
Composable Mission-Critical Embedded System

Architecture for High Assurance
Michael Vai1, Eric Simpson1, Alice Lee1, Huy Nguyen1, Jeffrey Hughes1, Ben Nahill1, Jeffery Lim1,

Roger Khazan1, Sean O’Melia1, and Fred Schneider2

1MIT Lincoln Laboratory, 2Cornell University

PoC: mvai@ll.mit.edu

Abstract—Mission-critical systems must go through a

laborious and lengthy high assurance certification process.

Slight modifications of a certified system often trigger a new

certification cycle. We have leveraged a Modular Open Systems

Approach (MOSA) and developed a composable Embedded-

Security-as-a-Service (ESaaS) architecture for mission-critical

embedded systems. A zero-trust approach has been applied to

incorporate security and resilience technologies and address

mission assurance requirements. In this paper, we discuss an

ecosystem that supports the acquisition and certification

processes of high assurance ESaaS modular embedded systems

for critical missions.

Keywords—MOSA; ESaaS; mission assurance; composable

architecture; root-of-trust; zero-trust; certification

I. INTRODUCTION

Mission-critical applications, such as aircraft safety and
national defense, require high assurance, as the consequences
of failure can be loss of human life or compromise of national
security. Military missions are multi-domain and multi-modal
and increasingly dependent on C6ISR (Command, Control,
Communications, Computers, Cyber, Combat, Intelligence,
Surveillance, and Reconnaissance) capabilities. Various
embedded systems (e.g., an airborne radar signal processor, a
secure radio, etc.) have been designed and optimized for these
and other dedicated functions.

As embedded systems have been tightly coupled to
specific functions, vendors, and uses, military platforms often
carry several dozen embedded functions to support their
missions. The integration, operation, and management of
these systems are complex and also cause additional
overheads in size, weight, power consumption, and operating
costs (SWaPC).

With today’s powerful embedded technologies, multiple
applications are regularly integrated into a single unit using a

modular approach. With standardized interfaces, such
embedded systems are also upgradeable to keep up with new
technologies.

Indeed, defense acquisition programs are required to take
a Modular Open Systems Approach (MOSA) to enable the
incorporation of severable components to promote
competition, technology refresh, and reuse [1]. Open
standards enable the development of composable embedded
systems for enhanced flexibility and agilty. Standardized
physical, electrical, and logical interfaces allow plug-in
modules conforming with the standard to readily work
together within a system. Multiple capabilities could be
designed as modules and integrated into a single system.

Mission-critical systems are apparent targets of adversarial
attacks, and must be certified for high assurance (i.e.,
confidence in their security and resilience features) before
receiving authorization to operate. In many cases, the arduous
and lengthy certification process dominates the cost and
latency of developing mission-critical systems and
overshadows MOSA benefits.

The development of security and mission assurance for
MOSA systems has lagged behind the standardization of
electrical and physical interfaces [2]. Without a standard,
different vendors, and even products from the same vendor,
often implement diverse, proprietary security postures. As a
result, the security of a MOSA system becomes a closed
design and often breaks by adding, removing, or replacing
modules. The implications of composable and upgradeable
MOSA systems in their certification (for its original system
design) and re-certification (for an upgraded system)
processes remain an open question.

There are a few ways to reduce certification timelines: one
is to apply more resource (e.g., hire more certifiers), another
is through increased efficiency, and lastly through re-use. The
heavy workload and the required subject matter expertise and
experience render the approach of obtaining more certification
resource impractical at the moment. We propose to leverage
the modularity emphasized in a MOSA to increase efficiency
through standardization and reusability.

We have been developing a composable Embedded-
Security-as-a-Service (ESaaS) architecture with a system
manager that provides common security and management
services to payloads [2]. This paper describes the benefits of
an ESaaS architecture in its verification and certification for
high mission assurance.

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

© 2024 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in
DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any
copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work
other than as specifically authorized by the U.S. Government may violate
any copyrights that exist in this work.

One of the key objectives of designing systems with open
standards is interoperability. For example, by standardizing
electrical and physical properties of the backplane, OpenVPX
enables plug-in modules conforming with the standard to
readily work together within a system [1]. The possibility of
mixing and matching best-of-breed components enhances
system performance and upgradability. Defense acquisition

In the rest of this paper, we first briefly describe current
strategies in the acquisition and operation of mission systems.
After that, we provide an overview of the Lincoln Laboratory
ESaaS architecture and provide a context for composable
embedded systems. The leverage of modularity and
reusability in MOSA to improve the efficiency of certification
and re-certification of composable ESaaS modular systems
will then be discussed.

It should be noted that our discussion with respect to
certification does not necessarily reflect the view of
authorities. We are in the process of engaging with relevant
authorities so that we could receive guidance for the further
development to streamline the evaluation and certification
processes.

II. ACQUISITION AND OPERATION STRATEGIES

National Defense Authorization Act Section 805 states
that defense acquisition programs are required to take the
Modular Open Systems Approach [1]. Also, Executive Order
14028 and Memorandum M-22-09 describe a government-
wide effort to migrate to a Zero Trust Architecture mandate
[5].

A. Modular Open Systems Approach (MOSA)

MOSA is an integrated business and technical strategy for
designing and acquiring affordable and adaptable systems [1].
A modular architecture is developed using highly cohesive,
loosely coupled, and severable modules with interfaces
designed according to standards with which conformance can
be verified. Such an architecture supports an open business
model to incrementally add, modify, replace, and remove
system components across the system life cycle.

On the technical side, a modular design approach has been
shown to improve system design and maintenance processes
by allowing reusability, workload distribution, and easier
debugging. Technology could be rapidly deployed, upgraded,
and refreshed. On the business side, MOSA has been used to
reduce schedule and save cost in system acquisition, mission
integration, and sustainment.

MOSA has enabled the establishment of a variety of
industry and government initiated open systems standards.
OpenVPX [3] has long been the defacto industry standard for
embedded system development. By standardizing electrical
and physical properties of the backplane, OpenVPX enables
plug-in modules conforming with the standard to readily work
together within a system.

System security and assurance requirements must be
established with respect to the mission’s application domain
and are difficult to develop without specific mission concept
of operations (CONOPS). The success of OpenVPX is due to
that it is generally application domain agnostic. This property,
which is a definite advantage in application development, has
negatively affected the development of security and assurance
in embedded systems [2].

Different payload modules, and even products from the
same vendor, often have different security postures. Designers
then build mission specific security and assurance upon
payload specific, often incompatible schemes. This is an error

prone design approach and the result is difficult to reuse and
update. As a consequence, any modifications could easily
break the system security profile, causing a new cycle of
certification and hindering MOSA advantages. Recently, the
development of domain specific open systems standards, such
as Sensor Open Systems Architecture (SOSA) [4], have begun
to address security.

SOSA is a revolutionary standard currently being
developed by a consortium for the application domains of
electro-optical/infrared sensors, electronic warfare, radar, and
signal intelligence. It has leveraged many industry and
government standards and initiatives and defined an
architecture with physical, electrical, and logical interface
standards for sensor development and acquisition. SOSA has
significantly improved OpenVPX in terms of security. The
recently released technical standard has begun to define the
requirements on security services such as authentication,
zeroization, verification, key management, encryption, audit,
etc., enabling it to be considered as a baseline for the
development of high assurance applications. We have adapted
SOSA to implement a proof-of-concept, composable modular
architecture prototype in order to leverage existing
government and industry investment and acceptance.

B. Zero-Trust (ZT)

The government has called for a shift to a ZT
architectecture, particularly for enterprise and cloud
computing [5]. For the development of embedded systems, ZT
offers a new perspective of designing for mission assurance
[6].

Zero trust is a set of principles that treats every component,
service, and use of a system as continuously exposed to and
potentially compromised by a malicious adversary. At a high
level, a ZT architecture depends on three attributes:
compartmentalized access, continuous monitoring and
adjustment, and applying security measures throughout the
overall system. A ZT enterprise system can thus support its
intended mission by following the ZT security principles [6]:

• Identity verification – strong multi-factor user and device
authentication;

• Access control – secure and approved access to resources;

• Resource protection – fine-grained control of approved
resource utilization based on identity;

• Policy and orchestration – dynamic management of
system use;

• Monitoring and analytics – analysis of system usage and
security functions;

• Continuous operations – process to manage risks while
supporting usability.

These ZT principles, succinctly captured as the “never
trust, always verify” tenet, are well associated with the need
to enforce minimization, isolation, least privilege, monitoring,
and recovery in the development of high assurance embedded
systems. A ZT approach has been applied in a variety of
embedded system designs to incorporate security and
resilience technologies and enhance mission assurance.

III. EMBEDDED-SECURITY-AS-A-SERVICE (ESAAS)

ESaaS is an ongoing Lincoln Laboratory effort that uses a
MOSA to revolutionize how mission-critical, composable
embedded systems are developed [2]. Figure 1 shows an
example ESaaS modular architecture aligned with SOSA,
which consists of several mission-specific, programmable
payloads, a switch, and a system manager, housed in a single
chassis. Representative payload modules are programmable
processors such as single board computers, accelerators such
as General-Purpose Graphic Processing Units (GPGPUs), and
the popular Multiple Processor System-on-Chips (MPSoCs).
In the current Commercial Off-The-Shelf (COTS) market, the
security posture of a payload module ranges from having no
security features, adapting a crypto-processor such as a
Trusted Platform Module (TPM) [7], to incorporating a
proprietary security technology [8].

Figure 1: SOSA-aligned ESaaS modular architecture (UID: Unique Device
ID, IPMC: Intelligent Platform Management Controller, IPMB: Intelligent

Platform Management Bus, Init-Code: power-on bootstrapping code).

A. System Manager

Instead of relying on individual payload security features
to develop system-level security, the system manager extends
the SOSA chassis manager function and provides common
security services (cryptography, key management, etc.) for
reusability and updatability. The system manager provides a
root of trust that is attestable by the mission operator. System
configurations and updates are done through the system
manager with government mandated, payload agnostic,
updatable processes.

We now explain the process that the system manager
establishes a root-of-trust and sets up a chain-of-trust. The
ESaaS modular architecture in Figure 2 represents a
distributed high assurance processing system containing
independent payload modules. As all of them are critical to the
mission operation, care must be taken to assure the integrity
and authenticity of software/firmware loaded onto each and
that the overall state of the system is consistent with
expectation. This can be achieved by authenticating the
payload modules and measuring each stage of software loaded
during the boot process providing assurance that each stage

has not been modified and that each was derived from a trusted
source. The steps used to establish a chain-of-trust are
summarized in Table 1.

Table 1: ESaaS modular architecture chain-of-trust establishment steps
(Yellow highlighted steps: implicitly trusted, Green highlighted steps:

trusted, @: attested).

The system boot process is designed to minimize the
elements that must be implicitly trusted. Most COTS
programmable devices require a small segment of implicitly
trusted bootstrapping code to set up interfaces, verify software
signatures, etc. before further attestation could happen, which
are highlighted yellow in Table 1. It is highly desirable to
leverage advanced COTS products as they offer instant
technology insertion and availability opportunities, thus
helping to accelerate the development and reduce the cost of
government-sponsored R&D activities. We have used best
practice to reduce associated risks and minimized posting
requirements on COTS products. Powering up details are
explained as follows.

B. Powering Up

The system manager module is powered up before other
modules to set up a root-of-trust regardless of what mission
specific functionality is currently deployed. Referring to the
architecture in Figure 2, the system manager contains a
Unique Device ID (UID) and UID derived mission keys.
Zeroizable storage is used to store keys that validate stored
certificates to prove root-of-trust authenticity and other
essential data. An assembly of a microcontroller and an FPGA
provides chassis management functions and common security
services.

The microcontroller powers up and runs its ROM based
init-code and first-stage bootloader, which is a small segment
of bootstrapping code that has to be trusted. The first-stage
bootloader sets up an interface with the operator, encrypts its
UID and certificate with the operator public key to
authenticate itself to the operator. The operator validates the
UID from a list of valid UIDs and sends a symmetric key
encrypted with the system manager’s public key (from its
certificate) and signed. The first-stage bootloader decrypts the
symmetric key and saves it in the zeroizable storage. The
operator sends the system manager FPGA firmware encrypted
with the symmetric key and signed by its software trust
anchor/authority. The system manager module decrypts the

firmware and sets up a crypto core in the FPGA. The chassis
manager reboots with code verified and authenticated by the
crypto core and the system manager is now in operation.

C. Mission Provisioning

After authentication, the operator provisions the system
manager for a mission. All keys and certificates required for
the mission are securely loaded into zeroizable storage using
a key loader through the key fill interface. A mission specific
payload profile (device list, run-time environments,
applications, configuration parameters, etc.) is also loaded
into the zeroizable storage after its integrity and authenticity
have been verified by the crypto core. The system manager
will acknowledge the acceptance or rejection of payload
profiles to the operator.

D. Mission Updating

Payload profiles, firmware, or software may need to be
updated due to newly discovered bugs, threats, or
malfunctioning behavior. Similar to mission provisioning, the
operator could choose to reconfigure the system for a different
mission. An updated payload profile would be accepted after
its integrity and authenticity have been verified.

E. Payload Configuration

The Intelligent Platform Management Controllers
(IPMCs) on the payload modules are set to wait for commands
from the system manager before payload activation. Using the
VITA 46.11 standard [9], the system manager performs a
discovery on the payloads and confirms that the discovered
payloads match a device list included in the mission payload
profile.

Following the payload boot order specified in the mission
profile, the payload IPMC is instructed by the system manager
to begin its boot process starting with its embedded boot
ROM. The payload continues to boot with verified payload
boot code and sets up the run-time environment through the
backplane from the system manager storage. The payload
application, verified by the system manager, is now loaded
and execution begins.

F. Payload Monitoring

There are two levels of payload monitoring. Using the
VITA 46.11 standard, the payload hosted IPMC could provide
a variety of out-of-band payload information such as
temperature, voltage, etc. As embedded in the SOSA
requirements, security services will periodically check a
payload’s health and security state. Action may be required
when its health or security state has degraded. Additional
measures for runtime application monitoring, such as
watchdogs running in a software container could provide
information on payload behavior and abnormality detection
(e.g., unexpected inter-process accesses, latencies, and
crashes) to the system manager. Disrupted payloads could be
restarted as an attempt to recovery.

IV. VERIFICATION AND CERTIFICATION

In this section, we discuss the leverage of the modularity
and reusability in an ESaaS modular system with ZT
operations to facilitate the certification process. For a mission-
critical system, regardless of its architecture, security and

assurance requirements must be established for the intended
mission and certified that such requirements have been met by
the design. Generally, this has been a lengthy process as the
establishment of effective security and assurance
requirements for an embedded system is notoriously difficult.
Providing evidence for meeting such requirements is harder
yet, as it demands that we prove a negative.

An embedded system that is designed to operate according
to the zero trust tenet of “never trust, always verify” has
numerous benefits for mission assurance [9]. With a security
analysis, mission essential functions and their dependency on
system components could be identified. Security requirements
for the development of mission critical embedded systems
could be created by considering the origins of essential
functions and their resources. The designer would then
incorporate technologies to establish a chain-of-trust to proper
system functionality, place the system into an attestable state,
and maintain that trust over its operation. The ZT analysis and
reasoning will lay a foundation for system verification and
certification processes.

MOSA emphasizes modularity and reusability.
Modularity enables the use of a divide-and-conquer approach
for certification and reusability enables the use of an ECP
(Engineering Change Proposal) approach. Both contributes to
streamline the certification process.

A. Composable Mission-Critical System Architecture

With open systens standards, a proper ecosystem could be
developed to support a MOSA for system acquisition and
certification processes. The ESaaS goal is to enable the
development of composable systems in compliance with
assurance certification, and support the acquisition, growth,
agility, and maintenance of mission needs. Figure 2 shows an
ESaaS mission-critical system architecture with its key
components defined as a chassis, an ESaaS system manager,
one or more mission application payloads, and optional crypto
applications. The system manager, equipped with
standardized system management and security services,
communicates with an operator or an administrator, and
manages the multi-purpose, reprogrammable payloads.

Figure 2: The ESaaS composable mission-critical architecture concept,
components, and principles (App: applications, AT: anti-tamper, TEMPEST:

side-channel protection, I/O: input/output).

The system manager and payload modules could be
implemented in various form factors. For example, the
components could be developed into plug-in boards as Line
Replaceable Units (LRUs) or Intellectual Property (IP) cores
for embedded purposes.

Figure 2 also captures a set of design principles of a
mission-critical composable embedded system. The ESaaS
architecture defines component functions, their interfaces
(physical, electrical, and logical), and communicating
protocols. For mission assurance purposes, component design
requirements, e.g., red-black separation and software security,
are established to enable their compliance evaluations and
facilitate system certifications. For example, for high
assurance, the system must be designed to tolerate at least a
certain number of functionally or physically independent
failures. Specific mission CONOPS and application domains
would play a key role in determining requirements. For
example, red (plain data) and black (encrypted data) signals
must be carefully separated in cryptographic equipment.

The deficiency of a generic standard such as OpenVPX in
security and assurance implementation has been mentioned
above. Even in domain-specific standards, such as SOSA,
which include many properties desirable for mission-critical
architecture, gaps do exist. In some cases, the standard could
be configured for mission critical operations. In other
situations, the standard needs to be enhanced. We use SOSA
as an example to explain the challenges below.

SOSA is built for heavy inter-payload communication
through a central data plane switch (switched vs. direct IO). In
an ESaaS architecture, additional requirements need to be
posted on switches and ensure the proper signal separation
required by the operation.

In the development of an ESaaS system targeting a SOSA,
we have relied on the extensive optical IO (Input Output)
capabilities which may pass directly from a payload card,
through the backplane, to the exterior of the chassis. Optical
connectivity provides tremendous throughput on the order of
hundreds of Gbit/s and minimizes crosstalk and emissions
relating to signaling at the interfaces. This can be configured
to allow many low-rate channels or fewer high-rate channels
using the same hardware and cabling.

When an application requires inter-module connections,
such as in the case of a radio consisting of a modem module
and a crypto module, the designer could adapt the direct inter-
module connections through an expansion plane, which are
defined in SOSA and OpenVPX. Individual data lines would
be needed when a crypto module serves an external
application, which could be implemented as connectors to a
payload module through the front panel IO. These and other
specific properties are defined in SOSA and OpenVPX, and
could be configured for an ESaaS architecture.

The system manager component should be powered up
before other modules and set up a root-of-trust. Mutual
authentication needs to be established between the system
manager and the operator. After authentication, the system
manager is provisioned for the mission with payload
configurations. Keys and certificates need to be loaded
securely into zeroizable storage (anti-tamper requirement).
During operation, the system manager has to monitor
payloads and performs secure logging. Our study and
prototyping have indicated that these requirements are
implementable in SOSA with a few caveats.

As mentioned, ZT operation lays a foundation for
certification. The development of a high assurance system
needs to rigorously establish a chain-of-trust and correctly
place the system into an attestable state [8]. SOSA has
specified a secure boot process for a system, which needs to
be further fortified for high assurance crypto operations.

The ESaaS powering up sequence needs to minimize the
elements that must be implicitly trusted. As discussed, most
COTS programmable devices require a small segment of
implicitly trusted bootstrapping code. Also, SOSA/OpenVPX
relies on implicitly trusted bootstrapping devices such as the
IPMC (Intelligent Platform Management Controllers) for
payload control and monitoring [9]. These and other
properties must be further investigated in the development of
ESaaS systems. Best practice needs to be explored and
incorporated into requirements to reduce associated risks. For
example, the bootstrapping code, typically minimal and
concise, could be formally verified to rule out design errors
and stored in a Read Only Memory.

B. Component Certification

First of all, in the ESaaS architecture, every component in
a system is in a specified application domain with well-
defined functions and interfaces. For example, a payload
could be a signal processor for target recognition, and another
payload could be a secure radio. Design requirements could
thus be created for individual components. Against the
requirements, each component could be individually certified
to be in compliance. Component level certification is
particularly logical for the chassis and system manager
components, as their hardware and software are designed to
work with various payloads and usually unchanged when the
system is being upgraded.

Figure 3 illustrates the design and certification process of
components for specific mission CONOPS and application
domains. For example, the component is a secure radio
embedded in an air-borne platform operating in Contiguous
United States (CONUS). We envision that a handful of
application scenarios could be established.

Figure 3: Component compliance certification (function, interface, protocol,
and security) with respect to mission CONOPS and application domains.

Vendors would design components, including their
hardware, software, and firmware, to meet mission-specific
requirements (function, interface, protocol, and security).
Such components are then submitted for certification against

their requirements. This first step of the divide-and-conquer
methodology is similar to the current practice of module level
certification.

C. Mission System Certification

A mission system is then composed of certified
components, potentially from multiple vendors. Figure 4
illustrates the system certification process. Even though the
components themselves have been individually certified,
inter-component relations need to be further examined and
determined if the system is in compliance. The mission
system, having been verified to be in compliance with design
requirements, can now go through its certification process.

Figure 4: Mission system compliance verification and certification; (a)
Compose mission system, (b) Verify the assembly of certified components

do not violate system requirements, (c) Certify mission system.

The proposed mission system certification process has two
advantages. First, it is identical to the current practice of
certification. Second, the component and system compliance
verification and certification steps could facilitate and
accelerate the certification process. Rather than a completely
unique mission system certification, MOSA enables re-using
known good approaches and certification artifacts. Tools
could be created to automate or facilitate the creation of inter-
module test suites and system certification plans, the review
of architectures (e.g., with model-based systems engineering),
and the generation of documents.

D. Upgrade and Re-certification

The biggest benefit is that it could potentially streamline
the re-certification of a mission system after it has been
upgraded. Upgrade could be performed by loading new
software/firmware into an existing payload in a system,
replacing an existing payload, removing a payload, or adding
a new payload.

The re-certification process of an updated mission crypto
system with a new payload is similar to the original system
certification step in Figure 4. Since the new payload should
have been verified to be in compliant with mission
requirements, the updated mission system only needs an
engineering change proposal (ECP) level certification. The
ecosystem discussed above could be developed to facilitate
and accelerate the re-certification process.

V. SUMMARY

The benefits of using a MOSA strategy in system
acquisition and development have been demonstrated.
However, the development of security and mission assurance
for MOSA systems has lagged behind the standardization of
electrical and physical interfaces. The result is that it has been
slow to adapt MOSA in crypto development.

ESaaS has been developed into a composable,
reprogrammable modular architecture so that mission specific
modules can be upgraded or swapped out to address evolving
mission needs. Standardized common management and
security services reduce the burden for users and maintainers
of each platform. ESaaS has thus extended MOSA benefits
into the development of high assurance mission systems. The
current ESaaS architecture targets SOSA, an open systems
standard highly invested by both the government and defense
industry.

It is critical to accelerate the initial certification of a
mission system, and even more so for the following re-
certification when it has been updated. We have proposed to
rely on modularity and reusability to accelerate the
certification processes. We will continue to identify and
document appropriate ESaaS modularity, interfaces, and
protocols. We will develop the current SOSA aligned
prototype into a testbed to identify and investigate necessary
actions to close gaps in SOSA, from all technical, business,
and compliance verification aspects, for ESaaS development.

VI. ACKNOWLEDGEMENT

Fred Schneider is supported in part by Air Force Office of
Scientific Research under award number FA9550-23-1-0435,
as well as by funding from MIT Lincoln Laboratory, Amazon,
and Google. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of these
organizations.

VII. REFERENCES

[1] https://www.dsp.dla.mil/Portals/26/Documents/PolicyAndGuidance/
Memo-Modular_Open_Systems_Approach.pdf, accessed June 3,
2023.

[2] M. Vai, E. Simpson, D. Kava, A. Lee, H. Nguyen, J. Hughes, G. Torres,
J. Lim, B. Nahill, R. Khazan, and F. Schneider, “Security-as-a-Service
for Embedded Systems,” IEEE MILCOM, 2023.

[3] ANSI/VITA 65.0-2021, OpenVPX System Standard, October 4, 2021.

[4] Technical Standard for SOSA Reference Architecture, Edition 2.0, The
Open Group SOSA Consortium, August 2022.

[5] Department of Defense (DoD) Zero Trust Reference Architecture,
Version 2.0, July, 2022, Defense Information Systems Agency (DISA)
and National Security Agency (NSA) Engineering Team,
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_
v2.0(U)_Sep22.pdf, accessed June 27, 2023

[6] M. Vai, D. Whelihan, E. Simpson, D. Kava, A. Lee, H. Nguyen, J.
Hughes, G. Torres, J. Lim, B. Nahill, R. Khazan, and F. Schneider,
“Zero Trust Architecture Approach for Developing Mission Critical
Embedded Systems,” IEEE HPEC, 2023.

[7] https://trustedcomputinggroup.org/work-groups/trusted-platform-
module/, accessed May 26, 2023.

[8] https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html, accessed May 26, 2023.

[9] ANSI/VITA 46.11-2022, System Management on VPX, April 5, 2022.

