
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Application of Virtual Client for Azure Hardware
Qualification

Anna Mary Mathew
anna.mathew@microsoft.com

Bryan DeYoung
brdeyo@microsoft.com

Michael Chhor
michaelchhor@microsoft.com

Sharjil Khan
sharjilkhan@microsoft.com

Abstract—Virtual Client (VC) is an open-source platform

intended to evaluate system performance by running industry

available benchmarks. VC helps to standardize the workflow

for validation and qualification, compare relevant system

performance generation over generation, and correlate

workload performance and system telemetry for results

review.

Keywords—Hardware, Qualification, Virtual Client

I. INTRODUCTION

With Azure server hardware systems, there is a pervasive
need to run many tests of different kinds on every new
platform produced. The first focus is to ensure there are no
fundamental issues with the platform and that it can function
to the design specifications. The next focus is to measure the
performance of the system using a repeatable methodology
that allows for verification that the system is producing
generation-over-generation improvements as expected. In
the end, there can be hundreds of tests to run on each and
every system, and the work involved is a daunting task to
expect someone (or some team) to produce manually. In
fact, it would require an army of people to conduct server
hardware qualifications at the magnitude inherent in
commercial cloud server design and development.
Automation is essential to making scalable processes
possible.

Virtual Client is an open-source platform, designed by
Microsoft, that enables users/teams to run a large set of tests
quickly and efficiently on any hardware server system while
capturing telemetry structured for analysis and decision-
making. Virtual Client, or “VC” for short, has a set of
‘onboarded’ or supported public and industry standard
workloads that can be executed today. As with many things
in today’s world, VC is a living and growing platform and is
constantly improving and adding support for more
workloads and more hardware systems. This paper talks
about how Virtual Client was used as part of the validation
strategy to evaluate and validate hardware designed for
Azure datacenter.

This document will not go into finer details of the
Virtual Client platform as it relates to design,
implementation, execution, and debugging of hardware
platforms. Please see the References section for more
information regarding Virtual Client.

A. Problem Statement

As newer AI models and benchmarks are released, there
is a growing need to standardize qualification efforts and
automate new workloads into existing test automation
harnesses. Combining this with the ever-growing number of
hardware platforms developed for AI space, the task of
qualifying the systems for production use becomes an

incredible task. The following sections will describe the
learnings from the process of onboarding new workloads to
the Virtual Client platform and using them to support AI
server hardware system validations that resulted in
standardizations. The remainder of this document discusses
the work and process that facilitated the opportunities.

II. USE OF VIRTUAL CLIENT FOR HARDWARE

EVALUATION

Virtual Client (VC) is an open-source platform that can
easily adapt to a variety of hardware, software, and
operating system configurations with little to no change.
With support for Windows and Linux environments, VC
simplifies workload execution. Simplifications include
aspects such as the installation of dependencies, the
installation of workload tooling, setting operating system
settings and scaling resource usage for workloads to the
system on which it is running. This simplifies the need to
dig into the many details required by the workload itself
(e.g. understanding how to build and compile
tools/applications in Linux) just to get it running to begin
with. Using a single command line to execute the workload,
VC will install required dependencies, install the workload
toolset, and then execute the workload using repeatable
steps. As the workload is running, VC will collect results
along with information about the system itself and will
upload structured telemetry for this information into a
centralized cloud storage location. This enables the
user/team to take advantage of “big data” processing
resources available publicly in the Azure cloud. This in turn
makes it very easy to analyze data over a large sample size
(e.g. many distinct server hardware systems) removing the
need to task a person with logging into each system to
capture the log files and results. Additionally, the ability to
execute predictable steps is useful for replicating repeatable
results across different machines or for reproducing specific
behaviors when debugging particular issues.

Virtual Client is executed using a single command line
per workload. On one hand, VC can be executed by a user
on a single server running workloads or tests or to help
repro/debug a specific issue. On the other hand, VC allows
for easy integration into higher-level orchestration or
automation systems. Integration into automation improves
the breadth and depth of testing that can be completed
within a given timeframe on a set of server hardware
systems by minimizing setup and downtime between tests as
well as human resources required to manage the operations.
The VC command line offers parameters that define
workload(s) to execute. However, the user can additionally
specify a variety of ‘monitors’ to run in the background that
collect telemetry from the system around the workload it is

executing. This enriches the understanding of the overall
system behavior while being exercised by the workload. For
example, this telemetry data can be used to identify
performance or reliability trends and/or undesirable
behaviors on the server hardware exposed by the
operations/influence of the workload enabling users to
identify appropriate actions.

The use of Virtual Client is not limited to a select few
types of environments. It is useful across smaller application
domains such as benchtop testing and in development
environments where there might only be a few server nodes
or a few racks worth of server nodes such as with early
design-phase SKU qualifications. It operates just as well in
larger-scale application domains where there may be many
clusters of server hardware to validate. Suffice it to say, the
data and telemetry gathered by VC across the range of
application domains and scale provides ample opportunities
to identify performance trends and flaws with the accuracy
required to meet cloud business prediction models.

Another point to consider is that Virtual Client
minimizes the challenges and distinctions of evaluating
systems in bare metal versus virtualized environments. VC
is designed to operate seamlessly in both environments and
is additionally designed to scale appropriately to the
resources (e.g. CPU, memory, disk size) available on those
systems. This is very useful because it allows the user to
perform initial hardware evaluations in the bare metal
environment simplifying the process of testing a server
without intermingling the hypervisor layer and to compare
those results with the runs from the virtualized environment
illuminating the influence of the hypervisor. In most cases,
bare metal testing provides the truest view of the server
hardware and its relative performance and is expected to
achieve the highest performance levels. Testing in
virtualized environments, however, produces outcomes that
are closer to the customer experience (i.e. the commercial
cloud production use case). The performance is not expected
to be as high as with bare metal execution due to a more
complex software stack but provides a great view of what
can be legitimately offered to customers.

A. Workloads in Virtual Client

Virtual Client provides a wide range of workloads for
hardware validation and system performance measurement.
There are many Windows/Linux based standardized
workloads that can run on both x86 and ARM based
architectures which enable comprehensive testing and
performance comparison across CPU, Memory, Network,
Disks etc. There are several new Machine Learning/AI
workloads such as MLPerf and SuperBechmark with
detailed performance metrics that allow engineers to
evaluate training/inference performance between systems.
Table 1 shows some examples of workloads that are
currently available on VC. Using single line commands to
launch each of these workloads makes it easy to automate
execution using scripts or other test orchestration software.
Coverage across many hardware areas and use cases can be
achieved by selecting a few of the workloads from VC.
More workloads can be added to VC to target specific areas
based on platform requirements. The ability to then use
these newly added workloads across other projects ensures
maximum re-usability.

Table 1: Examples of Workloads Offered by Virtual Client Out of

the Box

Hardware Coverage Workloads

CPU Performance CoreMark, Prime95,
HPLinpack

Memory LMbench, Memcached,
Redis

Network NTttcp, CPS, Latte

Disk I/O DiskSpd, Flexible I/O
Tester(FIO)

Fault Tolerance Stress-Ng, StressAppTest

Compression 7Zip, Gzip

Database Performance PostGreSQL

Java Performance SPECjvm

High Performance
Compute

HPCG, NAS Parallel

Power Usage SPECpower

Machine Learning / AI MLPerf, NVLPerf,
SuperBenchmark

Note: Adopted from Microsoft SCHIE CRC OCP 2023
presentation [1]

B. Measuring Performance

Virtual Client offers standardized methods to collect
system information, telemetry and performance data
regardless of the workload being executed. These data
points give a detailed snapshot of the state of the system
while a workload is being executed for detailed analysis
later. For example, “performance counters are captured on
Windows systems every 1 second and are
aggregated/averaged out on 10-minute intervals by default.
This allows the Virtual Client to have a large number of
samples over the interval of time when calculating averages.
This in turn increases the accuracy and validity of the
performance measurements” [5]. In addition to performance
measures, it is possible to capture system health information
for CPU, Memory, PCI devices and GPUs which help debug
issues and identify unintended bottlenecks. VC is also able
to utilize Nvidia SMI utility to provide GPU health
information at all times including aggregates for ECC
errors, instantaneous GPU power draw and PCIe topology
information.[5]

There are pre-defined Monitor profiles that can be used
that allow the user to pre-select a group of metrics they want
to collect.

“--profile=MONITORS-GPU-NVIDIA.json”

For example, using the above “MONITORS-GPU-

NVIDIA” profile will automatically collect all Nvidia
related performance counters using nvidia-smi utility
without the user having to explicitly install any packages.

In addition to all the platform level information,
additional data can also be collected by the various
benchmarks in the form of workload outputs. For example,
while running SuperBenchmark various bandwidth
measurements can be captured. Table 2 describes some

bandwidth data for memory copy between CPU and GPU
that can be captured and aggregated. Many other relevant
data can be captured based on the workload and the
scenarios being tested.

Table 2: Example of Memory Copy Bandwidth Data Available

Using SuperBenchmark

Name Unit Description

cpu_to_gpu[0-9]+_by_gpu[0-
9]+_using_(sm|dma)_under_n
uma[0-9]+_bw

bandwidt
h (GB/s)

The bandwidth
reading from all
NUMA nodes'
host memory
using DMA engine
or GPU SM by all
GPUs.

gpu[0-9]+_to_cpu_by_gpu[0-
9]+_using_(sm|dma)_under_n
uma[0-9]+_bw

bandwidt
h (GB/s)

The bandwidth
writing to all
NUMA nodes'
host memory
using DMA engine
or GPU SM by all
GPUs.

gpu[0-9]+_to_gpu[0-
9]+_by_gpu[0-
9]+_using_(sm|dma)_under_n
uma[0-9]+_bw

bandwidt
h (GB/s)

The bandwidth
reading from or
writing to all
GPUs using DMA
engine or GPU
SM by all GPUs
with peer
communication
enabled.

Note: From Virtual Client Superbenchmark documentation
[6]

C. Reviewing Results with Azure Data Explorer

All the system information, telemetry, results, and even
the individual test steps executed by Virtual Client are
captured and uploaded to Azure Data Explorer (ADE), a
“big data” service that is publicly available and that allows
for the exploration and analysis of large volumes of data
using the Kusto Query Language (KQL). This service will
allow users to query and analyze the information/telemetry
captured by the Virtual Client at a large scale. This
information will be structured specific to the server
hardware systems and workloads/tests executed allowing
users to analyze the outcomes across different areas of
validation requirements (e.g. reliability, performance). Some
examples of the types of analysis data that is available in
Azure Data Explorer include:

• Workload output data to understand execution progress
and results.

• Context informational data to best describe the state of
the system during the execution of a workload/test and
that is useful for identifying breaches in expected
operating conditions.

• Step-by-step commands executed by VC to understand if
there is a failure within the individual workload/test
toolsets or the platform runtime itself.
From Azure Data Explorer, users can directly access and

view the data using queries based on the Kusto Query
Language (KQL). Kusto Query Language is a robust and

powerful language for data science and analytics needs.
Experienced users can manipulate and post-process the data
right across giant-sized data sets with relative ease to derive
high value insights. The data can even be downloaded and
saved offline for additional post-process and analysis with
other tools the user may want to use.

Users can often start with simple queries that show the
data in “raw” form as tabular views with rows of
information. ‘Raw’ form data represents the individual,
discreet data points captured by Virtual Client that can be
used to derive precise intelligence. This raw data forms the
basis for more advanced queries and views of the data where
it is aggregated, expanded and further contextualized into a
rich view of information that enables decision making.
Figure 1 is an example of “raw” form data and Figure 2
shows the query used to gather the data. Note both the
options available and the simplicity inherent in the Kusto
Query Language. In this example, the data is collected from
an open source AI/ML workload called SuperBenchmark
that is often used to evaluate AI/ML systems with
specialized GPU components.

Figure 1: Raw Data View of ADE Query

Figure 2: Sample ADE Query for Raw Data

In contrast, more experienced KQL query users can
manipulate the data within ADE to generate views that are
easier to analyze and present a clearer understanding of the
data. Figure 3 shows an example of partially processed data
and Figure 4 shows the KQL query used to generate the
table.

Figure 3: Summarized Data View of ADE Query

Figure 4: Sample ADE Query for Summarized Data View

This example data was also captured during the

execution of the SuperBenchmark workload. In fact, it
shows 700 distinct data points captured for each metric (e.g.
‘MetricName’) emitted by the SuperBenchmark workload.
The KQL example shows how “raw” form data can be
easily aggregated into a summary/rollup view. For example,
the query aggregates the metrics into various buckets such
as minimum, maximum, average, and specific percentiles
(e.g. P50, P90) for easier analysis and digestion of the data.
This is especially useful when comparing the aggregated
results of individual systems with other systems or even
against aggregations of the lab as a whole.

III. ONBOARDING OF AI WORKLOADS

Virtual Client is a fast-evolving platform that must
constantly adapt to the needs of new server hardware
platforms. One of the major advantages of VC is the ability
to onboard new workloads (or monitors) to the platform in a
relatively efficient manner and in a way that ensures
consistency with all other workloads. When a workload is
onboarded to VC, the fundamental goal is to dramatically
simplify what it would take to execute the workload in an
effective manner on a cloud server system. Workload
onboarding requirements vary from one workload to
another; however, to do so almost always requires a deep
level of understanding of the workload (e.g. research
involved). To onboard the workload might require
understanding where to find the workload toolsets,
identifying which operating systems or architectures it can
run on and determining how to run the workload effectively
on the system. It might require knowledge for interacting

with Git repos and how to build/compile the workload from
those repos. There might be an extensive set of options on
the command line available for controlling the behaviors of
the workload. There are an endless number of challenges for
running workloads on cloud server systems that require
some level of expertise to be developed each time before the
workload can be usefully onboarded. The VC team of
engineers and open-source community do a great deal of the
heavy lifting here to make it possible by leveraging the
expertise of hardware, system and software engineers across
Microsoft and the industry. The VC engineering team
additionally scrutinizes the workloads that are chosen for
onboarding to ensure those selected offer high return on
investment for most of the server hardware system scenarios
that matter for the Azure cloud business. In essence,
workloads selected must be demonstrably useful throughout
the lifetime of the hardware from design to production
maintenance and sustainment. When the workload is
onboarded, it will come with a default profile (a “recipe”)
that comes with expertise built-in and designed to run on
most relevant server hardware systems. The user does not
need to have any expertise whatsoever in order to run the
workload profile/recipe.

The concept of a recipe is a particularly important aspect
for server hardware validation. Employing a recipe increases
the reproducibility of a workload scenario and is especially
useful for surfacing bug/defect behaviors. This is also
important when running the workload multiple times on a
system and across different sets of systems where fidelity
across the systems is important. Virtual Client
profiles/recipes are designed with this in mind, and the user
or automation can execute Virtual Client with the
confidence that the workload will be run in the exact same
way each time. Virtual Client abstracts away many
complexities for modern day server hardware validations. A
simple command line is all that is required.

The following are examples of workloads that were
onboarded in a collaboration between Microsoft system
engineering teams and the Virtual Client engineering team.
These workloads were onboarded and used to qualify Nvidia
and AMD GPU-integrated AI/ML server platforms:

• Workloads for Nvidia H100 PCIe and HGX-based

platforms:

o SuperBenchmark
o GPU Stream
o Nvidia DCGMI

• Workloads for AMD v620 based platforms

o Furmark
o SGEMM
o UBM Perf

IV. IMPROVEMENTS TO VIRTUAL CLIENT

Over the course of qualifying cloud server hardware
systems at-scale, the teams involved inevitably find
opportunities to make improvements to process, to
automation and to the hardware systems themselves.
Sometimes the automation finds new defects that were
missed during design phases or coverage for areas not
previously explored. These situations often lead to direct

improvements to the automation. In fact, Microsoft’s use of
the Virtual Client during the qualification of the H100 and
v620 systems noted above resulted in several contributions
to the overall improvement of the VC platform…a virtuous
cycle. The onboarding of several workloads for the GPU
and AI space (mentioned earlier) is a great example. Gaps in
coverage were identified early on and filled. The workloads
created the capabilities for testing Nvidia and AMD GPUs
at to fill a fast-growing need with today’s AI/ML server
platform qualifications.

Additionally, improvements were identified for
providing enhanced instructions to the Virtual Client to
make debugging and triage requirements easier to request.
These new features were exposed as command line
parameters to give the user control over the behaviors (see
the Command Line Parameters section). For example, the “-
-log-to-file” parameter enables users to specify that log files
should be produced in addition to telemetry. This in turn
sets the foundation to have those log files uploaded to a
central file store for reference removing the need to login to
any system.

V. LEARNINGS

The “--log-to-file” feature has proven to be very useful
when developing and debugging test execution in lab
scenarios. Since it creates a log on the filesystem, the user
can immediately view this log to identify behaviors and
develop next steps. The creation of the log file is near
instantaneous once VC has completed running a workload
scenario. In contrast, there is a finite amount of delay before
the data is available in cloud storage. This feature has really
enabled real-time feedback to test out a user’s latest
changes.

There is a large amount of data generated by a single VC
test execution. This is due to capturing not only the
performance metrics of the workload, but also the system
telemetry data while the workload is running. It is very
beneficial to have data post-processing to make the
consumption and understanding of the data more
manageable. Such post processing mechanisms make it
easier to assess outcomes (and even graph the data) over
time to highlight outliers that are beyond the specification
range or to compare metrics between like systems.

VI. DEBUG METHODOLOGY AND RESULTS

Debugging the resulting behavior or state of the
workload is a must with any validation effort. With VC,
there are two main ways this can be achieved. One way is to
use a service called Azure Data Explorer and the second is
to use the “--log-to-file” to generate on system logs.

A. Azure Data Explorer

As highlighted earlier, the Kusto Query Language can
additionally be used to gather telemetry on errors that
happen during workload execution. In Figure 5 and Figure
6, the query looks for any errors that may have occurred
when running the SuperBenchmark workload.

Figure 5: Same Query for Errors During Workload Execution

Figure 6: Sample Query for Errors

In the example, the errors and callstack are separated
into separate fields. This makes it easy to identify what the
error was and where the execution failed.

B. Command Line Parameters

There are several command line parameters the user can
invoke at the time of execution. There are a few parameters
that can aid debug when the system exhibits failure or
undesired behavior.

“--log-to-file”

The “--log-to-file” parameter will cause VC to generate
on system logs during execution. This is helpful because the
logs will be on the system and the user will not need to use
other means (such as ADE) to analyze the data. Not all of
the data gathered is able to be logged into the system.

“--debug”

This parameter is useful when executing VC via the
command line. Including this flag will cause VC to print
additional debug info to the console.

“--fail-fast”

The “--fail-fast” parameter will cause VC to terminate
once it encounters an error of any severity. Combining this
flag with “--debug" can be a means to determine where the
test is failing.

C. Results

Virtual client monitors were used to track the critical metrics
while running critical AI workloads. In the work done key
metric related to bandwidth, temperature profiles were
collected for large language models.

The example used in section 2.C shows how VC collected the
workload outputs and how they can be summarized for a
particular view. In this case, the min, max, and specific
percentiles were shown for the different metrics collected.

This type of view is very helpful to evaluate the performance
of the hardware. In one sense, it shows the engineer how well
the hardware can perform based on the minimum and
maximum values achieved for a given metric. On the other
hand, it allows the engineer to see how well the hardware
sample size is performing as a single entity. The output data
can be queried to show the precision of the hardware.

By slightly modifying the query, the engineer can view the
system telemetry gathered while the workload was running.
In a similar fashion to the workload output, the telemetry can
be bucketed and viewed to confirm the similarity of system
behavior.

VII. ACKNOWLEDGEMENTS

This work leverages the Virtual Client platform, which was
designed and developed by the Cloud Readiness Criteria
(“CRC”) within Microsoft.

VIII. REFERENCES

[1] Open Compute Project, “Virtual Client library for

Azure - presented by Microsoft,” YouTube, Nov. 01,

2023.

https://www.youtube.com/watch?v=VhmFkazCQeM

[2] “Virtual Client Platform | Virtual Client

Platform,” microsoft.github.io.

https://microsoft.github.io/VirtualClient

[3] shsagir, “Kusto Query Language (KQL) overview-

Azure Data Explorer,” learn.microsoft.com.

https://learn.microsoft.com/en-us/azure/data-

explorer/kusto/query/

[4] shsagir, “What is Azure Data

Explorer?,” learn.microsoft.com.

https://learn.microsoft.com/en-us/azure/data-

explorer/data-explorer-overview

[5] “Performance Counter Metrics | Virtual Client

Platform,” microsoft.github.io.

https://microsoft.github.io/VirtualClient/docs/monitors/

0100-perf-counter-metrics

[6] “SuperBenchmark | Virtual Client

Platform,” microsoft.github.io.

https://microsoft.github.io/VirtualClient/docs/w

orkloads/superbenchmark

[7] Munteanu, V. Debusschere, S. Bergeon and S. Bacha,

"Efficiency metrics for qualification of datacenters in

terms of useful workload," 2013 IEEE Grenoble

Conference, Grenoble, France, 2013, pp. 1-6, doi:

10.1109/PTC.2013.6652470.

[8] D. Diamantopoulos and C. Hagleitner, "HelmGemm:

Managing GPUs and FPGAs for Transprecision GEMM

Workloads in Containerized Environments," 2019 IEEE

30th International Conference on Application-specific

Systems, Architectures and Processors (ASAP), New

York, NY, USA, 2019, pp. 71-74, doi:

10.1109/ASAP.2019.00-27.

[9] L. Chen, S. Patel, H. Shen and Z. Zhou, "Profiling and

Understanding Virtualization Overhead in Cloud," 2015

44th International Conference on Parallel Processing,

Beijing, China, 2015, pp. 31-40, doi:

10.1109/ICPP.2015.12.

[10] H. M. Helal and R. E. Ahmed, "Performance evaluation

of datacenter network topologies with link failures,"

2017 7th International Conference on Modeling,

Simulation, and Applied Optimization (ICMSAO),

Sharjah, United Arab Emirates, 2017, pp. 1-5, doi:

10.1109/ICMSAO.2017.7934898.

[11] M. Bala and Devanand, "Performance evaluation of

cloud datacenters using various green computing

tactics," 2015 2nd International Conference on

Computing for Sustainable Global Development

(INDIACom), New Delhi, India, 2015, pp. 956-961.

[12] M. Emani et al., "A Comprehensive Evaluation of

Novel AI Accelerators for Deep Learning Workloads,"

2022 IEEE/ACM International Workshop on

Performance Modeling, Benchmarking and Simulation

of High Performance Computer Systems (PMBS),

Dallas, TX, USA, 2022, pp. 13-25, doi:

10.1109/PMBS56514.2022.00007.

[13] Z. Quan, X. Chen and Y. Han, "AIC-Bench: Workload

Selection Methodology for Benchmarking AI Chips,"

2022 IEEE 24th Int Conf on High Performance

Computing & Communications; 8th Int Conf on Data

Science & Systems; 20th Int Conf on Smart City; 8th

Int Conf on Dependability in Sensor, Cloud & Big Data

Systems & Application

(HPCC/DSS/SmartCity/DependSys), Hainan, China,

2022, pp. 687-694, doi: 10.1109/HPCC-DSS-

SmartCity-DependSys57074.2022.00117.

[14] Y. Wang et al., "Benchmarking the Performance and

Energy Efficiency of AI Accelerators for AI Training,"

2020 20th IEEE/ACM International Symposium on

Cluster, Cloud and Internet Computing (CCGRID),

Melbourne, VIC, Australia, 2020, pp. 744-751, doi:

10.1109/CCGrid49817.2020.00-15.

[15] Z. Jiang et al., "HPC AI500 V2.0: The Methodology,

Tools, and Metrics for Benchmarking HPC AI

Systems," 2021 IEEE International Conference on

Cluster Computing (CLUSTER), Portland, OR, USA,

2021, pp. 47-58, doi:

10.1109/Cluster48925.2021.00022.

[16] M. Plagge et al., "ATHENA: Enabling Codesign for

Next-Generation AI/ML Architectures," 2022 IEEE

International Conference on Rebooting Computing

(ICRC), San Francisco, CA, USA, 2022, pp. 13-23, doi:

10.1109/ICRC57508.2022.00016.

