
Tightly-Coupled FPGA Accelerator for Molecular
Dynamics Simulation: Hardware-Software

Co-Design and Fine-Grained Task Management
Zekang Cheng1, Zerong He1, and Xi Jin1

1Institute of Microelectronics, Department of Physics, University of Science and Technology of China.
Contact: {chengzk, hezerong}@mail.ustc.edu.cn, {xuxu, jinxi}@ustc.edu.cn

Abstract—Over the past decades, Molecular Dynamics (MD)
has been extensively utilized for drug design, protein structure
prediction, and system analysis in computational chemistry and
biology. However, previous acceleration efforts have often faced
challenges with either host-device execution modes, leading to
costly communication overheads, or complete FPGA implemen-
tations that sacrifice flexibility and programmability.

In this paper, we present a novel tightly-coupled MD execution
framework, combining a single FPGA with a Hard-core CPU, re-
sulting in an impressive 10x performance improvement compared
to state-of-the-art CPU implementations (e.g., Gromacs). Our
system exhibits characteristics reminiscent of a fine-grained CPU-
based MD execution with Low latency computation accelerators.
To achieve such efficiency, our hardware-software co-design
approach emphasizes reducing scheduling expenses through a
decentralized dependency management strategy and a hardware-
assisted Multi-Producer Multi-Consumer (MPMC) queue.

Importantly, our methodology is not limited to MD applica-
tions alone but can be readily applied to a wide range of fine-
grained task-based applications. Moreover, the MPMC queue has
the potential to scale and be adapted for use in FPGA clusters
of larger scale, further extending its applicability and relevance
in diverse computing environments.

Index Terms—Molecular Dynamics, FPGA, Multi-Producer
Multi-Consumer, Fine-grained Task Scheduling

I. INTRODUCTION

Molecular Dynamics (MD) is a rapidly developing field
with a wide range of applications, including drug mechanism
studies, system simulations, and computational chemistry[1,
2, 3, 4]. The kernels involved in MD are constantly evolv-
ing. Generally, MD is a timestep-based method that requires
strong synchronization between each step, and there may
be dependencies between multiple kernels involved in each
step[5, 6]. Over the past few decades, MD applications have
undergone multiple iterations to solve more challenging prac-
tical problems. These iterations have extended the timescale
of the applications and scaled up the number of particles to
ensure result validity. However, this has led to a surge in
computational requirements, demanding greater throughput to
deliver results within an acceptable time frame. Consequently,
significant efforts have been devoted to accelerating MD
simulations, aiming to provide enhanced computing power and
problem decomposition across processing elements (PEs).

One apparent approach is spatial dimension decomposition,
such as GPU acceleration[7, 8, 9, 10, 11]. However, simple

decomposition into multiple computing units often suffers
from load imbalance. Additionally, frequent synchronization
between MD steps is necessary. As Figure 1, the traditional
host-device mode introduces a host routing result for both
GPU and FPGA synchronization, resulting in high latency and
synchronization overhead. This mode has limited throughput
and poor energy efficiency, particularly for long-term small-
system simulations. Notably, GPUs do not support custom
precision well, and their task scheduling latency is higher
compared to FPGAs.

Host

PCIE

Device Device Device

Device Device Device

DDR DDR

DMA

Fig. 1. Host-device Execution framework

Another approach involves tightly coupled FPGA accel-
eration for low-latency communication and synchronization.
In 2019, Martin[12] proposed a purely FPGA-based MD
solution, which optimized long-range forces and significantly
improved performance compared to the baseline. However, the
throughput rate still falls short, and the scheduling capability
presents a bottleneck. A fixed ratio of resources based on static
profiling was employed, but MD tasks, such as chemical bond
calculations, require a certain degree of flexibility and access
to general computing resources, thus impacting performance.

Currently, the most effective acceleration approach is exem-
plified by Anton[13, 14, 3], which has made significant strides
by reducing task granularity, employing dedicated hardware
acceleration modules, and incorporating small-scale general-
purpose computing units. Besides, in fine-grained execution,
the overhead of scheduling itself comprises even more, thus
recently Anton3 [15]takes a homogeneous architecture to



mitigate this overhead. Anton’s performance surpasses that
of current commercial clusters. For calculations requiring
flexibility, hard-core CPUs can be utilized to save on-chip
logic resources. Nevertheless, a majority of Anton’s pipeline
resources remain fixed, limiting general high utilization for
applications with different characteristics.

Taking inspiration from Anton, we conclude that by reduc-
ing task granularity, the better overlap between communication
and calculation can enhance system performance in MD sim-
ulations. Additionally, the tightly coupled CPU-FPGA imple-
mentation significantly reduces the synchronization overhead
of MD, thereby improving throughput. However, in traditional
centralized scheduling, the CPU’s task scheduling capability is
limited to 15-30MHz[16], which hampers further task granu-
larity refinement. Moreover, previous FPGA utilization heavily
relied on fixed resources, resulting in poor versatility. To
address these limitations, we have adopted a more generalized
approach.

We have designed a tightly coupled FPGA-based MD
distributed scheduling method, considering the use of FPGA
to harden a scheduling module with a 200MHz scheduling
capability to support finer-grained tasks. This approach im-
proves utilization through overlapping and further enhances
performance. Our framework is more versatile as it employs
configurable pipeline resources and a hard-core CPU. Further-
more, our hardware-assisted scheduling mechanism focuses
on distributed and decentralized scheduling with a spin-lock
approach, rather than dedicated logic acceleration.

Our contributions can be summarized as follows:
• We propose a novel general framework for a tightly cou-

pled Molecular Dynamics (MD) accelerator, allowing for
dynamic task allocation to either FPGA logic resources
or hard-core CPUs based on the evolving algorithm
characteristics.

• We introduce DDDM, a dedicated data structure for mem-
ory version management and a sophisticated schedul-
ing method that effectively manages task dependencies
through it.

• We provide a high-performance hardware-assisted low
latency MPMC queue, designed to significantly enhance
task management efficiency.

• Compared to state-of-art works, our work achieved more
than 10x speed up over CPUs and an average 2.14x
improvement compared with NVDIA H100 GPU.

These contributions collectively demonstrate the efficiency
and versatility of our tightly coupled MD accelerator, em-
powering it to adapt seamlessly to diverse MD applications
with varying computational demands. The proposed schedul-
ing method and hardware-assisted queue offer substantial
performance improvements, positioning our framework as a
promising solution for accelerating MD simulations on FPGA
platforms.

II. MD BACKGROUND

Molecular Dynamics consists of two fundamental compo-
nents: force calculation and motion state update. The force

calculation involves analyzing interactions between particles in
the system, categorized into different force types: bond-term
forces (angular forces, dihedral forces, paired bond forces)
and non-bonding forces (van der Waals forces and Coulomb
forces)(1)(2).

Etotal = Ebond + Eangle + Edihedral + Ees + ELJ (1)

F = −∇E
⇀
r

(2)

Bond-term force calculations are intricate, involving a
smaller number of particles and thereby consuming a relatively
modest proportion of computational power. In contrast, non-
bonding forces are predominant, constituting approximately
98% of the computational workload. Van der Waals forces
exhibit rapid decay with distance, confined within a specified
cutoff radius, and contribute insignificantly to long-range
forces. Coulomb forces are comprised of two components:
short-range forces, associated with van der Waals forces and
inversely proportional to the square of the distance, and long-
range forces, which decay gradually and act on all atoms(3)(4).
The computation of Coulomb forces entails interpolating par-
ticles to grid points using discretization and third-order basis
functions, determining charge density based on neighboring
particles(5)(6), performing Fourier space calculations through
Green’s function, and finally obtaining results via inverse
Fourier transform - ensuring precise force determination.

FLJ
i =

∑
j ̸=i

ϵab
σ2
ab

{
48

(
σab

|rji|

)14

− 24

(
σab

|rji|

)8
}

⇀
r ji (3)

FC
i =

qi

4π

∑
j ̸=i

1

ϵab

{
1

|rji|

}3
⇀
r ij (4)

FLR
i =

∑
j ̸=i

qj

|rji|
⇀
r ji (5)

ρg =
∑
p

Qpϕ(|xg − xp|)ϕ(|yg − yp|)ϕ(|zg − zp|) (6)

MD simulations incorporate periodic boundary conditions to
represent three-dimensional chemical systems in real space.
This approach allows for the simulation of larger systems
while mitigating boundary effects.

Following force calculations, motion states of each particle
are updated through straightforward integration using New-
ton’s laws of motion. This process involves adjusting particle
velocities and positions based on computed forces.

Moreover, specific applications in computational chemistry
and computational biology may introduce additional con-
straints and operators due to unique environmental char-
acteristics[5]. These complexities can lead to performance
degradation when relying on traditional FPGA acceleration.
Consequently, the utilization of more flexible resources, par-
ticularly task execution on the hard-core CPU, becomes crucial
in our application deployment.



III. SYSTEM OVERVIEW

In this section, we will present the deployment and archi-
tecture of MD on FPGA with a hard-core CPU, encompassing
various components designed to optimize performance. These
include a hardware-assisted low latency ready queue, a fine-
grained scheduling algorithm and a software-hardware co-
design description about the specific performance improve-
ments achieved through this approach.For the entirety of the
simulation, Figure 2 provides an overview of the relevant
modules and their execution procedures.

Hard-Core
CPU

Hard-Core
CPU

M
em

o
ry C

on
tro

lle
rP

ro
ce

ss
o

r 
I/

O
 M

U
X

DDR3

DDR3

CS CS

CS

CS

CSCS CSCS

CS

CS

EU

EU EU

EU EU

EU

EU

EU
BRAM

Programmable Logic

DMAAXI AXI

Onchip Bus CS Cross Station EU Execution UnitBufferless Ring

Fig. 2. System architecture overview

As for MD application, the input of the RL module is the
data of a node and its neighboring nodes. The interaction
calculation of particle pairs is completed by obtaining the
neighbor list. The LR module discretizes particles to lattice
points, does Fast Fourier Transform (FFT) and Inverse Fast
Fourier Transform (IFFT), and obtains the result by potential
energy function. The bonded force is calculated by the CPU
because the calculation amount is not large. After that, the
motion update obtains the result of the summation module to
complete one step (2fs) update, and the particle belongs to the
node every eight stepsorts. Bufferless Ring supports a lock-
free MPMC queue through the cross station bound to each
module. The data format is supported by the CHI protocol.
Also, there is another bus for memory access from all EUs
and CPUs

A. Fine-grained Task scheduling Algorithm

Achieving optimal overlap between molecular dynamics
(MD) calculations and data handling necessitates the im-
plementation of a fine-grained task scheduling mechanism.
For system-wide efficiency, distributed scheduling is widely
employed, wherein all pipeline tasks are allocated and com-
mitted by the CPU. This approach capitalizes on the lower
communication latency inherent in on-chip CPUs, as observed
in platforms like ZC102, compared to conventional host-device
communication via PCIe. However, the existing software-
based approach is impeded by the maximum frequency of en-
queuing and dequeuing operations, typically ranging between
15-30 MHz. Consequently, the task initiation and commit

rates are inherently limited, resulting in the CPU serving as
the principal scheduling bottleneck and impeding further task
refinement.

To address this limitation, we propose DDDM, a data-driven
dependency management strategy that leverages memory as
a key component. Upon task submission, we meticulously
mark and document the input and output data in a Data Con-
text (DataCtx) management system, using assigned physical
addresses. This system captures crucial version information,
including the data itself, previous versions, consumers (tasks
dependent on the data), and producers (tasks generating the
data). Notably, individual data blocks may undergo multiple
reads and writes, resulting in multiple versions of DataCtx.
However, a unique label ensures consistency across all Dat-
aCtx instances. Whenever a new task requires existing data,
a new DataCtx is generated, while carefully tracking the
previous one.

DataCtx_0                  #DataCtx_ID 
Producer = 0              #Who Produced this DataCtx
Consumer = [1,2]      #Who cunsume this DataCtx
Addr = 0x0000F0       #where is this DataCtx

DataCtx_0                  #DataCtx_ID 
Producer = 0              #Who Produced this DataCtx
Consumer = [1,2]      #Who cunsume this DataCtx
Addr = 0x0000F0       #where is this DataCtx

Task0

Task1 DataCtx2DataCtx0

Task2 DataCtx4DataCtx1

Task0

Task2                   #DataCtx_ID 
input = [0,1]       #Input dependency
output = [2,3]    #Output data

Task2                   #DataCtx_ID 
input = [0,1]       #Input dependency
output = [2,3]    #Output data

DataCtx3

Fig. 3. Data Structure of Scheduling Algorithm

Each task record includes the task’s content and the relevant
DataCtxs designated for read and write operations. During
task execution, the corresponding execution unit retrieves the
necessary read DataCtx, updates the consumer’s dependency
counter, and releases the associated DataCtx after the con-
sumer task completes its utilization. Likewise, the execution
unit accesses the designated write DataCtx, updating its sta-
tus upon completion. Concurrently, when a new DataCtx is
created, the scheduler decrements the consumer task’s depen-
dency counter and adds executable tasks to the ready task
queue.

Throughout the execution phase, the FPGA-based comput-
ing unit retrieves tasks from the ready queue, accesses the cor-
responding input data’s start address, performs computation,
and advances to the subsequent task in the execution sequence
upon completion.

Figure 3 illustrates the execution process of a template task
graph. When a new task is created, we construct a DataCtx
connection graph based on dependency information, which
is expressed as input and output data addresses. Notably,
the same color represents the same memory address, which
is accessed twice, resulting in two DataCtxs for each with
different versions. Moreover, address 0x0000F0 is accessed
by both task1 and task2, and a dual-read operation will not



create a new version, given that the data in the address
remains unchanged during these two reads. Our scheduling
algorithm records tasks as connections of various DataCtxs,
aptly representing its data-driven nature.

By adopting DDDM, combined with distributed schedul-
ing and fine-grained task execution, we facilitate substantial
overlap between MD calculations and data handling. Conse-
quently, this approach significantly enhances overall system
performance and efficiency.

B. Hardware assisted Low Latency queue

In our distributed dependency management algorithm, we
achieve decentralization, but the repeated access to the ready
queue and version data structures introduces potential data
racing, necessitating locking mechanisms. However, software-
based lock grabbing operations can incur significant overhead,
particularly on the FPGA. To address this challenge, we
propose a hardware-assisted low latency queue based on the
bufferless ring approach introduced by Wang [17]. We have
made algorithmic and architectural adaptations to tailor the
queue to our specific framework. Figure 4 illustrates the
components and architecture of the ring.

CS CS

CS

CS

CSCS

CS

CS
Eject Queue

Ring 
Slot

Cross Station-CPU

Inject Queue

CPU CPU

Eject Queue

Ring 
Slot

Cross Station-EU

EUEU

Fig. 4. Ring conponents and Architecture

For simplicity, we utilize a single-direction ring instead of
a bidirectional one. Each EU is connected to its respective
cross station, identified by its EU ID. The Cross Stations come
in two types: one attached to the CPU, featuring both inject
and eject queues as the CPU serves as both the dependency
manager and an execution unit; the other Cross Stations
contain only an eject queue since all EUs on the Programmable
Logic solely consume tasks. Additionally, all Cross Stations
have a Ring Slot, acting as a node within the ring. Tasks
circulate on the ring in a clockwise direction each cycle.

When an EU completes a task, it first accesses memory to
maintain dependencies and then proceeds with execution by
dequeuing a new task from its eject queue. For a task to be
injected into the ring, it is managed by a dependency manager
running on the hard-core CPU, persistently attempting to
enter the ring until it finds an empty ring slot. On-the-fly
tasks inherently carry a destination EU ID, allowing them

to be downloaded only to the corresponding cross stations.
Moreover, several tags are embedded in the task flit for
different identification purposes, as shown in the figure.

The bufferless ring serves as a ready queue in our design,
providing low latency with a maximum latency of spinning on
the ring. As for memory access, we reserve another bus for
atomic memory access. To achieve better load balancing and
ensure a lock-free operation, we introduce three improvements.

Firstly, MD kernels conduct fixed computation styles, but
the different computation density resulting from atomic distri-
bution among nodes may cause a long-tail effect. To mitigate
this performance loss, we employ a sampling strategy for
dynamic load balancing. When a task is generated (before
it’s ready), its computation density is explicitly indicated
by the generator, and a 2-bit consumption Tag marks the
task’s computation consumption. Initially, tasks are evenly
distributed to EUs with the same sum of workload Tags. Dur-
ing execution, workload differences may arise, so a sampling
between 1000 cycles is conducted to determine which EU’s
eject queue is lower than the threshold, and later ready tasks
are preferentially marked with their EU ID. Importantly, we
use sampling as a reference for scheduling rather than a rule,
eliminating the need for the most recent value of the queue
condition and eliminating the necessity for locks. As a result,
tasks are generally evenly dispatched to EUs.

Secondly, to avoid deadlock or live-lock situations, when a
task passes the cross station connected to the CPU, its I-Tag
will be set. If a task with an I-Tag passes the CPU again, it
indicates that the task cannot be accessed on the targeted EU
for some reason. The CPU then resets the destination EU ID
and injects it back into the queue. Since the CPU can always
finish any types of tasks for different durations, it may handle
this task when its eject queue is empty for better utilization.

It’s worth noting that the eject queue has two pointers,
namely the tail and head pointer, thus avoiding data races.
This means that to access such a ”ready queue,” all EUs
only need to send the push and pop task to their own cross
station. The bufferless ring mechanism will automatically
complete the corresponding enqueue and dequeue operations.
The FPGA EUs can submit and commit tasks at the on-chip
clock frequency of 200 MHz, enabling the task granularity to
be refined to even less than 1 µs.

C. Hardware-Software Co-design

Figure 5 presents a comprehensive depiction of the task
dependency handling mechanism from task creation to com-
pletion. From a CPU’s view , tasks are firstly identified based
on workload and stored as a task graph in memory by CPU.
Section III-A elaborates on the construction of the TaskGraph
using datactx, with tasks stored in memory based on datactx-
defined connection relationships. Then the Dependency Man-
ager continually accesses all tasks, enqueuing tasks with a
dependency counter reduced to zero into its ready queue
during execution. Subsequently, the CPU endeavors to enqueue
tasks from the queue to the cross station using the Inject
queue enqueue process. The Dependency Manager efficiently



determines task destinations based on EU information sampled
and task workload characteristics. The corresponding EU’s
cross station then ejects the task from the ring, sequentially
placing it into the EU for execution via the eject queue. After
completion, the EU will write back to memory for dependency
updates.

Within the EU, only tasks tagged with a destination match-
ing its own cross station are enqueued into the eject queue and
executed sequentially in step 1. Upon task completion (step 2),
the EU accesses memory to modify the dependency counter
based on the datactx information linked to the task, following
the algorithm detailed in III-B. Subsequently, the Dependency
Manager identifies tasks with a dependency counter of zero
and enqueues them into the ready queue.

CS

EU

T3

EU_ID = 6

CS_ID = 6

CPU Dependency ManagerCPU Dependency Manager

Ta
sk

7

T3

Data
Ctx

Ta
sk

7
Ta

sk
8

co
n

ti
gu

o
u

s 
 a

d
d

re
ss

Task 
Graph

DDR

T7 T8

BRAM

Task Body

Workload I-TagDst-Tag=6

Task Body

Workload I-TagDst-Tag=6

T3

Ready Queue

HardCore 
CPU

Submitted Task Graph

1

2

3

Fig. 5. Task Duration on the whole system

In the realm of computational chemistry, certain critical
energy calculations involve flexible operators that prove chal-
lenging for traditional FPGA acceleration methods. In our
deployment, these operations are efficiently handled by the
hard-core CPU. Pre-configured on-chip pipeline resources
are employed, while dynamic task dispatching enables the
shifting of hotspot execution to CPU execution for online
computational tasks, thus optimizing resource utilization.

IV. EVALUATION

A. Experiment Setup

Our performance evaluation was conducted on the Xilinx
ZCU102 Board, featuring a quad-core Arm® Cortex®-A53
CPU. This chip offers 274080 LUTs, 548160 FFs, 912 BRAM
blocks, and 2520 DSP units, providing a balanced perfor-
mance profile when coupled with the Hard-Core CPU. For
our evaluation, we utilized protein simulation datasets from
RCSB, encompassing various scales ranging from 4779 atoms
to 39122 atoms. With a 9Å cut-off radius, we employed two
cell sizes, 9Å and 4.5Å, to explore different task granularity
distributions and assess the efficiency of our methodology in
accelerating fine-grained execution.

0 1 11 21 31 41
Task Granularity(µs)

0

200

400

600

800

Ta
sk

 N
um

be
r

7b75(9A)

0 1 11 21 31 41
Task Granularity(µs)

0

25

50

75

100

125

150

175

200

Ta
sk

 N
um

be
r

1tgu(9A)

0 1 11 21 31 41
Task Granularity(µs)

0

50

100

150

200

250

300

Ta
sk

 N
um

be
r

8h0i(9A)

0 1 11 21 31 41
Task Granularity(µs)

0

25

50

75

100

125

150

175

200

Ta
sk

 N
um

be
r

1b7t(9A)

0 1 11 21 31 41
Task Granularity(µs)

0

20

40

60

80

Ta
sk

 N
um

be
r

4hhb(9A)

0 0.5 2.5 4.5 6.5 8.5
Task Granularity(µs)

0

1000

2000

3000

4000

5000

Ta
sk

 N
um

be
r

7b75(4.5A)

0 0.5 2.5 4.5 6.5 8.5
Task Granularity(µs)

0

200

400

600

800

1000

1200

1400

Ta
sk

 N
um

be
r

1tgu(4.5A)

0 0.5 2.5 4.5 6.5 8.5
Task Granularity(µs)

0

250

500

750

1000

1250

1500

1750

Ta
sk

 N
um

be
r

8h0i(4.5A)

0 0.5 2.5 4.5 6.5 8.5
Task Granularity(µs)

0

200

400

600

800

1000

Ta
sk

 N
um

be
r

1b7t(4.5A)

0 0.5 2.5 4.5 6.5 8.5
Task Granularity(µs)

0

100

200

300

400

500

Ta
sk

 N
um

be
r

4hhb(4.5A)

Fig. 6. Task Granularity Distribution

Figure 6 depicts the task distribution, revealing that the
majority of tasks within the 9Å cell size fall within the
magnitude of 10µs and 1µs in the 4.5Å cell size. Based on our
scheduling frequency of 200 MHz, the scheduling overhead
aligns remarkably well with these tasks.

TABLE I
RESOURCE USAGE OF EACH EXECUTION MODULE.

RL pipeline Grid Mapping FFT&IFFT LR Force
LUT 3558(1.3%) 13621(4.97%) 4904(1.79%) 3125(1.14%)
FF 3738(0.68%) 9000(1.64%) 7854(1.43%) 2283(0.42%)

BRAM 6(0.66%) 0(0%) 0(0%) 0(0%)
DSP 35(1.39%) 40(1.59%) 12(0.48%) 37(1.47%)

Number 68 1 3 1

1) HW-assisted Queue: As illustrated in section III-B,
scheduling latency arises from over 60 execution units (EUs)
competing on the Multi-Producer Multi-Consumer (MPMC)
task queue, even with our dependency management algorithm.
To address this, we devised a Bufferless Ring-based wait-
free Queue, incurring minimal logic resource overhead and
achieving latency of at least 2 cycles for most scenarios. In
comparison, CPU-centralized scheduling for Cortex-A53 on
MD executions typically achieves only about 1MHz.

2) Performance Trade-offs: As highlighted in section III-
B, bonded term computations consist of complex kernels
challenging for FPGA acceleration, yet they contribute to less
than 2% of the overall execution time. Consequently, we opt
to shift these bonded term calculations to the Hard-Core CPU.
Similarly, Motion Update, FFT and iFFT executions are also
handled by the CPU. This approach effectively presents our
implementation as a blend of CPU execution with low-latency
FPGA acceleration. Additionally, we address the discrepancy
in execution times between the CPU and long-range (LR) force
calculations. As a result, we experiment with an alternative
design, shifting all LR calculations to the CPU, leveraging
its ample computation power. In our implementation, LR
calculations occur only once per 16 steps, allowing for optimal
resource allocation to the LR Units. Finally, the functional
modules in EU are designed with reference to work [12] and
the resource utilization is shown in Table I



B. Performance comparison

TABLE II
HW SCHEDULING BENEFITS: DATA IN THE TABLE SHOWS AVERAGE

TIME TO PERFORM A FULL MD STEP FOR DIFFERENT DATASET

Both DDM & HW queue Only DDM No DDM & HW queue
7b75 139.24 µs 168.87 µs 195.87µs
1tgu 77.81 µs 88.46 µs 98.165µs
8h0i 56.80 µs 67.64 µs 77.52 µs
1b7t 31.40 µs 38.00 µs 44.01 µs
4hhb 19.02 µs 22.46 µs 25.60 µs

1) Benefits of HW-SW Codesign Scheduling Methodology:
Table II demonstrates the significant reduction in schedul-
ing overhead achieved through our scheduling methodology,
which improves scheduling frequency. Furthermore, the HW-
assisted Queue effectively minimizes the racing overhead on
the MPMC queue. The results showcase an impressive 41%
performance improvement on dataset 1b7t and an average
speedup of 36% across all five datasets.

7b75 1tgu 8h0i 1b7t 4hhb0

25

50

75

100

125

150

175

200

La
te

nc
y(

µs
)

All-HW 9A All-HW 4.5A RL-HW LR-SW 9A RL-HW LR-SW 4.5A

Fig. 7. Performance with different datasets per iteration

2) Design Benefits: Figure 7 presents the performance
comparison of different designs for varying cell sizes on the
datasets. Shifting LR calculations to the CPU yields notable
performance improvements, particularly for larger datasets.
This strategic allocation ensures that logic resource consump-
tion primarily comes from RL Units, as demonstrated in Table
I. While finer task granularity offers increased concurrency
opportunities, it also introduces higher scheduling overhead
for tasks lasting less than 1 µs, resulting in a minor drop
in performance. In contrast, CPU execution experiences more
significant performance losses, as summarized in Table III.
This is because general CPU scheduling expenses take over
even more portion in less-than-µs task granularity, resulting in
an enormous performance loss.

C. Overall Performance

Our performance evaluation encompasses a comprehensive
comparison between our approach, CPU, GPU, and a prior
FPGA-based design. Each baseline platform is carefully se-
lected for relevance and significance.

• CPU Baseline: We selected the Intel® Xeon® Gold
6258R as our CPU baseline, with a formidable peak
performance capability of 2419.2 Gflops.

TABLE III
PERFORMANCE COMPARISON: DATA SHOWS REDUCED EXECUTION

TIME OF A FULL MD STEP

CPU GPU[19] FPMD-RL[18] DDM&HW queue
7b75(39122 atoms) 1441.19µs 324.90µs 144.41µs 139.24µs
1tgu(17173 atoms) 786.82µs 142.62µs 63.39µs 77.81µs
8h0i(15018 atoms) 578.45µs 127.72µs 55.44µs 56.80µs
1b7t(8383 atoms) 306.14µs 69.62µs 30.94µs 31.40µs
4hhb(4779 atoms) 187.46µs 39.69µs 17.64µs 19.02µs

• GPU Baseline: For GPU comparison, we employed data
from AMBER benchmarks running on the H100 GPU,
renowned for its peak performance of 24.08 Tflops.

• Prior FPGA Implementation: To assess the FPGA do-
main, we refer to the work by Wu[18], which utilized a
Stratix 10 SX FPGA with substantial hardware resources:
933,120 ALMs, 5,760 DSPs, and 11,721 M20K BRAMs.

Our approach delivers compelling performance results, as
summarized in Table III:

• A remarkable performance improvement of over 10x
when juxtaposed with the CPU baseline, signifying the
potency of our FPGA-based solution.

• Noteworthy acceleration, achieving a 2.14x speedup
when compared to the GPU baseline, underscoring the
FPGA’s prowess in fine-grained tasks.

• Demonstrating competitive performance equivalent to the
prior FPGA implementation, while astutely utilizing less
than half of the on-chip resources, exemplifying our
efficiency and resource optimization.

V. CONCLUSION

In this paper, we have introduced a comprehensive software-
hardware co-design framework for tightly-coupled Molecular
Dynamics (MD) execution on a single FPGA with a Hard-core
CPU. Our approach incorporates a decentralized scheduling
algorithm and an efficient wait-free Multi-Producer Multi-
Consumer (MPMC) queue, based on the Bufferless Ring
architecture. Through a thorough performance evaluation on a
set of real applications, we have achieved an average execution
speed improvement of 1.36x. Importantly, our approach has
demonstrated a significant 10x performance increase compared
to state-of-the-art CPU implementations, a 2.14x speedup over
the H100 GPU, and nearly equivalent performance to a prior-
art FPGA-based MD implementation.

Furthermore, the general nature of our framework and
scheduling methodology allows for broad applicability across
a diverse range of scenarios. Beyond the fundamental protein
folding applications, our approach can seamlessly accommo-
date more flexible operators in MD, including non-standard
pairwise interactions, by leveraging the computational capabil-
ities of the Hard-core CPU. In future endeavors, we envisage
the introduction of an inter-FPGA bufferless ring for FPGA
clusters, enabling scalable message queue communication. On
the single FPGA execution front, our framework can readily
support other fine-grained applications, thereby paving the way
for even greater performance improvements. The versatility
and scalability of our approach bode well for its potential
impact in various high-performance computing scenarios.



REFERENCES

[1] Tomas Hansson, Chris Oostenbrink, and WilfredF van
Gunsteren. “Molecular dynamics simulations”. In: Cur-
rent opinion in structural biology 12.2 (2002), pp. 190–
196.

[2] John D McCorvy et al. “Structure-inspired design of
β-arrestin-biased ligands for aminergic GPCRs”. In:
Nature chemical biology 14.2 (2018), pp. 126–134.

[3] Kevin J. Bowers et al. “Scalable Algorithms for Molec-
ular Dynamics Simulations on Commodity Clusters”.
In: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing. SC ’06. Tampa, Florida: Associ-
ation for Computing Machinery, 2006, 84–es. ISBN:
0769527000. DOI: 10 . 1145 / 1188455 . 1188544. URL:
https://doi.org/10.1145/1188455.1188544.

[4] Chun Wu and Joan-Emma Shea. “Structural similari-
ties and differences between amyloidogenic and non-
amyloidogenic islet amyloid polypeptide (IAPP) se-
quences and implications for the dual physiological
and pathological activities of these peptides”. In: PLoS
computational biology 9.8 (2013), e1003211.

[5] Scott A Hollingsworth and Ron O Dror. “Molecular
dynamics simulation for all”. In: Neuron 99.6 (2018),
pp. 1129–1143.

[6] Derek Jones et al. “Accelerators for Classical Molecular
Dynamics Simulations of Biomolecules”. In: Journal
of Chemical Theory and Computation 18.7 (2022),
pp. 4047–4069.

[7] Romelia Salomon-Ferrer et al. “Routine Microsecond
Molecular Dynamics Simulations with AMBER on
GPUs. 2. Explicit Solvent Particle Mesh Ewald”. In:
Journal of Chemical Theory and Computation 9.9
(2013), pp. 3878–3888. DOI: 10.1021/ct400314y.

[8] James C Phillips et al. “Scalable molecular dynamics
with NAMD”. In: Journal of computational chemistry
26.16 (2005), pp. 1781–1802.

[9] Steve Plimpton. “Fast parallel algorithms for short-
range molecular dynamics”. In: Journal of computa-
tional physics 117.1 (1995), pp. 1–19.

[10] David Van Der Spoel et al. “GROMACS: fast, flexible,
and free”. In: Journal of computational chemistry 26.16
(2005), pp. 1701–1718.

[11] David Case et al. Amber 2018. Apr. 2018.
[12] Chen Yang et al. “Fully integrated FPGA molecular

dynamics simulations”. In: Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis. 2019, pp. 1–31.

[13] David E Shaw et al. “Anton, a special-purpose machine
for molecular dynamics simulation”. In: Communica-
tions of the ACM 51.7 (2008), pp. 91–97.

[14] David E Shaw et al. “Anton 3: twenty microsec-
onds of molecular dynamics simulation before lunch”.
In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis. 2021, pp. 1–11.

[15] David E. Shaw, Peter J. Adams, Azaria, et al. “Anton 3:
Twenty Microseconds of Molecular Dynamics Simula-
tion before Lunch”. In: Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis. SC ’21. St. Louis, Missouri:
Association for Computing Machinery, 2021. ISBN:
9781450384421. DOI: 10.1145/3458817.3487397. URL:
https://doi.org/10.1145/3458817.3487397.

[16] Proof Points of Intel® Dynamic Load Balancer (Intel®
DLB). 2021. URL: https://www.intel.com/content/www/
us / en / developer / articles / technical / proof - points - of -
dynamic-load-balancer-dlb.html#gs.z0yyam.

[17] Tianqi Wang et al. “Application Defined On-chip Net-
works for Heterogeneous Chiplets: An Implementation
Perspective”. In: 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA).
2022, pp. 1198–1210. DOI: 10.1109/HPCA53966.2022.
00091.

[18] Chunshu Wu et al. “Upgrade of FPGA Range-Limited
Molecular Dynamics to Handle Hundreds of Proces-
sors”. In: 2021 IEEE 29th Annual International Sympo-
sium on Field-Programmable Custom Computing Ma-
chines (FCCM). 2021, pp. 142–151. DOI: 10 . 1109 /
FCCM51124.2021.00024.

[19] Amber23: pmemd.cuda performance information. 2023.
URL: http : / / ambermd . org / GPUPerformance . php #
RCWBenchmarks.


