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Abstract—Virtual Client (VC) is an open-source platform 

intended to evaluate system performance by running industry 

available benchmarks.  VC helps to standardize the workflow 

for validation and qualification, compare relevant system 

performance generation over generation, and correlate 

workload performance and system telemetry for results 

review. 
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I. INTRODUCTION 

With Azure server hardware systems, there is a pervasive 
need to run many tests of different kinds on every new 
platform produced. The first focus is to ensure there are no 
fundamental issues with the platform and that it can function 
to the design specifications. The next focus is to measure the 
performance of the system using a repeatable methodology 
that allows for verification that the system is producing 
generation-over-generation improvements as expected. In 
the end, there can be hundreds of tests to run on each and 
every system, and the work involved is a daunting task to 
expect someone (or some team) to produce manually. In 
fact, it would require an army of people to conduct server 
hardware qualifications at the magnitude inherent in 
commercial cloud server design and development. 
Automation is essential to making scalable processes 
possible. 

Virtual Client is an open-source platform, designed by 
Microsoft, that enables users/teams to run a large set of tests 
quickly and efficiently on any hardware server system while 
capturing telemetry structured for analysis and decision-
making. Virtual Client, or “VC” for short, has a set of 
‘onboarded’ or supported public and industry standard 
workloads that can be executed today. As with many things 
in today’s world, VC is a living and growing platform and is 
constantly improving and adding support for more 
workloads and more hardware systems. This paper talks 
about how Virtual Client was used as part of the validation 
strategy to evaluate and validate hardware designed for 
Azure datacenter.  

This document will not go into finer details of the 
Virtual Client platform as it relates to design, 
implementation, execution, and debugging of hardware 
platforms. Please see the References section for more 
information regarding Virtual Client. 

A. Problem Statement 

As newer AI models and benchmarks are released, there 
is a growing need to standardize qualification efforts and 
automate new workloads into existing test automation 
harnesses. Combining this with the ever-growing number of 
hardware platforms developed for AI space, the task of 
qualifying the systems for production use becomes an 

incredible task. The following sections will describe the 
learnings from the process of onboarding new workloads to 
the Virtual Client platform and using them to support AI 
server hardware system validations that resulted in 
standardizations. The remainder of this document discusses 
the work and process that facilitated the opportunities.  
 

II. USE OF VIRTUAL CLIENT FOR HARDWARE 

EVALUATION 

Virtual Client (VC) is an open-source platform that can 
easily adapt to a variety of hardware, software, and 
operating system configurations with little to no change. 
With support for Windows and Linux environments, VC 
simplifies workload execution. Simplifications include 
aspects such as the installation of dependencies, the 
installation of workload tooling, setting operating system 
settings and scaling resource usage for workloads to the 
system on which it is running. This simplifies the need to 
dig into the many details required by the workload itself 
(e.g. understanding how to build and compile 
tools/applications in Linux) just to get it running to begin 
with. Using a single command line to execute the workload, 
VC will install required dependencies, install the workload 
toolset, and then execute the workload using repeatable 
steps. As the workload is running, VC will collect results 
along with information about the system itself and will 
upload structured telemetry for this information into a 
centralized cloud storage location. This enables the 
user/team to take advantage of “big data” processing 
resources available publicly in the Azure cloud. This in turn 
makes it very easy to analyze data over a large sample size 
(e.g. many distinct server hardware systems) removing the 
need to task a person with logging into each system to 
capture the log files and results. Additionally, the ability to 
execute predictable steps is useful for replicating repeatable 
results across different machines or for reproducing specific 
behaviors when debugging particular issues. 

Virtual Client is executed using a single command line 
per workload. On one hand, VC can be executed by a user 
on a single server running workloads or tests or to help 
repro/debug a specific issue. On the other hand, VC allows 
for easy integration into higher-level orchestration or 
automation systems. Integration into automation improves 
the breadth and depth of testing that can be completed 
within a given timeframe on a set of server hardware 
systems by minimizing setup and downtime between tests as 
well as human resources required to manage the operations. 
The VC command line offers parameters that define 
workload(s) to execute. However, the user can additionally 
specify a variety of ‘monitors’ to run in the background that 
collect telemetry from the system around the workload it is 



executing. This enriches the understanding of the overall 
system behavior while being exercised by the workload. For 
example, this telemetry data can be used to identify 
performance or reliability trends and/or undesirable 
behaviors on the server hardware exposed by the 
operations/influence of the workload enabling users to 
identify appropriate actions. 

The use of Virtual Client is not limited to a select few 
types of environments. It is useful across smaller application 
domains such as benchtop testing and in development 
environments where there might only be a few server nodes 
or a few racks worth of server nodes such as with early 
design-phase SKU qualifications. It operates just as well in 
larger-scale application domains where there may be many 
clusters of server hardware to validate. Suffice it to say, the 
data and telemetry gathered by VC across the range of 
application domains and scale provides ample opportunities 
to identify performance trends and flaws with the accuracy 
required to meet cloud business prediction models.  

Another point to consider is that Virtual Client 
minimizes the challenges and distinctions of evaluating 
systems in bare metal versus virtualized environments. VC 
is designed to operate seamlessly in both environments and 
is additionally designed to scale appropriately to the 
resources (e.g. CPU, memory, disk size) available on those 
systems. This is very useful because it allows the user to 
perform initial hardware evaluations in the bare metal 
environment simplifying the process of testing a server 
without intermingling the hypervisor layer and to compare 
those results with the runs from the virtualized environment 
illuminating the influence of the hypervisor. In most cases, 
bare metal testing provides the truest view of the server 
hardware and its relative performance and is expected to 
achieve the highest performance levels. Testing in 
virtualized environments, however, produces outcomes that 
are closer to the customer experience (i.e. the commercial 
cloud production use case). The performance is not expected 
to be as high as with bare metal execution due to a more 
complex software stack but provides a great view of what 
can be legitimately offered to customers. 

A. Workloads in Virtual Client 

Virtual Client provides a wide range of workloads for 
hardware validation and system performance measurement. 
There are many Windows/Linux based standardized 
workloads that can run on both x86 and ARM based 
architectures which enable comprehensive testing and 
performance comparison across CPU, Memory, Network, 
Disks etc. There are several new Machine Learning/AI 
workloads such as MLPerf and SuperBechmark with 
detailed performance metrics that allow engineers to 
evaluate training/inference performance between systems. 
Table 1 shows some examples of workloads that are 
currently available on VC. Using single line commands to 
launch each of these workloads makes it easy to automate 
execution using scripts or other test orchestration software. 
Coverage across many hardware areas and use cases can be 
achieved by selecting a few of the workloads from VC. 
More workloads can be added to VC to target specific areas 
based on platform requirements. The ability to then use 
these newly added workloads across other projects ensures 
maximum re-usability. 

 
Table 1: Examples of Workloads Offered by Virtual Client Out of 

the Box 

Hardware Coverage Workloads 

CPU Performance CoreMark, Prime95, 
HPLinpack 

Memory LMbench, Memcached, 
Redis 

Network NTttcp, CPS, Latte 

Disk I/O DiskSpd, Flexible I/O 
Tester(FIO) 

Fault Tolerance Stress-Ng, StressAppTest 

Compression 7Zip, Gzip 

Database Performance PostGreSQL 

Java Performance SPECjvm 

High Performance 
Compute 

HPCG, NAS Parallel 

Power Usage SPECpower 

Machine Learning / AI MLPerf, NVLPerf, 
SuperBenchmark  

Note: Adopted from Microsoft SCHIE CRC OCP 2023 
presentation [1] 

B. Measuring Performance 

Virtual Client offers standardized methods to collect 
system information, telemetry and performance data 
regardless of the workload being executed. These data 
points give a detailed snapshot of the state of the system 
while a workload is being executed for detailed analysis 
later. For example, “performance counters are captured on 
Windows systems every 1 second and are 
aggregated/averaged out on 10-minute intervals by default. 
This allows the Virtual Client to have a large number of 
samples over the interval of time when calculating averages. 
This in turn increases the accuracy and validity of the 
performance measurements” [5]. In addition to performance 
measures, it is possible to capture system health information 
for CPU, Memory, PCI devices and GPUs which help debug 
issues and identify unintended bottlenecks. VC is also able 
to utilize Nvidia SMI utility to provide GPU health 
information at all times including aggregates for ECC 
errors, instantaneous GPU power draw and PCIe topology 
information.[5] 

There are pre-defined Monitor profiles that can be used 
that allow the user to pre-select a group of metrics they want 
to collect.  

 

“--profile=MONITORS-GPU-NVIDIA.json” 

 
For example, using the above “MONITORS-GPU-

NVIDIA” profile will automatically collect all Nvidia 
related performance counters using nvidia-smi utility 
without the user having to explicitly install any packages. 

In addition to all the platform level information, 
additional data can also be collected by the various 
benchmarks in the form of workload outputs. For example, 
while running SuperBenchmark various bandwidth 
measurements can be captured. Table 2 describes some 



bandwidth data for memory copy between CPU and GPU 
that can be captured and aggregated. Many other relevant 
data can be captured based on the workload and the 
scenarios being tested. 

 
Table 2: Example of Memory Copy Bandwidth Data Available 

Using SuperBenchmark 

Name Unit Description 

cpu_to_gpu[0-9]+_by_gpu[0-
9]+_using_(sm|dma)_under_n
uma[0-9]+_bw 

bandwidt
h (GB/s) 

The bandwidth 
reading from all 
NUMA nodes' 
host memory 
using DMA engine 
or GPU SM by all 
GPUs. 

gpu[0-9]+_to_cpu_by_gpu[0-
9]+_using_(sm|dma)_under_n
uma[0-9]+_bw 

bandwidt
h (GB/s) 

The bandwidth 
writing to all 
NUMA nodes' 
host memory 
using DMA engine 
or GPU SM by all 
GPUs. 

gpu[0-9]+_to_gpu[0-
9]+_by_gpu[0-
9]+_using_(sm|dma)_under_n
uma[0-9]+_bw 

bandwidt
h (GB/s) 

The bandwidth 
reading from or 
writing to all 
GPUs using DMA 
engine or GPU 
SM by all GPUs 
with peer 
communication 
enabled. 

 
Note: From Virtual Client Superbenchmark documentation 
[6] 

C. Reviewing Results with Azure Data Explorer 

All the system information, telemetry, results, and even 
the individual test steps executed by Virtual Client are 
captured and uploaded to Azure Data Explorer (ADE), a 
“big data” service that is publicly available and that allows 
for the exploration and analysis of large volumes of data 
using the Kusto Query Language (KQL). This service will 
allow users to query and analyze the information/telemetry 
captured by the Virtual Client at a large scale. This 
information will be structured specific to the server 
hardware systems and workloads/tests executed allowing 
users to analyze the outcomes across different areas of 
validation requirements (e.g. reliability, performance). Some 
examples of the types of analysis data that is available in 
Azure Data Explorer include: 

• Workload output data to understand execution progress 
and results. 

• Context informational data to best describe the state of 
the system during the execution of a workload/test and 
that is useful for identifying breaches in expected 
operating conditions. 

• Step-by-step commands executed by VC to understand if 
there is a failure within the individual workload/test 
toolsets or the platform runtime itself. 
From Azure Data Explorer, users can directly access and 

view the data using queries based on the Kusto Query 
Language (KQL). Kusto Query Language is a robust and 

powerful language for data science and analytics needs. 
Experienced users can manipulate and post-process the data 
right across giant-sized data sets with relative ease to derive 
high value insights. The data can even be downloaded and 
saved offline for additional post-process and analysis with 
other tools the user may want to use. 

Users can often start with simple queries that show the 
data in “raw” form as tabular views with rows of 
information. ‘Raw’ form data represents the individual, 
discreet data points captured by Virtual Client that can be 
used to derive precise intelligence. This raw data forms the 
basis for more advanced queries and views of the data where 
it is aggregated, expanded and further contextualized into a 
rich view of information that enables decision making. 
Figure 1 is an example of “raw” form data and Figure 2 
shows the query used to gather the data. Note both the 
options available and the simplicity inherent in the Kusto 
Query Language. In this example, the data is collected from 
an open source AI/ML workload called SuperBenchmark 
that is often used to evaluate AI/ML systems with 
specialized GPU components. 

 

 
Figure 1: Raw Data View of ADE Query 

 
Figure 2: Sample ADE Query for Raw Data 

In contrast, more experienced KQL query users can 
manipulate the data within ADE to generate views that are 
easier to analyze and present a clearer understanding of the 
data. Figure 3 shows an example of partially processed data 
and Figure 4 shows the KQL query used to generate the 
table.  

 



 
Figure 3: Summarized Data View of ADE Query 

 
Figure 4: Sample ADE Query for Summarized Data View 

 
This example data was also captured during the 

execution of the SuperBenchmark workload. In fact, it 
shows 700 distinct data points captured for each metric (e.g. 
‘MetricName’) emitted by the SuperBenchmark workload. 
The KQL example shows how “raw” form data can be 
easily aggregated into a summary/rollup view. For example, 
the query aggregates the metrics into various buckets such 
as minimum, maximum, average, and specific percentiles 
(e.g. P50, P90) for easier analysis and digestion of the data. 
This is especially useful when comparing the aggregated 
results of individual systems with other systems or even 
against aggregations of the lab as a whole. 

III. ONBOARDING OF AI WORKLOADS 

Virtual Client is a fast-evolving platform that must 
constantly adapt to the needs of new server hardware 
platforms. One of the major advantages of VC is the ability 
to onboard new workloads (or monitors) to the platform in a 
relatively efficient manner and in a way that ensures 
consistency with all other workloads. When a workload is 
onboarded to VC, the fundamental goal is to dramatically 
simplify what it would take to execute the workload in an 
effective manner on a cloud server system. Workload 
onboarding requirements vary from one workload to 
another; however, to do so almost always requires a deep 
level of understanding of the workload (e.g. research 
involved). To onboard the workload might require 
understanding where to find the workload toolsets, 
identifying which operating systems or architectures it can 
run on and determining how to run the workload effectively 
on the system. It might require knowledge for interacting 

with Git repos and how to build/compile the workload from 
those repos. There might be an extensive set of options on 
the command line available for controlling the behaviors of 
the workload. There are an endless number of challenges for 
running workloads on cloud server systems that require 
some level of expertise to be developed each time before the 
workload can be usefully onboarded. The VC team of 
engineers and open-source community do a great deal of the 
heavy lifting here to make it possible by leveraging the 
expertise of hardware, system and software engineers across 
Microsoft and the industry. The VC engineering team 
additionally scrutinizes the workloads that are chosen for 
onboarding to ensure those selected offer high return on 
investment for most of the server hardware system scenarios 
that matter for the Azure cloud business. In essence, 
workloads selected must be demonstrably useful throughout 
the lifetime of the hardware from design to production 
maintenance and sustainment. When the workload is 
onboarded, it will come with a default profile (a “recipe”) 
that comes with expertise built-in and designed to run on 
most relevant server hardware systems. The user does not 
need to have any expertise whatsoever in order to run the 
workload profile/recipe.  

The concept of a recipe is a particularly important aspect 
for server hardware validation. Employing a recipe increases 
the reproducibility of a workload scenario and is especially 
useful for surfacing bug/defect behaviors. This is also 
important when running the workload multiple times on a 
system and across different sets of systems where fidelity 
across the systems is important. Virtual Client 
profiles/recipes are designed with this in mind, and the user 
or automation can execute Virtual Client with the 
confidence that the workload will be run in the exact same 
way each time. Virtual Client abstracts away many 
complexities for modern day server hardware validations. A 
simple command line is all that is required. 

The following are examples of workloads that were 
onboarded in a collaboration between Microsoft system 
engineering teams and the Virtual Client engineering team. 
These workloads were onboarded and used to qualify Nvidia 
and AMD GPU-integrated AI/ML server platforms: 

 

• Workloads for Nvidia H100 PCIe and HGX-based 

platforms: 

o SuperBenchmark 
o GPU Stream 
o Nvidia DCGMI 

• Workloads for AMD v620 based platforms 

o Furmark 
o SGEMM 
o UBM Perf 

IV. IMPROVEMENTS TO VIRTUAL CLIENT 

Over the course of qualifying cloud server hardware 
systems at-scale, the teams involved inevitably find 
opportunities to make improvements to process, to 
automation and to the hardware systems themselves. 
Sometimes the automation finds new defects that were 
missed during design phases or coverage for areas not 
previously explored. These situations often lead to direct 



improvements to the automation. In fact, Microsoft’s use of 
the Virtual Client during the qualification of the H100 and 
v620 systems noted above resulted in several contributions 
to the overall improvement of the VC platform…a virtuous 
cycle. The onboarding of several workloads for the GPU 
and AI space (mentioned earlier) is a great example. Gaps in 
coverage were identified early on and filled. The workloads 
created the capabilities for testing Nvidia and AMD GPUs 
at to fill a fast-growing need with today’s AI/ML server 
platform qualifications.  

Additionally, improvements were identified for 
providing enhanced instructions to the Virtual Client to 
make debugging and triage requirements easier to request. 
These new features were exposed as command line 
parameters to give the user control over the behaviors (see 
the Command Line Parameters section). For example, the “-
-log-to-file” parameter enables users to specify that log files 
should be produced in addition to telemetry. This in turn 
sets the foundation to have those log files uploaded to a 
central file store for reference removing the need to login to 
any system. 

V. LEARNINGS 

The “--log-to-file” feature has proven to be very useful 
when developing and debugging test execution in lab 
scenarios. Since it creates a log on the filesystem, the user 
can immediately view this log to identify behaviors and 
develop next steps. The creation of the log file is near 
instantaneous once VC has completed running a workload 
scenario. In contrast, there is a finite amount of delay before 
the data is available in cloud storage. This feature has really 
enabled real-time feedback to test out a user’s latest 
changes. 

There is a large amount of data generated by a single VC 
test execution. This is due to capturing not only the 
performance metrics of the workload, but also the system 
telemetry data while the workload is running. It is very 
beneficial to have data post-processing to make the 
consumption and understanding of the data more 
manageable. Such post processing mechanisms make it 
easier to assess outcomes (and even graph the data) over 
time to highlight outliers that are beyond the specification 
range or to compare metrics between like systems. 

 

VI. DEBUG METHODOLOGY AND RESULTS 

Debugging the resulting behavior or state of the 
workload is a must with any validation effort. With VC, 
there are two main ways this can be achieved. One way is to 
use a service called Azure Data Explorer and the second is 
to use the “--log-to-file” to generate on system logs. 

A. Azure Data Explorer 

As highlighted earlier, the Kusto Query Language can 
additionally be used to gather telemetry on errors that 
happen during workload execution. In Figure 5 and Figure 
6, the query looks for any errors that may have occurred 
when running the SuperBenchmark workload. 

 

 
Figure 5: Same Query for Errors During Workload Execution 

 
Figure 6: Sample Query for Errors 

In the example, the errors and callstack are separated 
into separate fields. This makes it easy to identify what the 
error was and where the execution failed. 
 

B. Command Line Parameters 

There are several command line parameters the user can 
invoke at the time of execution. There are a few parameters 
that can aid debug when the system exhibits failure or 
undesired behavior. 

 

“--log-to-file” 

The “--log-to-file” parameter will cause VC to generate 
on system logs during execution. This is helpful because the 
logs will be on the system and the user will not need to use 
other means (such as ADE) to analyze the data. Not all of 
the data gathered is able to be logged into the system. 

 

“--debug” 

This parameter is useful when executing VC via the 
command line. Including this flag will cause VC to print 
additional debug info to the console. 

 

“--fail-fast” 

The “--fail-fast” parameter will cause VC to terminate 
once it encounters an error of any severity. Combining this 
flag with “--debug" can be a means to determine where the 
test is failing. 

 

C. Results 

Virtual client monitors were used to track the critical metrics 
while running critical AI workloads. In the work done key 
metric related to bandwidth, temperature profiles were 
collected for large language models. 
 
The example used in section 2.C shows how VC collected the 
workload outputs and how they can be summarized for a 
particular view. In this case, the min, max, and specific 
percentiles were shown for the different metrics collected. 



This type of view is very helpful to evaluate the performance 
of the hardware. In one sense, it shows the engineer how well 
the hardware can perform based on the minimum and 
maximum values achieved for a given metric. On the other 
hand, it allows the engineer to see how well the hardware 
sample size is performing as a single entity. The output data 
can be queried to show the precision of the hardware. 
 
By slightly modifying the query, the engineer can view the  
system telemetry gathered while the workload was running. 
In a similar fashion to the workload output, the telemetry can 
be bucketed and viewed to confirm the similarity of system 
behavior. 
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