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ABSTRACT

This paper introduces a novel approach in neuromorphic
computing, integrating heterogeneous hardware nodes into a
unified, massively parallel architecture. Our system transcends
traditional single-node constraints, harnessing the neural struc-
ture and functionality of the human brain to efficiently process
complex tasks. We present an architecture that dynamically vir-
tualizes neuromorphic resources, enabling adaptable allocation
and reconfiguration for various applications. Our evaluation,
using diverse applications and performance metrics, provides
significant insights into the system’s adaptability and efficiency.
We observed scalable throughput increases across configurations
of 1, 2, and 4 Virtual Machines (VMs), reaching up to 5.1
Gibibits per second (Gib/s) for different data transfer sizes. This
scalability highlights the system’s proficiency in managing data-
intensive tasks. Energy consumption analysis in our virtualized
accelerator environment showed a near-linear growth with the
addition of more NeuroVM accelerators, ranging from 25 to 45
millijoules (mJ) as the number of accelerators increased from
1 to 20. Additionally, our investigation into reconfiguration
overheads revealed that partial reconfigurations significantly
reduce time compared to full reconfigurations, particularly as
the number of VMs increases, with time reductions evident in
the logarithmic scale of time measurements.

I. INTRODUCTION

The landscape of computational architectures has signifi-
cantly evolved, transitioning from traditional CPU-based sys-
tems to specialized, parallel architectures like GPUs and FPGAs.
These advancements have improved processing power, energy
efficiency, and adaptability to diverse workloads. However,
as computational tasks become more complex, especially in
artificial intelligence and machine learning, there is a need for
innovative computing paradigms [1]–[3].

Neuromorphic computing, inspired by the neural structures
and functions of the human brain, offers a transformative
solution. By emulating neural networks and synaptic connec-
tions, neuromorphic systems can efficiently process complex
cognitive tasks. These systems leverage parallel processing
and adaptive learning principles, making them suitable for
various applications, including artificial intelligence, robotics,
and scientific computations.

The potential of neuromorphic computing is maximized
through integrating heterogeneous neuromorphic hardware
nodes into a unified, massively parallel system. This integration
harnesses the strengths of diverse architectures to handle
computations beyond single-node capabilities [4]–[7]. The
challenge lies in developing scalable and portable software
technologies for large-scale neuromorphic systems and explor-
ing virtualization in these environments.

FPGAs have gained rapid acceptance due to their versatility
across applications. The time-consuming nature of feature ex-
traction algorithms poses a drawback for real-time applications.
Using dedicated hardware like FPGAs, which perform complex
operations in parallel, addresses this issue. FPGA virtualization
abstracts FPGA hardware, decoupling the interface and hiding
the framework’s complexity [8]–[11]. Definitions and method-
ologies for FPGA virtualization have evolved with changing
application requirements. This paper addresses these challenges
by proposing a novel neuromorphic architecture leveraging
dynamic virtualization to efficiently handle heterogeneous
workloads. Through exploring the integration, virtualization,
and optimization of neuromorphic hardware nodes, we aim
to realize the full potential of neuromorphic computing for a
wide range of scientific and computational applications. Our
contributions include:

• Proposing a novel neuromorphic architecture that inte-
grates multiple hardware nodes through dynamic virtual-
ization, enhancing the system’s ability to handle complex
computations and adapt to varying workloads.

• Conducting an extensive analysis of key performance
indicators such as throughput, energy efficiency, and
resource utilization, and performing a comparative study
with traditional single-node neuromorphic systems to
highlight the advantages of our multi-node, virtualized
architecture.

• Outlining future research directions, focusing on inte-
grating specialized accelerators with the neuromorphic
fabric and exploring security implications in virtualized
neuromorphic environments.

This paper investigates the union of diverse neuromorphic
hardware nodes within a parallel framework. Section 2 reviews
the history and concept of virtualization in neuromorphic
computing. Section 3 explores the architectural design and
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the dynamic virtualization essential for resource management.
Section 4 assesses the system’s performance using different VM
configurations. Section 5 concludes by summarizing the study’s
primary insights. Finally, Section 6 envisions future work on
integrating specialized accelerators and securing virtualized
neuromorphic environments.

II. BACKGROUND

Neuromorphic computing, inspired by the human brain,
represents a major advancement in artificial cognition. These
systems mimic neural networks and synaptic connections,
crucial for AI, robotics, and complex data analysis. However,
single-node hardware configurations limit their potential. Transi-
tioning to integrated, parallel systems is natural but challenging,
especially regarding software compatibility and adaptability
with expansive neuromorphic setups.

Our goal is to create a unified system architecture to
efficiently manage tasks across neuromorphic hardware nodes,
each contributing unique capabilities. The system is designed to
be flexible and self-optimizing in response to varying workloads
[12], [13]. We are exploring neuromorphic virtualization
for dynamic reconfiguration and resource sharing, aiming
to enhance the adaptability, efficiency, and performance of
neuromorphic systems [14], [15].

Virtualization has become fundamental in computing, op-
timally allocating capabilities between hardware and OS.
Conceived by IBM in the 1960s to partition mainframes into
multiple virtual instances, virtualization has evolved to improve
efficiency and reduce costs. The hypervisor, or virtual machine
monitor (VMM), abstracts physical resources from the OS,
enabling multiple OSs to run simultaneously on a single
hardware platform [16]–[18]. This enhances resource utilization
and strengthens security, reliability, and resilience. With cloud
computing’s rise, virtualization bridges hardware and software
applications, creating a cohesive operational ecosystem. Various
virtualization techniques, including full, OS-layer, hardware,
para, application, and resource virtualization, offer distinct
benefits in resource sharing, isolation, and efficiency.

FPGA virtualization is not new; various microkernel-based
approaches have been explored, enabling mapping and exchange
of hardware accelerators to VMs. However, these systems
focused mainly on resource utilization, neglecting energy
efficiency and diverse guest OS requirements.

To fill this void, the FPGA virtualization layer L4ReC has
been developed. It facilitates the shared use of reconfigurable
resources by multiple guest OS while considering embedded
reconfigurable systems’ constraints. L4ReC addresses critical
research questions related to limitations of the embedded
environment, support for various guest OS requirements, and
ensuring system isolation. Isolation includes performance
isolation to reduce mutual interference and data isolation to
guard against malicious applications. L4ReC components allow
customization to suit specific embedded system needs. The
L4ReC strategy includes integrating FPGA virtualization into
the micro-hypervisor L4Re, an OS framework designed for
systems with strict real-time, security, safety, and virtualization

requirements. L4ReC introduces virtual FPGAs (vFPGAs) as
an abstraction from the physical FPGA, allowing VMs to
use hardware accelerators regardless of location. A critical
application for virtualized embedded reconfigurable systems
is simultaneous execution of RTOS and GPOS, resulting in
hardware threads with different real-time priorities. L4ReC
provides a dynamic mapping and scheduling strategy for these
threads, considering real-time needs and ensuring that threads
with less stringent deadlines do not disrupt those with tighter
ones. Preliminary results from implementing L4ReC on a
Xilinx Ultrascale MPSoC show promise for increased FPGA
resource utilization and energy efficiency. The synchronization
strategy for hardware threads aims to extend FPGA sleep
phases, improving energy efficiency—a vital consideration
for battery-powered devices. The L4ReC virtualization layer
marks a significant advancement in optimizing the use of
reconfigurable resources in embedded systems. Initial findings
indicate substantial improvements in resource management and
energy savings, depending on application characteristics [19].

Authors [20] explore Linux’s foundational concepts and tech-
nologies underpinning the Virtio-FPGA solution. They provide
background on the Virtio standard, the Linux FPGA Manager
component of the Linux kernel, and the VFIO pass-through for
ARM in QEMU and Device Tree Overlays technologies. FPGA
overlay architectures on computational storage devices enable
programmable near-storage processing. These architectures
consist of reconfigurable operators, crossbar stream switches,
and on-board DRAM, facilitating data movements between
operators and the FPGA’s DRAM. The storage interfaces in
these architectures allow direct access to storage units, adopting
the NVMe standard for fast and parallel access.

Software support for these systems includes an abstraction
layer simplifying near-storage processing, exposing FPGA
overlay architecture operators as executable files within an
OS. HLS tools allow users to customize operators using FPGA
reconfigurability. An example HLS code snippet demonstrates
how users can define a stream data structure and input/output
ports for an operator, streamlining near-storage data processing.
In I/O virtualization, software-based virtualization presents
virtual device instances for device sharing across VMs. Full
virtualization uses a trap-and-emulate approach, while par-
avirtualization creates VM-friendly virtual device interfaces.
Hardware-assisted virtualization mechanisms, such as PCIe
SR-IOV, allow direct access to PCIe devices, enabling resource
sharing at the hardware level without software arbitration.

III. METHODOLOGY

A. Neuromorphic Hardware Virtualization

Neuromorphic hardware, evolving from basic silicon neurons
to advanced neuromorphic chips, offers significant advantages
in dynamic resource management and virtualization. The
integration of FPGAs with neuromorphic systems brings new
capabilities in virtualization and resource utilization. This
section explores methodologies and implications of virtualizing
neuromorphic hardware, focusing on design, application, and
system architecture. Initial efforts aimed to replicate brain
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TABLE I: Comparison of Neuromorphic Virtualization vs. Digital Virtualization

Functional Hierarchy Key Technology Neuromorphic Virtualization Solution Digital Virtualization Solution
Resource Pool Management Integrated neuromorphic resources, cen-

tralized management, dynamic alloca-
tion, monitoring, maintenance, and uni-
fied scheduling.

Use neuromorphic-specific management
tools for resource pools.

Use traditional virtualization manage-
ment tools like VMware, and Hyper-V.

Virtualization Layer Neuromorphic virtualization, VM man-
agement, and container management.

Employ neuromorphic-specific virtual-
ization technologies for resource abstrac-
tion.

Utilize hardware-assisted or software-
assisted virtualization technologies.

Resource Isolation Layer Hardware isolation technology, software
isolation technology, or a combination
of the two.

Implement neuromorphic-specific isola-
tion technologies to prevent resource
contention.

Use established isolation technologies
like Intel VT-x, and AMD-V.

Scheduling Layer Neuromorphic resource scheduling algo-
rithm, load balancing, resource predic-
tion.

Developing and use neuromorphic-
aware scheduling algorithms for efficient
resource allocation.

Apply conventional scheduling and load
balancing algorithms.

Application Layer Neuromorphic task scheduling algo-
rithm, dynamic migration technology, ap-
plication deployment, and management.

Utilize algorithms optimized for neuro-
morphic computing tasks and dynamic
resource management.

Leverage general-purpose computing
algorithms and migration technologies
like live VM migration.

neural structures in silicon, progressing to sophisticated neuro-
morphic chips for various fields. FPGAs are ideal for neuro-
morphic systems due to their flexibility and reconfigurability,
aligning with efficient computing models. Virtualization enables
dynamic resource management, meeting variable computational
demands by reconfiguring resources. Studies have explored
design methodologies for dynamic management and reconfigu-
ration of neuromorphic systems [12], [21]–[23].

Neuromorphic hardware, designed to emulate biological
neurons, is pivotal in computing. As networks become intricate,
computational demands, particularly for Spiking Neural Net-
work (SNN) inference, grow, intensifying trade-offs between
hardware resources, power consumption, and performance. Neu-
romorphic Hardware Virtualization addresses these challenges
by introducing dynamic resource allocation and reconfiguration.
Neurons communicate using spikes, an efficient mechanism
reducing overall logic occupation. This is crucial for NeuroVM,
where dynamic resource allocation and virtualization demand
efficient communication protocols. This framework integrates
hardware design, security algorithms, and neuromorphic com-
puting principles within a virtualized environment, creating
robust neuromorphic systems capable of adapting to various
tasks while ensuring data integrity.

The virtualization of neuromorphic hardware is central to
our research, promising new paradigms of efficiency and flexi-
bility. Through careful task profiling, memory, and interconnect
optimization, and integrating a sophisticated kernel controller
driver, we aim to advance neuromorphic computing. Figure 1
illustrates the intricate architecture of a neuromorphic com-
puting system, showing the arrangement and interconnection
of multiple ’Neurocores.’ These neurocores are fundamental
processing units designed to emulate brain neural circuits,
providing unique cognitive and processing capabilities. The
hardware is modular, allowing configurations tailored to specific
tasks. ’Local Interconnects’ facilitate communication between
neurocores, essential for parallel processing and neural network
simulations. This parallelism is key to high-speed, energy-
efficient computation in neuromorphic hardware.

B. FPGA Virtualization

Neuromorphic computing necessitates hardware platforms
capable of emulating neural architectures. FPGAs are well-
suited for this due to their reconfigurable nature and parallel
processing capabilities. FPGA virtualization abstracts physical
FPGA resources to enable multiple applications on a single
chip. This section details methodologies and strategies in
FPGA virtualization, emphasizing Dynamic Function Exchange
(DFX) for adaptability and efficiency, conceptually illustrated
in Figure 2.

1) Dynamic Function Exchange: DFX is an FPGA feature
facilitating runtime reconfiguration of hardware functions
without disrupting system operation. DFX allows selective
activation and deactivation of hardware modules, enabling the
FPGA to adapt to new tasks on-the-fly. This is crucial in
neuromorphic computing, where dynamic reconfiguration in
response to neural network demands is essential.

Our approach leverages DFX to implement a virtualized
neuromorphic hardware environment, enabling real-time in-
stantiation and reconfiguration of neural network models. This
dynamic reconfiguration is managed by a dedicated controller
orchestrating the loading and unloading of DFX modules.

C. Neuromorphic Hardware Virtualization

Our research explores innovative strategies for virtualizing
neuromorphic hardware. This involves dynamic partitioning of
hardware resources for concurrent execution of diverse tasks
while maintaining strict data isolation and security protocols,
ensuring task integrity. Virtualization enables dynamic reconfig-
uration and resource sharing, enhancing neuromorphic comput-
ing systems’ adaptability and performance. In I/O virtualization,
software-based mechanisms offer virtual device instances for
device sharing across multiple VMs. Full virtualization and
paravirtualization are two such mechanisms, with the latter
minimizing VM exits and memory-mapped I/O operations.
Hardware-assisted virtualization mechanisms, such as PCIe
SR-IOV, allow direct PCIe device access, enabling resource
sharing at the hardware level while maintaining isolation.
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Fig. 1: Schematic of Neurocore Interconnectivity in Neuromorphic Hardware

Fig. 2: FPGA Virtualization Concept

1) Task Profiling and Allocation: Our methodology includes
creating an advanced task profiling system, assessing tasks
based on processing demands and parallel execution suitability.
This guides task allocation to appropriate neuromorphic nodes,
optimizing resource utilization and computational throughput.

2) Memory and Interconnect Optimization: We design
specialized memory hierarchies and interconnect architectures
tailored to neuromorphic hardware nuances. The goal is
to establish a high-bandwidth, low-latency communication
framework for efficient data exchange across the neuromorphic
network.

3) Kernel Controller Driver Integration and Mapping: The
kernel controller driver manages data influx and control over
neuromorphic processor cores. Inspired by existing paradigms
like the Coyote driver, our design focuses on virtualizing

neuromorphic processors, replacing traditional VFPGAs with
bespoke designs. The driver interfaces with user space through
C++ constructs, ensuring seamless hardware interaction.

4) FPGA Virtualization and C++ Integration: FPGA virtu-
alization segments and manages FPGA capabilities to mimic
multiple discrete processing units. This is pivotal for resource
management, akin to virtual machines in conventional comput-
ing. Our project leverages the Vitis software platform for FPGA
development, utilizing C++ and embedded systems expertise
to realize PS-PL relationships within the FPGA architecture.
We focus on high-level synthesis in Vitis for neuromorphic
virtualization needs.

A summary of the resource utilization report for the Zynq
UltraScale+ XCZU7EV MPSoC is presented in Table II.
The table includes resources such as Logic Cells, Memory,
DSP Slices, and I/O Pins. The "Utilization" column indicates
resources used by the design, while the "Available" column
reflects total FPGA resources. Utilization percentages are
calculated for reference.

TABLE II: Resource utilization summary

Zynq UltraScale+ XCZU7EV
Resource Utilization Available % Utilization

LUT 151,200 504,000 30
Memory 11.4MB 38MB 30

IO 139 464 29.19
DSP 518 1,728 29.94

Figure 3 presents a detailed view of the task management
and processing architecture within a neuromorphic computing
system. At the forefront is the ’Driver,’ managing system inputs
and outputs, interfacing between the external environment
and internal processing units. Beneath the driver lies the
’Service Scheduler,’ distributing tasks across processing units.
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Fig. 3: Task Management and Processing Architecture in Neuromorphic Systems

This scheduler efficiently allocates tasks to ’Neuroproces-
sors,’ optimized for neural network simulations and brain-
inspired computations. The ’Proc’ blocks represent individual
processing units working with neuroprocessors to execute
tasks. The ’FPGA Manager’ oversees ’Partial Reconfiguration’
of FPGAs, adapting hardware configurations on-the-fly for
different tasks. The ’Arm Proc’ blocks may represent general-
purpose processors providing additional support. The figure
highlights a buffering mechanism to manage data during peak
processing times, ensuring no loss of information. ’Tasks’ are
depicted as blocks assigned to each processor, showcasing the
system’s ability to handle multiple concurrent tasks, processed
by dedicated hardware units. This architecture allows high-
throughput, efficient computation, leveraging neuroprocessors
and FPGAs’ unique properties for flexibility and efficiency.

IV. EVALUATION

To rigorously assess the efficacy and practicality of our
proposed neuromorphic architecture, we structured our eval-
uation around the following pivotal components. Our system
underwent an exhaustive battery of tests, utilizing a compre-
hensive suite of applications spanning multiple domains such
as machine learning, data analytics, and signal processing. This
diverse workload spectrum enabled us to meticulously analyze
the adaptability and performance of our architecture across a

broad range of scenarios, ensuring its versatility in handling
varied computational tasks.

The success of our proposed architecture was quantitatively
measured against a set of key performance indicators, including
throughput, energy efficiency, resource utilization, and the
overhead associated with reconfiguration. These metrics were
evaluated under various operational conditions and configura-
tions to provide a clear, objective assessment of the system’s
overall performance and efficiency, highlighting its strengths
and areas for potential improvement. This comparison, focusing
on specific features such as scalability, adaptability, and energy
consumption, served to underscore the tangible benefits and
advantages that our multi-node, virtualized architecture brings
to the table, setting it apart from its predecessors.

Figure 4 (a) illustrates the relationship between transfer
size and throughput in Gibibits per second (Gib/s) for 1, 2,
and 4 Virtual Machines (VMs). The data points, represented
in distinct colors and markers for each VM configuration,
reveal how throughput scales with increasing transfer sizes.
The black dashed line (1 VM), red solid line (2 VMs), and
blue dotted line (4 VMs) collectively provide insights into
the efficiency and scalability of the VMs under varying data
transfer loads. This analysis is crucial for understanding the
performance dynamics of neuromorphic computing systems in
data-intensive scenarios. Figure 4 (b) depicts the percentage
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(a) Throughput

(b) Hardware Resource Utilization

Fig. 4: Comparative analysis of NeuroVM performance.

of resource utilization against different transfer sizes for 1,
2, and 4 VMs. Each line, differentiated by color and marker
style, indicates the utilization efficiency of the VMs. The plot
highlights how resource utilization varies with the size of
data transfers, providing valuable insights into the operational
efficiency of neuromorphic VMs. The increasing trend in
utilization with larger transfer sizes, especially noticeable in the
configurations with more VMs, underscores the impact of VM
density on resource management in neuromorphic computing
environments.

Fig. 5: NeuroVM Energy Consumption.

Figure 5 illustrates the energy consumption trends in a
virtualized accelerator environment. The data reveals a pattern
of increasing energy demand correlating with the rising number
of NeuroVM accelerators. This trend is crucial for understand-
ing the energy efficiency of the system, particularly in the
context of neuromorphic computing where energy management
is a key performance metric. The near-linear increase in
energy consumption with additional accelerators underscores
the importance of optimizing resource allocation to balance
computational power and energy efficiency.

Fig. 6: NeuroVM implementation overhead with full and partial
reconfigurations.

Figure 6 presents a comparative analysis of the implementa-
tion overhead for full and partial reconfigurations in a NeuroVM
environment. The red line with circle markers depicts the
time taken for full reconfigurations, and the blue line with
square markers represents partial reconfigurations. Notably,
the partial reconfiguration demonstrates a significantly reduced
time overhead compared to full reconfiguration, especially as
the number of VMs increases. This observation is pivotal for
optimizing the performance of neuromorphic virtual machines,
where reconfiguration times play a critical role in overall
system efficiency and responsiveness. The data underscores
the potential benefits of partial reconfiguration strategies in
dynamic computing environments where rapid adaptation is
essential.

Through this comprehensive evaluation, we aim to demon-
strate the robustness, versatility, and efficiency of our neuro-
morphic computing architecture. Our architecture is designed
to tackle a diverse array of applications and harness the
benefits of virtualization, showcasing the potential of virtualized
neuromorphic hardware in shared computational environments.
This evaluation will not only validate the performance of our
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system but also highlight its potential in fostering collaborative
and adaptive computing solutions.

V. CONCLUSION

This study has presented a comprehensive evaluation of
a novel neuromorphic computing architecture, demonstrating
its potential to revolutionize the field of high-performance
computing. Our proposed system, characterized by its multi-
node, virtualized neuromorphic architecture, has been rigorously
tested across various performance metrics, including throughput,
energy efficiency, resource utilization, and reconfiguration
overhead. The results, as illustrated in the accompanying figures,
underscore the significant advancements our architecture offers
over traditional single-node neuromorphic systems. The inte-
gration of virtualization in neuromorphic hardware opens new
avenues for scientific exploration and lays the groundwork for
further research and development in this field. As we continue
to explore the intricacies of integrating various neuromorphic
hardware configurations and optimizing software technologies,
we are poised to unlock new possibilities for scientific discovery
and technological advancements, further cementing the role of
neuromorphic computing as a pivotal tool in computational
science.

VI. FUTURE WORKS

Our future endeavors will focus on several key areas to
further enhance the capabilities and applications of our proposed
architecture.

A. Integration of Specialized Accelerators

A primary focus will be on the integration of specialized
accelerators into the neuromorphic fabric. This integration
aims to significantly enhance computational efficiency and
performance, enabling the system to adeptly handle a broader
spectrum of complex and computationally intensive tasks.
We anticipate that this amalgamation will not only improve
processing speeds but also expand the range of feasible
applications, from advanced machine learning algorithms to
real-time data analytics.

B. Security in Virtualized Neuromorphic Environments

With the shift towards a more virtualized neuromorphic
environment, a thorough investigation into the security aspects
becomes crucial. We plan to conduct an in-depth analysis
of potential security threats and vulnerabilities inherent in
shared computing ecosystems. This will involve developing
and implementing robust security protocols and mechanisms
to safeguard the system against unauthorized access and other
forms of cyber threats, ensuring a secure and trustworthy
computing environment.

C. Optimization for Diverse Applications

Continual refinement and optimization of our neuromorphic
architecture will be a persistent effort. This optimization will
be tailored to meet the specific demands and requirements
of various applications, ranging from scientific simulations
to industrial processing. Our goal is to create a versatile

and adaptive system that can efficiently cater to the unique
challenges posed by different computational tasks.

D. Advancing Neuromorphic Computing as a Mainstream
Technology

Our vision is to establish neuromorphic computing as a
cornerstone technology across various scientific and industrial
sectors. We aim to demonstrate its potential in revolutionizing
approaches to complex computations and simulations, thereby
contributing significantly to advancements in these fields.
Our efforts will be directed towards not only enhancing the
performance of neuromorphic systems but also in making
them more accessible and user-friendly, paving the way for
widespread adoption and utilization.
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