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Abstract—Mission-critical systems must go through a 

laborious and lengthy high assurance certification process. 

Slight modifications of a certified system often trigger a new 

certification cycle. We have leveraged a Modular Open Systems 

Approach (MOSA) and developed a composable Embedded-

Security-as-a-Service (ESaaS) architecture for mission-critical 

embedded systems. A zero-trust approach has been applied to 

incorporate security and resilience technologies and address 

mission assurance requirements. In this paper, we discuss an 

ecosystem that supports the acquisition and certification 

processes of high assurance ESaaS modular embedded systems 

for critical missions.  
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I. INTRODUCTION 

Mission-critical applications, such as aircraft safety and 
national defense, require high assurance, as the consequences 
of failure can be loss of human life or compromise of national 
security. Military missions are multi-domain and multi-modal 
and increasingly dependent on C6ISR (Command, Control, 
Communications, Computers, Cyber, Combat, Intelligence, 
Surveillance, and Reconnaissance) capabilities. Various 
embedded systems (e.g., an airborne radar signal processor, a 
secure radio, etc.) have been designed and optimized for these 
and other dedicated functions.  

As embedded systems have been tightly coupled to 
specific functions, vendors, and uses, military platforms often 
carry several dozen embedded functions to support their 
missions. The integration, operation, and management of 
these systems are complex and also cause additional 
overheads in size, weight, power consumption, and operating 
costs (SWaPC).  

With today’s powerful embedded technologies, multiple 
applications are regularly integrated into a single unit using a 

modular approach. With standardized interfaces, such 
embedded systems are also upgradeable to keep up with new 
technologies.  

Indeed, defense acquisition programs are required to take 
a Modular Open Systems Approach (MOSA) to enable the 
incorporation of severable components to promote 
competition, technology refresh, and reuse [1]. Open 
standards enable the development of composable embedded 
systems for enhanced flexibility and agilty. Standardized 
physical, electrical, and logical interfaces allow plug-in 
modules conforming with the standard to readily work 
together within a system. Multiple capabilities could be 
designed as modules and integrated into a single system. 

Mission-critical systems are apparent targets of adversarial 
attacks, and must be certified for high assurance (i.e., 
confidence in their security and resilience features) before 
receiving authorization to operate. In many cases, the arduous 
and lengthy certification process dominates the cost and 
latency of developing mission-critical systems and 
overshadows MOSA benefits.  

The development of security and mission assurance for 
MOSA systems has lagged behind the standardization of 
electrical and physical interfaces [2]. Without a standard, 
different vendors, and even products from the same vendor, 
often implement diverse, proprietary security postures. As a 
result, the security of a MOSA system becomes a closed 
design and often breaks by adding, removing, or replacing 
modules. The implications of composable and upgradeable 
MOSA systems in their certification (for its original system 
design) and re-certification (for an upgraded system) 
processes remain an open question.  

There are a few ways to reduce certification timelines: one 
is to apply more resource (e.g., hire more certifiers), another 
is through increased efficiency, and lastly through re-use. The 
heavy workload and the required subject matter expertise and 
experience render the approach of obtaining more certification 
resource impractical at the moment. We propose to leverage 
the modularity emphasized in a MOSA to increase efficiency 
through standardization and reusability. 

We have been developing a composable Embedded-
Security-as-a-Service (ESaaS) architecture with a system 
manager that provides common security and management 
services to payloads [2]. This paper describes the benefits of 
an ESaaS architecture in its verification and certification for 
high mission assurance.  
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One of the key objectives of designing systems with open 
standards is interoperability. For example, by standardizing 
electrical and physical properties of the backplane, OpenVPX 
enables plug-in modules conforming with the standard to 
readily work together within a system [1]. The possibility of 
mixing and matching best-of-breed components enhances 
system performance and upgradability. Defense acquisition 



In the rest of this paper, we first briefly describe current 
strategies in the acquisition and operation of mission systems. 
After that, we provide an overview of the Lincoln Laboratory 
ESaaS architecture and provide a context for composable 
embedded systems. The leverage of modularity and 
reusability in MOSA to improve the efficiency of certification 
and re-certification of composable ESaaS modular systems 
will then be discussed.   

It should be noted that our discussion with respect to 
certification does not necessarily reflect the view of 
authorities. We are in the process of engaging with relevant 
authorities so that we could receive guidance for the further 
development to streamline the evaluation and certification 
processes. 

II. ACQUISITION AND OPERATION STRATEGIES 

National Defense Authorization Act Section 805 states 
that defense acquisition programs are required to take the 
Modular Open Systems Approach [1]. Also, Executive Order 
14028 and Memorandum M-22-09 describe a government-
wide effort to migrate to a Zero Trust Architecture mandate 
[5]. 

A. Modular Open Systems Approach (MOSA) 

MOSA is an integrated business and technical strategy for 
designing and acquiring affordable and adaptable systems [1]. 
A modular architecture is developed using highly cohesive, 
loosely coupled, and severable modules with interfaces 
designed according to standards with which conformance can 
be verified. Such an architecture supports an open business 
model to incrementally add, modify, replace, and remove 
system components across the system life cycle.  

On the technical side, a modular design approach has been 
shown to improve system design and maintenance processes 
by allowing reusability, workload distribution, and easier 
debugging. Technology could be rapidly deployed, upgraded, 
and refreshed. On the business side, MOSA has been used to 
reduce schedule and save cost in system acquisition, mission 
integration, and sustainment.  

MOSA has enabled the establishment of a variety of 
industry and government initiated open systems standards. 
OpenVPX [3] has long been the defacto industry standard for 
embedded system development. By standardizing electrical 
and physical properties of the backplane, OpenVPX enables 
plug-in modules conforming with the standard to readily work 
together within a system.  

System security and assurance requirements must be 
established with respect to the mission’s application domain 
and are difficult to develop without specific mission concept 
of operations (CONOPS). The success of OpenVPX is due to 
that it is generally application domain agnostic. This property, 
which is a definite advantage in application development, has 
negatively affected the development of security and assurance 
in embedded systems [2].  

Different payload modules, and even products from the 
same vendor, often have different security postures. Designers 
then build mission specific security and assurance upon 
payload specific, often incompatible schemes. This is an error 

prone design approach and the result is difficult to reuse and 
update. As a consequence, any modifications could easily 
break the system security profile, causing a new cycle of 
certification and hindering MOSA advantages. Recently, the 
development of domain specific open systems standards, such 
as Sensor Open Systems Architecture (SOSA) [4], have begun 
to address security.  

SOSA is a revolutionary standard currently being 
developed by a consortium for the application domains of 
electro-optical/infrared sensors, electronic warfare, radar, and 
signal intelligence. It has leveraged many industry and 
government standards and initiatives and defined an 
architecture with physical, electrical, and logical interface 
standards for sensor development and acquisition. SOSA has 
significantly improved OpenVPX in terms of security. The 
recently released technical standard has begun to define the 
requirements on security services such as authentication, 
zeroization, verification, key management, encryption, audit, 
etc., enabling it to be considered as a baseline for the 
development of high assurance applications. We have adapted 
SOSA to implement a proof-of-concept, composable modular 
architecture prototype in order to leverage existing 
government and industry investment and acceptance.   

B. Zero-Trust (ZT) 

The government has called for a shift to a ZT 
architectecture, particularly for enterprise and cloud 
computing [5]. For the development of embedded systems, ZT 
offers a new perspective of designing for mission assurance 
[6].  

Zero trust is a set of principles that treats every component, 
service, and use of a system as continuously exposed to and 
potentially compromised by a malicious adversary. At a high 
level, a ZT architecture depends on three attributes: 
compartmentalized access, continuous monitoring and 
adjustment, and applying security measures throughout the 
overall system. A ZT enterprise system can thus support its 
intended mission by following the ZT security principles [6]: 

• Identity verification – strong multi-factor user and device 
authentication; 

• Access control – secure and approved access to resources; 

• Resource protection – fine-grained control of approved 
resource utilization based on identity; 

• Policy and orchestration – dynamic management of 
system use; 

• Monitoring and analytics – analysis of system usage and 
security functions; 

• Continuous operations – process to manage risks while 
supporting usability. 

These ZT principles, succinctly captured as the “never 
trust, always verify” tenet, are well associated with the need 
to enforce minimization, isolation, least privilege, monitoring, 
and recovery in the development of high assurance embedded 
systems. A ZT approach has been applied in a variety of 
embedded system designs to incorporate security and 
resilience technologies and enhance mission assurance.   



III. EMBEDDED-SECURITY-AS-A-SERVICE (ESAAS) 

ESaaS is an ongoing Lincoln Laboratory effort that uses a 
MOSA to revolutionize how mission-critical, composable 
embedded systems are developed [2]. Figure 1 shows an 
example ESaaS modular architecture aligned with SOSA, 
which consists of several mission-specific, programmable 
payloads, a switch, and a system manager, housed in a single 
chassis. Representative payload modules are programmable 
processors such as single board computers, accelerators such 
as General-Purpose Graphic Processing Units (GPGPUs), and 
the popular Multiple Processor System-on-Chips (MPSoCs). 
In the current Commercial Off-The-Shelf (COTS) market, the 
security posture of a payload module ranges from having no 
security features, adapting a crypto-processor such as a 
Trusted Platform Module (TPM) [7], to incorporating a 
proprietary security technology [8]. 

 

Figure 1: SOSA-aligned ESaaS modular architecture (UID: Unique Device 
ID, IPMC: Intelligent Platform Management Controller, IPMB: Intelligent 

Platform Management Bus, Init-Code: power-on bootstrapping code). 

A. System Manager 

Instead of relying on individual payload security features 
to develop system-level security, the system manager extends 
the SOSA chassis manager function and provides common 
security services (cryptography, key management, etc.) for 
reusability and updatability. The system manager provides a 
root of trust that is attestable by the mission operator. System 
configurations and updates are done through the system 
manager with government mandated, payload agnostic, 
updatable processes. 

We now explain the process that the system manager 
establishes a root-of-trust and sets up a chain-of-trust. The 
ESaaS modular architecture in Figure 2 represents a 
distributed high assurance processing system containing 
independent payload modules. As all of them are critical to the 
mission operation, care must be taken to assure the integrity 
and authenticity of software/firmware loaded onto each and 
that the overall state of the system is consistent with 
expectation. This can be achieved by authenticating the 
payload modules and measuring each stage of software loaded 
during the boot process providing assurance that each stage 

has not been modified and that each was derived from a trusted 
source. The steps used to establish a chain-of-trust are 
summarized in Table 1.  

Table 1: ESaaS modular architecture chain-of-trust establishment steps 
(Yellow highlighted steps: implicitly trusted, Green highlighted steps: 

trusted, @: attested). 

 

The system boot process is designed to minimize the 
elements that must be implicitly trusted. Most COTS 
programmable devices require a small segment of implicitly 
trusted bootstrapping code to set up interfaces, verify software 
signatures, etc. before further attestation could happen, which 
are highlighted yellow in Table 1. It is highly desirable to 
leverage advanced COTS products as they offer instant 
technology insertion and availability opportunities, thus 
helping to accelerate the development and reduce the cost of 
government-sponsored R&D activities. We have used best 
practice to reduce associated risks and minimized posting 
requirements on COTS products. Powering up details are 
explained as follows. 

B. Powering Up 

The system manager module is powered up before other 
modules to set up a root-of-trust regardless of what mission 
specific functionality is currently deployed. Referring to the 
architecture in Figure 2, the system manager contains a 
Unique Device ID (UID) and UID derived mission keys. 
Zeroizable storage is used to store keys that validate stored 
certificates to prove root-of-trust authenticity and other 
essential data. An assembly of a microcontroller and an FPGA 
provides chassis management functions and common security 
services. 

The microcontroller powers up and runs its ROM based 
init-code and first-stage bootloader, which is a small segment 
of bootstrapping code that has to be trusted. The first-stage 
bootloader sets up an interface with the operator, encrypts its 
UID and certificate with the operator public key to 
authenticate itself to the operator. The operator validates the 
UID from a list of valid UIDs and sends a symmetric key 
encrypted with the system manager’s public key (from its 
certificate) and signed. The first-stage bootloader decrypts the 
symmetric key and saves it in the zeroizable storage. The 
operator sends the system manager FPGA firmware encrypted 
with the symmetric key and signed by its software trust 
anchor/authority. The system manager module decrypts the 



firmware and sets up a crypto core in the FPGA. The chassis 
manager reboots with code verified and authenticated by the 
crypto core and the system manager is now in operation. 

C. Mission Provisioning 

After authentication, the operator provisions the system 
manager for a mission. All keys and certificates required for 
the mission are securely loaded into zeroizable storage using 
a key loader through the key fill interface. A mission specific 
payload profile (device list, run-time environments, 
applications, configuration parameters, etc.) is also loaded 
into the zeroizable storage after its integrity and authenticity 
have been verified by the crypto core. The system manager 
will acknowledge the acceptance or rejection of payload 
profiles to the operator.  

D. Mission Updating 

Payload profiles, firmware, or software may need to be 
updated due to newly discovered bugs, threats, or 
malfunctioning behavior. Similar to mission provisioning, the 
operator could choose to reconfigure the system for a different 
mission. An updated payload profile would be accepted after 
its integrity and authenticity have been verified.  

E. Payload Configuration 

The Intelligent Platform Management Controllers 
(IPMCs) on the payload modules are set to wait for commands 
from the system manager before payload activation. Using the 
VITA 46.11 standard [9], the system manager performs a 
discovery on the payloads and confirms that the discovered 
payloads match a device list included in the mission payload 
profile.  

Following the payload boot order specified in the mission 
profile, the payload IPMC is instructed by the system manager 
to begin its boot process starting with its embedded boot 
ROM. The payload continues to boot with verified payload 
boot code and sets up the run-time environment through the 
backplane from the system manager storage. The payload 
application, verified by the system manager, is now loaded 
and execution begins. 

F. Payload Monitoring 

There are two levels of payload monitoring. Using the 
VITA 46.11 standard, the payload hosted IPMC could provide 
a variety of out-of-band payload information such as 
temperature, voltage, etc.  As embedded in the SOSA 
requirements, security services will periodically check a 
payload’s health and security state. Action may be required 
when its health or security state has degraded. Additional 
measures for runtime application monitoring, such as 
watchdogs running in a software container could provide 
information on payload behavior and abnormality detection 
(e.g., unexpected inter-process accesses, latencies, and 
crashes) to the system manager. Disrupted payloads could be 
restarted as an attempt to recovery.  

IV.  VERIFICATION AND CERTIFICATION  

In this section, we discuss the leverage of the modularity 
and reusability in an ESaaS modular system with ZT 
operations to facilitate the certification process. For a mission-
critical system, regardless of its architecture, security and 

assurance requirements must be established for the intended 
mission and certified that such requirements have been met by 
the design. Generally, this has been a lengthy process as the 
establishment of effective security and assurance 
requirements for an embedded system is notoriously difficult. 
Providing evidence for meeting such requirements is harder 
yet, as it demands that we prove a negative.  

An embedded system that is designed to operate according 
to the zero trust tenet of “never trust, always verify” has 
numerous benefits for mission assurance [9]. With a security 
analysis, mission essential functions and their dependency on 
system components could be identified. Security requirements 
for the development of mission critical embedded systems 
could be created by considering the origins of essential 
functions and their resources. The designer would then 
incorporate technologies to establish a chain-of-trust to proper 
system functionality, place the system into an attestable state, 
and maintain that trust over its operation. The ZT analysis and 
reasoning will lay a foundation for system verification and 
certification processes. 

MOSA emphasizes modularity and reusability. 
Modularity enables the use of a divide-and-conquer approach 
for certification and reusability enables the use of an ECP 
(Engineering Change Proposal) approach. Both contributes to 
streamline the certification process.  

A. Composable Mission-Critical System Architecture 

With open systens standards, a proper ecosystem could be 
developed to support a MOSA for system acquisition and 
certification processes. The ESaaS goal is to enable the 
development of composable systems in compliance with 
assurance certification, and support the acquisition, growth, 
agility, and maintenance of mission needs. Figure 2 shows an 
ESaaS mission-critical system architecture with its key 
components defined as a chassis, an ESaaS system manager, 
one or more mission application payloads, and optional crypto 
applications. The system manager, equipped with 
standardized system management and security services, 
communicates with an operator or an administrator, and 
manages the multi-purpose, reprogrammable payloads. 

 

Figure 2: The ESaaS composable mission-critical architecture concept, 
components, and principles (App: applications, AT: anti-tamper, TEMPEST: 

side-channel protection, I/O: input/output). 

The system manager and payload modules could be 
implemented in various form factors. For example, the 
components could be developed into plug-in boards as Line 
Replaceable Units (LRUs) or Intellectual Property (IP) cores 
for embedded purposes. 



Figure 2 also captures a set of design principles of a 
mission-critical composable embedded system. The ESaaS 
architecture defines component functions, their interfaces 
(physical, electrical, and logical), and communicating 
protocols. For mission assurance purposes, component design 
requirements, e.g., red-black separation and software security, 
are established to enable their compliance evaluations and 
facilitate system certifications. For example, for high 
assurance, the system must be designed to tolerate at least a 
certain number of functionally or physically independent 
failures. Specific mission CONOPS and application domains 
would play a key role in determining requirements. For 
example, red (plain data) and black (encrypted data) signals 
must be carefully separated in cryptographic equipment. 

The deficiency of a generic standard such as OpenVPX in 
security and assurance implementation has been mentioned 
above. Even in domain-specific standards, such as SOSA, 
which include many properties desirable for mission-critical 
architecture, gaps do exist. In some cases, the standard could 
be configured for mission critical operations. In other 
situations, the standard needs to be enhanced. We use SOSA 
as an example to explain the challenges below. 

SOSA is built for heavy inter-payload communication 
through a central data plane switch (switched vs. direct IO). In 
an ESaaS architecture, additional requirements need to be 
posted on switches and ensure the proper signal separation 
required by the operation.  

In the development of an ESaaS system targeting a SOSA, 
we have relied on the extensive optical IO (Input Output) 
capabilities which may pass directly from a payload card, 
through the backplane, to the exterior of the chassis. Optical 
connectivity provides tremendous throughput on the order of 
hundreds of Gbit/s and minimizes crosstalk and emissions 
relating to signaling at the interfaces. This can be configured 
to allow many low-rate channels or fewer high-rate channels 
using the same hardware and cabling.  

When an application requires inter-module connections, 
such as in the case of a radio consisting of a modem module 
and a crypto module, the designer could adapt the direct inter-
module connections through an expansion plane, which are 
defined in SOSA and OpenVPX. Individual data lines would 
be needed when a crypto module serves an external 
application, which could be implemented as connectors to a 
payload module through the front panel IO. These and other 
specific properties are defined in SOSA and OpenVPX, and 
could be configured for an ESaaS architecture. 

The system manager component should be powered up 
before other modules and set up a root-of-trust. Mutual 
authentication needs to be established between the system 
manager and the operator. After authentication, the system 
manager is provisioned for the mission with payload 
configurations. Keys and certificates need to be loaded 
securely into zeroizable storage (anti-tamper requirement). 
During operation, the system manager has to monitor 
payloads and performs secure logging. Our study and 
prototyping have indicated that these requirements are 
implementable in SOSA with a few caveats.  

As mentioned, ZT operation lays a foundation for 
certification. The development of a high assurance system 
needs to rigorously establish a chain-of-trust and correctly 
place the system into an attestable state [8]. SOSA has 
specified a secure boot process for a system, which needs to 
be further fortified for high assurance crypto operations.  

The ESaaS powering up sequence needs to minimize the 
elements that must be implicitly trusted. As discussed, most 
COTS programmable devices require a small segment of 
implicitly trusted bootstrapping code. Also, SOSA/OpenVPX 
relies on implicitly trusted bootstrapping devices such as the 
IPMC (Intelligent Platform Management Controllers) for 
payload control and monitoring [9]. These and other 
properties must be further investigated in the development of 
ESaaS systems. Best practice needs to be explored and 
incorporated into requirements to reduce associated risks. For 
example, the bootstrapping code, typically minimal and 
concise, could be formally verified to rule out design errors 
and stored in a Read Only Memory.  

B. Component Certification 

First of all, in the ESaaS architecture, every component in 
a system is in a specified application domain with well-
defined functions and interfaces. For example, a payload 
could be a signal processor for target recognition, and another 
payload could be a secure radio. Design requirements could 
thus be created for individual components. Against the 
requirements, each component could be individually certified 
to be in compliance. Component level certification is 
particularly logical for the chassis and system manager 
components, as their hardware and software are designed to 
work with various payloads and usually unchanged when the 
system is being upgraded.   

Figure 3 illustrates the design and certification process of 
components for specific mission CONOPS and application 
domains. For example, the component is a secure radio 
embedded in an air-borne platform operating in Contiguous 
United States (CONUS). We envision that a handful of 
application scenarios could be established.  

 

Figure 3: Component compliance certification (function, interface, protocol, 
and security) with respect to mission CONOPS and application domains. 

Vendors would design components, including their 
hardware, software, and firmware, to meet mission-specific 
requirements (function, interface, protocol, and security). 
Such components are then submitted for certification against 



their requirements. This first step of the divide-and-conquer 
methodology is similar to the current practice of module level 
certification.  

C. Mission System Certification 

A mission system is then composed of certified 
components, potentially from multiple vendors. Figure 4 
illustrates the system certification process. Even though the 
components themselves have been individually certified, 
inter-component relations need to be further examined and 
determined if the system is in compliance. The mission 
system, having been verified to be in compliance with design 
requirements, can now go through its certification process.  

 

Figure 4: Mission system compliance verification and certification; (a) 
Compose mission system, (b) Verify the assembly of certified components 

do not violate system requirements, (c) Certify mission system. 

The proposed mission system certification process has two 
advantages. First, it is identical to the current practice of 
certification. Second, the component and system compliance 
verification and certification steps could facilitate and 
accelerate the certification process. Rather than a completely 
unique mission system certification, MOSA enables re-using 
known good approaches and certification artifacts. Tools 
could be created to automate or facilitate the creation of inter-
module test suites and system certification plans, the review 
of architectures (e.g., with model-based systems engineering), 
and the generation of documents. 

D. Upgrade and Re-certification 

The biggest benefit is that it could potentially streamline 
the re-certification of a mission system after it has been 
upgraded. Upgrade could be performed by loading new 
software/firmware into an existing payload in a system, 
replacing an existing payload, removing a payload, or adding 
a new payload.  

The re-certification process of an updated mission crypto 
system with a new payload is similar to the original system 
certification step in Figure 4. Since the new payload should 
have been verified to be in compliant with mission 
requirements, the updated mission system only needs an 
engineering change proposal (ECP) level certification. The 
ecosystem discussed above could be developed to facilitate 
and accelerate the re-certification process.   

V. SUMMARY 

The benefits of using a MOSA strategy in system 
acquisition and development have been demonstrated. 
However, the development of security and mission assurance 
for MOSA systems has lagged behind the standardization of 
electrical and physical interfaces. The result is that it has been 
slow to adapt MOSA in crypto development. 

ESaaS has been developed into a composable, 
reprogrammable modular architecture so that mission specific 
modules can be upgraded or swapped out to address evolving 
mission needs. Standardized common management and 
security services reduce the burden for users and maintainers 
of each platform. ESaaS has thus extended MOSA benefits 
into the development of high assurance mission systems. The 
current ESaaS architecture targets SOSA, an open systems 
standard highly invested by both the government and defense 
industry. 

It is critical to accelerate the initial certification of a 
mission system, and even more so for the following re-
certification when it has been updated. We have proposed to 
rely on modularity and reusability to accelerate the 
certification processes. We will continue to identify and 
document appropriate ESaaS modularity, interfaces, and 
protocols. We will develop the current SOSA aligned 
prototype into a testbed to identify and investigate necessary 
actions to close gaps in SOSA, from all technical, business, 
and compliance verification aspects, for ESaaS development. 
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