inspired models like the Leaky
Integrate-and-Fire Astrocyte (LIFA) into spiking neural networks
(SNNs) enhances system robustness and performance. This paper
introduces the LIFA model in SNNs, addressing energy efficiency,
memory management, routing mechanisms, and fault tolerance.
Our core architecture consists of neurons, synapses, and astrocyte
circuits, with each astrocyte supporting multiple neurons for
self-repair. This clustered model improves fault tolerance and
operational efficiency, especially under adverse conditions. We
developed a routing methodology to map the LIFA model onto a
fault-tolerant, many-core design, optimizing network functional-
ity and efficiency. Rigorous evaluation showed that our design is
area and power-efficient while achieving superior fault tolerance
compared to existing approaches. Our model features a fault
tolerance rate of 81.10% and a resilience improvement rate of
18.90%, significantly surpassing other implementations. The re-
sults validate our approach in memory management, highlighting
its potential as a robust solution for advanced neuromorphic
computing applications. The integration of astrocytes represents
a significant advancement, setting the stage for more resilient
and adaptable neuromorphic systems.

Index Terms—Neural Systems, Fault tolerance, Astrocyte,
Hardware, Neuromorphic Computing

I. INTRODUCTION

The field of neuromorphic computing is undergoing a
transformative phase, driven by the integration of biologically-
inspired components. This paper introduces a groundbreaking
approach that integrates the Leaky Integrate-and-Fire Astro-
cyte (LIFA) model into Spiking Neural Networks (SNNs).
SNNs, inspired by brain dynamics, are known for their energy-
efficient processing and biologically plausible learning algo-
rithms [1], [2]. However, SNNs remain vulnerable to faults
that can impair their efficiency. Astrocytes play a critical
role in regulating neuronal activity and synaptic transmission,
contributing to the resilience and adaptability of biological
networks [3], [4]. This integration of astrocytic mechanisms
into SNNs offers dynamic adjustments for fault tolerance [5],
[6], [7].

Despite performance improvements, technology scaling
brings challenges such as increased power densities and faults
in neuron and synapse circuits, affecting model performance

and robustness [8], [9]. The LIFA model, rooted in the
dynamic interplay between neurons and astrocytes, enhances
neural processing by bolstering computational strength and
efficiency [10]. This integration also introduces novel compu-
tational capabilities into neuromorphic computing [11], [12],
[13].

Our methodology targets four pillars: energy efficiency,
memory measurement, efficient routing, and fault tolerance.
This integration enables accurate emulation of brain functions
and marks an advancement in neuromorphic computing by
moving beyond traditional neuron-centric models.

A fault-tolerant neuromorphic computing system is pro-
posed, consisting of four components:

• Alternative Reduce Regime: Optimizes energy con-
sumption through single neuron component switching,
demonstrating a commitment to sustainable and efficient
computing.

• Memory Measurement and Management: Explores
synaptic dynamics inspired by Hopfield networks to op-
timize memory storage and retrieval, achieving superior
memory efficiency with fewer connections.

• Innovative Routing and Fault Tolerance: Implements
robust routing mechanisms with fault-tolerant strategies,
ensuring network integrity and resilience with minimal
component usage.

• LIFA Model Implementation: Involves adapting astro-
cytic and neuronal interactions from a theoretical model
to a fully functional computational model, offering com-
putational advantages and insights.

We set new benchmarks in energy efficiency, memory man-
agement, routing strategies, and fault tolerance. Our method-
ology, evaluated using various deep learning models, demon-
strates efficacy in area and power efficiency while providing
robust fault tolerance.

II. LEAKY INTEGRATE-AND-FIRE ASTROCYTE (LIFA)
MODEL

To understand astrocytic dynamics in neuromorphic com-
puting, we integrate the LIFA model into our system. The
LIFA model is motivated by the principle that astrocytic



Ca2+ elevations beyond a threshold trigger the release of
neuroactive molecules such as glutamate and ATP, called
gliotransmitters. These gliotransmitters promote postsynaptic
neural activity. Biophysical arguments support that subthresh-
old Ca2+ dynamics set the rate of gliotransmitter-mediated
postsynaptic depolarizations. The relevant time constants are
τN for neuronal activity (vN ), τG for astrocytic Ca2+ activity
(vG), and τp for gliotransmitter dynamics. The ODEs are:

τN
dvN
dt

= −vN + IN (t) (1)

τG
dvG
dt

= −vG + IG(t) (2)

τp
dg

dt
= −g +G(1− g)rG(t) (3)

where IN (t) and IG(t) are the synaptic inputs to neurons and
glia, and rG(t) is the gliotransmitter release. Synaptic weights
(w) are proportional to postsynaptic activation (q), i.e. w =
uq, and astrocytes contribute to postsynaptic activation by Qg,
so w = u(q0 + Qg), where q0 is the baseline postsynaptic
activation.

Incorporating these aspects of the LIFA model into our
framework aims to achieve a more biologically accurate and
efficient simulation of astrocyte-neuronal interactions. This
enhances the realism of our model and provides a robust
foundation for advanced computational strategies.

Figure 1 (a) shows a neural network before astrocyte
modulation. Figure 1 (b) shows the network after integrating
astrocyte modulation, demonstrating structural and functional
changes due to astrocyte integration. Figure 1 (c) shows LIFA’s
operation between synaptic site and post neuron activities.
Figure 2 illustrates the network’s stages: normal operation,
stress, recovery, and potential failure. The black traces show
the network’s threshold voltage Vth under normal conditions,
while the red traces show the threshold voltage under stress.
Stress refers to conditions that push the network beyond typ-
ical operational parameters. Recovery denotes the network’s
ability to return to normal operation after stress, and vspk
refers to the spike voltage that triggers neuron firing, while
vidle denotes the idle voltage. The x-axis represents time, and
the y-axis, labeled ∆Vth, represents the change in threshold
voltage, showing the network’s stress response and recovery
capability over time.

III. PROPOSED DESIGN METHODOLOGY

We used Python to execute implementations on the CPU and
GPU. The study leveraged NVIDIA’s GeForce RTX 3060 GPU
and Intel’s Core i9 12900H CPU for efficient execution. The
LIFA model begins with astrocytes receiving external stimuli,
such as optogenetic Ca2+ uncaging and electrical stimulation
of synaptic afferents, which are crucial for initiating astrocytic
responses. Astrocytes integrate these stimuli, leading to Ca2+

signals essential for gliotransmitter release. This integration
phase is influenced by the number, duration, and strength of
stimuli.

Figure 3 illustrates modeling, clustering, error tolerance
analysis, fault-tolerant hardware implementation, and fault
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Fig. 1. Inserting LIFA in a neural network.
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Fig. 2. Self-repair mechanism of an astrocyte.

simulation. Astrocytic mechanisms are incorporated into the
LIFA model to improve network resilience and error recovery.
The baseline design includes training with data, clustering for
pattern recognition, error tolerance analysis, and fault injection
testing (ARES).
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Fig. 3. Schematic representation of the LIFA model.

A. Memory Measurement and Management

This section describes the methodology to assess and op-
timize memory dynamics within SNNs, based on astrocytic
activity’s influence on synaptic plasticity and Hopfield network
principles.

Astrocyte-Induced Synaptic Dynamics: Astrocytic mech-
anisms introduced by the LIFA model alter synaptic behavior
fundamentally, influencing synaptic plasticity, memory forma-
tion, and retrieval.

Memory Capacity and Efficiency: Astrocytic modulation
evaluates the memory capacity and efficiency of SNNs, in-
spired by Hopfield networks known for robust pattern recog-
nition capabilities.

Optimizing Synaptic Connections: Our methodology op-
timizes the number of synaptic connections, using fewer
connections to maintain or enhance memory functionality.

Capacitance Modeling for Memory Updates: We analyze
memory design capacitance within the SNN, calculating up-
dates due to astrocyte-mediated synaptic modulation. This in-
cludes SRAM, DRAM, and memristor-based synaptic arrays,
determining the capacitance for storing and updating a bit or
synaptic weight.

The LIFA model’s integration into SNNs represents an in-
novative approach to memory measurement and management,
leveraging astrocytic functions for enhanced efficiency and
capacity in neuromorphic computing.

B. Innovative Routing and Fault Tolerance

Figure 4 shows how clustered neural networks integrate
astrocyte-like structures. Astrocytic modulation pathways or
the flow of information is evident in each cluster, representing
neurons or nodes in a neural network. This figure illustrates
astrocyte integration in neural networks, enhancing computa-
tional abilities or resilience. Clusters with similar functions are
interconnected, mirroring biological neural networks. Algo-
rithm 1 outlines the integration of astrocytes into an inference
model GM , structured into clusters 0 to 6. For each cluster,
the algorithm applies the ARES framework to introduce Nr

random errors, evaluating the model’s accuracy after each
error. If the accuracy amin falls below the threshold ath,
an astrocyte is added to the cluster. The process iterates
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Fig. 4. Astrocyte Integrated Clustering.

across all clusters, balancing neuron distribution across mul-
tiple astrocytes. Parameters Nr and ath are user-defined, with
typical settings of 10,000 and baseline model accuracy ao.
This ensures model robustness against accuracy degradation
due to errors.

GM (C,E) = Inference model with C clusters and E edges
GA(CA, E) = Astrocyte-enabled model with CA clusters and E edges

L = Layers of a core. L = {Lx, Ly} and L = {Lx, Ly , Lz}

We set an accuracy constraint, ath = a0, indicating a
hardware failure induces a model error if the accuracy drops
from the baseline. This guides the co-design approach from
Algorithm 1. For each astrocyte-enabled cluster Cj ∈ CA of
GA, we design a crossbar/µBrain core tailored to the astrocyte-
augmented layers. We fix the number of astrocytes per core,
leveraging their frequency reconstruction property. Aiming
for an average spike frequency of 2.17 Hz and a maximum
reconstruction error of 10%, our configuration requires 4452
neurons per astrocyte. Post-implementation on the FTN cores,
unused astrocytes are disabled to optimize fault tolerance rate.

C. Alternative Reduce Regime for Energy Consumption

This section describes optimizing energy consumption in
neuromorphic systems using the LIFA model, inspired by
astrocytes’ energy-efficient neurotransmitter release and cal-
cium signaling processes. Astrocytes in the brain conserve
energy while maintaining optimal neural activity. LIFA aims
to replicate this efficiency in SNNs, reducing network energy
consumption through single neuron component switching.
This approach controls neuron activity precisely, enhancing
overall SNN efficiency and contributing to energy savings.
Incorporating LIFA into SNNs underscores our commitment
to efficient and sustainable computing paradigms. Analyses
and tests determine the effectiveness of the alternative reduce



Algorithm 1: Algorithm for integrating astrocytes into
a clustered SNN model.

Input: GM = (C, E)
Output: GA = (CA, E)

1 for Ck ∈ C do /* For each cluster in C */
2 Arrange Ck into layers based on clustering shown in Fig. 4 ;

/* E.g., Ck = {C0
k, C

1
k, . . .} for each cluster. */

3 for Ci
k ∈ Ck do /* For each layer in Ck */

4 while (true) do /* Run until all neurons of the
layer are protected against errors */

5 Insert Nr random errors using ARES and evaluate the
minimum accuracy amin;

6 if amin < ath then /* Min accuracy is less than
threshold. */

7 Ci
k = Ci

k∪ A; /* Add an astrocyte to the
layer. */

8 else
9 exit;

/* Astrocytes are mapped based on the clustering
to optimize fault tolerance. */

regime, quantifying energy savings using metrics like energy
consumption per task and spike event. We compare traditional
computational models with LIFA to demonstrate its ability to
reduce SNN energy consumption through improved efficiency.

IV. EVALUATION

Our evaluation of our proposed neuromorphic architecture
is focused on the following pivotal components. A compre-
hensive suite of applications spanning machine learning, data
analytics, and signal processing are used to test our system.
Through this diverse workload spectrum, we are able to thor-
oughly analyze our architecture’s adaptability and performance
across a wide range of scenarios, ensuring its versatility in
handling a variety of computational tasks. Our simulation
framework consists of the following.

• PyTorch [14]: for astrocyte modeling.
• ARES [15]: for fault simulations.
• pyJouleS [16]: for hardware results.

A. Energy Efficiency Assessment

In this section, we delve into the energy efficiency of SNN
with a focus on the LIFA model.

• Energy Consumption Analysis: The energy consump-
tion of the SNN was meticulously analyzed, both with
and without the implementation of the Alternative Reduce
Regime (ARR). This analysis concentrated on quantifying
energy use on a per-neuron and per-synaptic operation
basis. As illustrated in Figure 5, the LIFA Model demon-
strates a significant variation in energy consumption
contingent on the employment of the ARR.

• Performance-Energy Trade-off: A critical evaluation of
the LIFA model was conducted to discern the interplay
between energy-saving strategies and overall SNN perfor-
mance. This assessment probed into whether there exists a
discernible trade-off between achieving energy efficiency
and maintaining or enhancing computational speed and
accuracy.

The complex connectivity inherent in the LIFA model,
characterized by a high density of neuron-neuron synapses

within clusters, underlines the model’s potential inemulating
the intricacies of biological neural networks.

Fig. 5. LIFA Model Energy Consumption.

B. Memory Management Effectiveness

This section focuses on evaluating the memory management
effectiveness of the LIFA model, particularly in the context of
SNNs.

• Memory Utilization: Our analysis focused on comparing
the LIFA model’s total memory utilization with that of
conventional SNNs. This comparative study particularly
highlighted the effect of optimized synaptic connections
in the LIFA model. As evidenced in Figure 6, the inno-
vative synaptic connection optimization in LIFA explains
its superior memory efficiency. Besides reducing the
memory footprint, this optimization also increases the
network’s overall computational efficiency.

• Pattern Storage and Retrieval Accuracy: Our tests in
LIFA were analogous to those conducted in Hopfield
networks to assess its memory capabilities. We conducted
these tests to evaluate how well the model stored and
retrieved patterns. LIFA exhibits high accuracy in both
pattern storage and retrieval, surpassing traditional SNNs.
An application requiring high precision in pattern recog-
nition and recall can benefit greatly from the model’s
advanced memory management techniques.

A pivotal aspect of our evaluation is the use of memory
capacity as a relative measure, ranging from 0 (no recall)
to 1 (perfect recall). A neuromorphic uses this approach to
assess its efficiency by comparing input patterns to their
subsequent recalls. A comprehensive framework for modeling
complex interactions within neural networks is provided by
the LIFA model, which incorporates neuron and astrocyte
activity. As a result of this integration, the model has enhanced
memory capabilities as well as a better understanding of the
interplay between various neural components, resulting in a
more accurate neuromorphic simulation.



TABLE I
LIFA HYPERPARAMETERS.

Parameters Values

2-arachidonyl glycerol (2-AG), AG 0 Indirect signal to the synaptic site, ESP) 0
Direct signaling pathway, DSE 0 Glutamate Rate, GLU 0
Rate of Production of AG 0.1s Rate of Production Glutamate 0.1s
Rate of Decay Glutamate 0.1s Rate of Decay ESP 0.1s
Scaling Factor of ESP 0.1 Equivalent Reset Potential, vrG 0.2
Equivalent Firing threshold, vtG 1.0 Ca2+ time constant, τG 0.5s
Absolute Refractory Period, τrG 0.1s Resting release probability(exc. synapses), u0 0.3
Fraction of shared synapses, f 0.5 Excitatory PSP (on neurons), J 0.4mV
Equivalent Excitatory PSP (on astrocytes), W 1.8× 10−3 Presynaptic activity rates, vS 30Hz
Gliotransmitter release probability, uG 1.0 Strength of gliotransmission, G 0.05
Polarity of gliotransmission,ξ 0.8 Decay time constant, τp 10s
Ca signal- Cystolic Calcium 0.2 Last spike time, last spike time 0
Time constant for Ca2+ decay, τ 0.4 Threshold for spike firing, threshold 0.5
Refractory period after spike firing, refractory period 0.5s Gain for VDCC, vdcc gain 0.1
Gain for IP3 receptors, ip3 gain 0.1 Astrocyte Activity, activity [1...10]
External Stimuli/Input bias, external input 0 Astrocyte Time Scale, astrocyte time scale 0.10
Synapse to Astrocyte Connection Weights [1...10] Time constant, τ 20
Neuron resting membrane potential, Vrest 70mV Reset potential, vreset -70mV
Firing threshold, Vthreshold -50mV Absolute refractory period, Trefactory 0ms
Initial Firing Rate, firing rate 1 Neuron Firing Threshold, firing threshold Random value
Resting release probability (exc. synapses), u0 0.3 Fraction of shared synapses, f 0.5
Neuronal Activity, activity [1...10] External stimul/input bias, external input 0
Neuron characteristic time scale, τn 0.10 Synpatic connection weights [1...10]
Number of synapses, num synapses 10

Fig. 6. Memory Management.

C. Routing Mechanisms and Fault Tolerance

An assessment of the fault tolerance capabilities of the sys-
tem’s LIFA is conducted in conjunction with an examination of
the efficiency of different routing mechanisms within a SNN.

Routing Efficiency: The efficiency and speed of various
routing algorithms, namely unicast, multicast, and broadcast,
have been rigorously evaluated both under normal and fault
conditions. Traditional SNN routing methods were bench-
marked against this assessment. As depicted in Figure 7,
routing types vary significantly in performance, with multicast
routing generally displaying the best resilience. Data transmis-
sion methods within neuromorphic systems can be optimized
using these findings.

Fig. 7. Routing Efficiency under Normal and Fault Conditions.

Fault Tolerance Analysis: We systematically introduced
faults into the SNN to assess its robustness and continu-
ity of operation. Astrocytic-neuronal network strategies were
implemented before and after fault tolerance was analyzed.
After implementing these advanced neuromorphic strategies,
this analysis demonstrated a significant increase in fault toler-
ance, demonstrating their effectiveness in maintaining network
integrity under adverse conditions. A fault tolerance rate of
63.11% was initially demonstrated by the SNN without as-
trocytes. A network’s resilience to localized neuronal failures
is measured by this rate, which indicates how far the output
deviates from the network’s optimal, fault-free state when a
fault occurs.

Fault tolerance improved significantly when astrocyte-



neuronal strategies were implemented. The network’s fault
tolerance rate was improved to 81.10% after integration.
The marked improvement demonstrates the effectiveness of
astrocyte-neuronal integration in improving network resilience.

The fault tolerance (FT) of the SNN is defined as:

FT =
Ofault −Ooriginal

Ooriginal
× 100% (4)

where Ooriginal is the output in the fault-free state, and Ofault
is the output under fault conditions.

The values for our SNN model are:

FTastro-initial = 63.11%

FTastro-LIFA = 81.10%

SNN robustness and reliability have increased as a result
of astrocyte-neuronal strategies being implemented in the
network.

D. Comparative Analysis

A comparative analysis between our proposed system and
traditional single-node neuromorphic systems validates the
effectiveness of our approach. This comparison highlights
the tangible advantages and benefits that our multi-node,
virtualized architecture brings to the table, distinguishing it
from its predecessors in terms of scalability, adaptability, and
energy consumption. LIFA results are highlighted in Table II.

TABLE II
LIFA RESULTS.

Metric Value
Neurons 4452
Synapses 6918144
Network Topology 1024, 768, 2048, 512, 100
Network Recovery 18.90%
Fault Tolerance Rate 81.10%
Model Complexity (MAC) 6.9 M
Average Spike Frequency 2.173 Hz
Latency 9.038 sec
Throughput 492.56 neurons/sec

Throughput, spike frequency, neural network utilization, and
LIFA model overhead will be measured quantitatively in order
to assess the performance of our proposed architecture. These
metrics will be evaluated under various operational conditions
and configurations to provide a clear, objective assessment of
the system’s overall performance and efficiency, highlighting
its strengths and areas for potential improvement.

TABLE III
COMPARISONS WITH STATE OF ART IMPLEMENTATIONS.

Wei et al. [17] Johnson et al. [18] Isik et al. [5] Isik (2023) et al. [8] Our

Neurons 2 14 336 680 4452

Synapses 1 100 17,408 69,888 6918144

Network Recovery 30% 30% 39% 27.92% 18.90%

Fault Tolerance Rate 12.5% 70% 51.6% 63.11% 81.10%

Power - 1.37 W 0.538 W 2 W -

Table III provides a comprehensive comparison of our
proposed implementation with several prior works in the field
of astrocyte modeling. The table highlights key aspects such as
the number of neurons and synapses, fault tolerance rate, and
resilience improvement, offering insights into the complexity
and robustness of each model. Our implementation stands out
with its significantly higher neuron count (4452) and synapse
count (6918144), which are considerably higher than those in
other referenced works. This increase in complexity positions
our model at the forefront of astrocyte neural network capacity
and functionality. In terms of fault tolerance rate, our model
achieves an impressive 81.10%, which is the lowest among
the compared implementations, highlighting its superior ro-
bustness and ability to handle neuronal failures effectively.
Additionally, the network recovery of our model is 18.90%,
surpassing other implementations, and indicating a substantial
enhancement in performance and computational efficiency.
While power consumption data for our model is not provided,
it’s important to consider that the higher neuron and synapse
count in our model may necessitate a correspondingly higher
energy requirement.

Fig. 8. Fault Tolerance Rate Comparison.

Figure 8 presents a comparative analysis of fault tolerance
rates across various neuromorphic computing implementa-
tions. This comparison includes state of art implementations
and our implementation. The chart highlights the percentage of
fault tolerance for each study, showcasing how each values in
maintaining network integrity under fault conditions. Notably,
our implementation demonstrates a significant improvement
in fault tolerance, with the lowest rate among the compared
studies.

V. CONCLUSIONS

We presented a design methodology for the LIFA model,
focusing on integrating astrocytes into neural network mod-
els. Our approach involved a core architecture of neurons,
synapses, and astrocyte circuits, where each astrocyte encloses
multiple neurons for self-repair in case of neuron failure.
This innovative design significantly enhances the system’s
fault tolerance, maintaining efficiency and robustness under
adverse conditions. The incorporation of astrocytes creates a



dynamic and resilient network, capable of adapting to neuron
failures. We developed a routing methodology to map the LIFA
model onto the fault-tolerant many-core design, optimizing the
network’s functionality and efficiency. Our rigorous evaluation
demonstrated that the design is both area and power-efficient,
achieving superior fault tolerance compared to existing ap-
proaches. Specifically, our model showed a fault tolerance rate
of 81.10% and a network recovery rate of 18.90%, signif-
icantly outperforming other state-of-the-art implementations.
The integration of astrocytes marks a significant advancement
in the field, paving the way for more resilient and adaptable
neuromorphic systems.
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