
LLMs for Closed-Library Multi-Document Query,
Test Generation, and Evaluation

Claire Randolph, Maj∗ , Adam Michaleas† , Darrell O. Ricke, Ph.D.†
∗Department of the Air Force, Artificial Intelligence Accelerator, Cambridge, MA, USA

{claire.randolph}@us.af.mil
†MIT Lincoln Laboratory, Lexington, MA, USA

{adam.michaleas, darrell.ricke}@ll.mit.edu

Abstract—Learning complex, detailed, and evolving knowledge
is a challenge in multiple technical professions. Relevant source
knowledge is contained within many large documents and infor-
mation sources with frequent updates to these documents. Knowl-
edge tests need to be generated on new material and existing
tests revised, tracking knowledge base updates. Large Language
Models (LLMs) provide a framework for artificial intelligence-
assisted knowledge acquisition and continued learning. Retrieval-
Augmented Generation (RAG) provides a framework to leverage
available, trained LLMs combined with technical area-specific
knowledge bases. Herein, two methods are introduced, which
together enable effective implementation of LLM-RAG question-
answering on large documents. Additionally, the AI tools for
knowledge intensive tasks (AIKIT) solution is presented for
working with numerous documents for training and continuing
education. AIKIT is provided as a containerized open source
solution that deploys on standalone, high performance, and cloud
systems. AIKIT includes LLM, RAG, vector stores, relational
database with a Ruby on Rails web interface.

Index Terms—Artificial Intelligence (AI), Large Language
Model (LLM), Retrieval-Augmented Generation (RAG), Doc-
ument as a Dictionary (DaaDy), Structured Question Answer
Dictionary (SQuAD)

I. INTRODUCTION

Some highly technical professions require learning and
retention of complex, detailed, and evolving knowledge from
multiple relevant documents and information sources. Adding
more complexity, these documents are updated with new and
changing information on a frequent basis, which makes keep-
ing up-to-date on the most current information a challenging
task for these individuals. In professions with a specified
instructor corps, generating and maintaining instructional ma-
terial on such a dynamic and vast corpus can be overwhelming
and time-consuming for instructors. Knowledge tests can assist
learners in encoding and retaining new knowledge, but can
demand a considerable amount of time and personnel to
generate and maintain. Learners are repeatedly exposed to bad
information when existing knowledge tests become outdated
as source information is modified or removed. In high-risk
professions, such as medicine or aviation, it is imperative

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the U.S. Air Force.

Fig. 1. Large Language Models (LLM) and Retrieval-Augmented Generation
(RAG) overview

that learners have access to the most up-to-date corpus of
documents and study materials.

Recent development of Large Language Models (LLMs)
combined with Retrieval-Augmented Generation (RAG) of
documents and information not included in the LLM training
data provides a framework of technology solutions to address
aspects of these education challenges. Multiple documents can
be embedded into one or more embedded databases or vector
stores. LLM RAG can be used to query the knowledge base
for specific questions; this enables rapid lookup of information
across multiple large documents. LLM RAG implementation
is able to perform very well on question-answering (QA), fact
verification, and attribution tasks while hallucinating less than
other methods [1], [2]. However, current LLM RAG capabili-
ties fall short of fully utilizing the context of a document; LLM
RAG is susceptible to what is known as the lost-in-the-middle
challenge, where the LLM struggles to fully utilize information
hidden within a long context [3], [4]. If implemented for
knowledge-intensive professions with current methods, critical
information may be lost or overlooked.

To evaluate LLM RAG for enhancing and facilitating ed-
ucation on complex, jargon-dense, closed-library documents,
the Artificial Intelligence Tools for Knowledge Intensive Tasks
(AIKIT) system was developed. To provide portability, AIKIT
has been containerized in both Singularity [5] and Docker [6]
containers and a Conda environment. AIKIT includes a Ruby
on Rails web user interface. AIKIT is being released as open
source at https://github.com/mit-ll/AIKIT.

https://orcid.org/0009-0005-7421-2705
https://orcid.org/0000-0001-7402-8303
https://orcid.org/0000-0002-2842-2809
https://github.com/mit-ll/AIKIT


II. METHODS

A. Document as a Dictionary – DaaDy

To solve the problem of incomplete text utilization for
LLM RAG on large documents, Document as a Dictionary
- DaaDy was developed. DaaDy is a framework in which
LLM RAG can be systematically completed on each sec-
tion/subsection/sentence of a document. This method takes
structured documents (documents with headings, sections,
and/or subsections), parses them, and stores the entire doc-
ument as a series of nested dictionaries where the highest-
level key is a heading/section/subsection title, and the lowest-
level value is an individual sentence from the document.
This is implemented with two Python tools, one for parsing
a document into a DaaDy (afman parser.py) and another
to consolidate multiple dictionaries (daady consolidator.py).
Using this dictionary framework, metadata can also be stored
for added functionality. The DaaDy framework allows the
prompt to be queried against all sections of a document
by loading each section/subsection/sentence into the retriever,
individually; context length remains short enough to achieve
full utilization in LLM RAG.

B. Structured Question Answer Dictionary – SQuAD

To combine LLM RAG with DaaDy, the method called
Structured Question Answer Dictionary, or SQuAD was de-
veloped. SQuAD is able to generate new material for knowl-
edge tests, with each item made up of question (Q) and answer
(A), along with section or paragraph reference (R), henceforth
referred to as QAR. SQuAD can also be used to locate context
and assess the validity of existing QARs in knowledge tests
after document revisions in the knowledge base. The expedient

Fig. 2. Docker and Singularity containerized AIKIT

LLM RAG assessment of current QARs and generation of new
QARs on updates to the knowledge base can provide benefits
to instructors and learners in knowledge-intensive professions.

Fig. 3. AIKIT command line and web interfaces



C. Containerized AI tools for knowledge intensive tasks
(AIKIT)

To easily enable hosting on multiple platforms, AIKIT
was packaged into Singularity [5] and Docker [6] containers
(Figure 2). AIKIT is also packaged in a Conda environment
(Figure 3).

D. Large Language Models and Retrieval-Augmented Gener-
ation

AIKIT is not dependent upon any specific LLM. The LLM
models Mistral-7B-Instruct-v0.2 [7], Mixtral-8x7B-Instruct-
v0.1 [8] models from Mistral AI, and other models have
been used with AIKIT. LLM RAG was implemented in
Python [9] (v3) with LangChain [10], vector stores (em-
bedding databases) FAISS [11] and chroma [12], and Hug-
gingFace embeddings model sentence-transformers all-mpnet-
base-v2 [13]. The LangChain PyPDFLoader [14] was used for
parsing Adobe portable document format (PDF) documents.
Paired Python tools were developed to create vector stores
(docs to vs.py) and LLM RAG queries (llm rag query.py).
These two Python tools accept JavaScript Object Notation
(JSON) parameter files for input.

E. Web interface

AIKIT user interface was developed in Ruby on Rails [15]
(v7.0.1) and Ruby [16] (v3.0.3). The SQLite3 database was
used for development, but AIKIT will work with any Rails
supported database. The AIKIT user interface invokes the
Python tools docs to vs.py and llm rag query.py to create
vector stores and LLM RAG queries, respectively.

F. Multi-GPU Enabled Systems

Singularity container and nvccli options were utilized to
parallelize across all of the available GPUs on the hosting
platform.

When running with –nvccli, by default SingularityCE
will expose all GPUs on the host inside the container.
This mirrors the functionality of the legacy GPU
support for the most common use-case. Setting the
SINGULARITY CUDA VISIBLE DEVICES environment
variable before running a container is still supported, to
control which GPUs are used by CUDA programs that honor
CUDA VISIBLE DEVICES.

However, more powerful GPU isolation is possible using the
–contain flag and NVIDIA VISIBLE DEVICES environment
variable. This controls which GPU devices are bound into the
/dev tree in the container. For example, to pass only the first
GPU into a container running on a system with multiple GPUs,
one would export the following variable values as shown below
to achieve this:

export NVIDIA_VISIBLE_DEVICES=0
export SINGULARITY_CUDA_VISIBLE_DEVICES=0

The Singularity contain and nvccli options were used
with GNU Parallel [17]. A master shell script was created
for each GPU with a text file containing the commands to run.

G. Prototyping Environment

AIKIT development and prototyping efforts were performed
on both x86 and ARM-based architectures. The x86 system
had two Intel Xeon Gold 6258R CPUs [18], 256GB RAM,
and an NVIDIA RTX A6000 GPU. The ARM-based system
had an Apple M2 known as a system on a chip which serves
as both a CPU and a GPU [19], 8GB RAM, and a 256GB
solid state hard drive.

H. HPC System Implementation (2-NVIDIA-V100)

The MIT Lincoln Laboratory Tx-Green system (2-NVIDIA-
V100) [20] was used as the high performance computing
system for our pipeline prototype development.

The GPU systems have Intel Xeon PHI 7210 64C 2.5 GHz
CPU with 40 cores, 377 GB RAM, Intel Omni-Path with
2 NVIDIA Tesla V100 GPUs. LLMapReduce was used to
submit jobs to the SLURM queue [21].

III. RESULTS

A. Document as a Dictionary – DaaDy

Figure 4 shows that while the specific oscillations differ
between documents and individual runs, a strong trend of
decreasing context utilization is consistent across all cases
during 300 attempts. In no case did the LLM RAG utilize
more than 25 percent of the context when the document
was longer than 18,000 characters. On average, across all
6 context bases, less than 20 percent of the context was
utilized when documents were longer than 10,000 characters
and less than 10 percent of the context was utilized when
documents were longer than 20,000 characters; our data
suggests a full-utilization maximum of between 1,000 and
2,000 characters. While research seeking to decrease the
magnitude of this effect continues, instructors and learners
who intend to use LLM RAG to generate training material
currently lack the capability to do so effectively on long
documents without losing critical information. The DaaDy
framework was developed to allow question generation
coverage of the document sections individually, ensure all
desired content is utilized.

B. Test Questions Generation

Question, Answer, Reference (QAR) groups were generated
on selected documents with LLM RAG. The goal was to
comprehensively utilize the material in the selected documents
from which a subset of useful, accurate, and well-phrased
questions could be selected. A prompt was given for the LLM
to generate a QAR for each sentence in the document which
was longer than five words (see Appendix A for final prompts



Fig. 4. Document coverage by LLM RAG generated questions

used in this research). Initially, this prompt was implemented
on the document in its entirety, and a significant amount of
context was unrepresented in the questions generated. It was
observed that for documents less than 1,000 characters long,
there was generally very high content coverage, measured by
assessing the number of QARs output divided by the number
of sentences in the document which were greater than five
words long (a result of 1.0 was assessed as full context
utilization). To study this effect further, the prompt was tested
on documents of varying lengths in order to assess where
information was being utilized and lost; six documents were
used in total (Figure 4). The prompt was implemented and
from the output, the location of each reference was derived as
a percentage of the full document length. A noticeable bias of
content from beginning of the document was noted (Figure 5)
with 5 of 6 documents showing between 17 and 26 percent of
the questions generated originating from the first 10 percent of
the document (a single outlier at 9% was observed). In the 6
documents examined, QARs produced about content at 30%,
90%, and 100% of document were below the expected 10%
percentage of questions (Figure 5).

To mitigate the lost-in-the-middle effect, DaaDy was cre-
ated. DaaDy takes a document as the input and separates
the document into a series of nested dictionaries containing
sections, subsections, and sentences. While future users could
customize the base-level of DaaDy to their needs, our testing
used the sentence as the lowest level value in the dictionary.
SQuAD calls the prompt separately on each desired section
of the dictionary, creating a QAR for each sentence in the
document. This also permits the storage of metadata about
each sentence in the document, which by alleviating the LLM
from the responsibility of correctly interpreting and storing
data from the text, allows the user to store and retrieve
sentence-level metadata with perfect recall.

Unsurprisingly, implementation of the prompt on sentence-
level DaaDy data resulted in a perfect score for context
utilization: for a 105,000 character-long document, 910 QARs

were produced in approximately 24 minutes and 30 seconds,
resulting in a per-question QAR time of 1.62 seconds on
an ARM-based system. An expert in the field was asked
to assess the QARs on their utility, accuracy, and phrasing.
The expert was also asked to identify and categorize any
anomalies in the QARs produced by LLM RAG. Out of
477 questions assessed, there were 123 questions flagged as
incongruous with the text provided. There were seven main
categories of anomalous QARs (see Appendix B for definitions
and examples): unable to answer, repetitive QA, unnecessary
justification, missing context (lists), non-sequitur, misleading
QA, and acronym hallucination. For both SQuAD question
generation and evaluation, significant degradation in LLM
RAG performance was observed when niche acronyms were
used or phrases were used outside of their normal context.

Fig. 5. Context Utilization in Varying Document Lengths

C. Test Questions Evaluation

Existing test questions based on outdated references and
publications were evaluated with LLM RAG on documents via
SQuAD to identify whether the question was still supported by
the knowledge base, in need of revision, or if relevant content
had been removed. Two question-evaluation trials were run.
First, each question in the test was posed using the entire
source publication as the context. Second, the same queries
were made using only the localized context from the DaaDy
as search context. The results of these methods were compared
against an expert’s assessment of the test questions. The expert
compared each QAR against the current source publication
and given paragraph reference from the source document. The
QAR was categorized into one of three bins: 1) correct answer
contained in specified reference context, 2) correct answer not
contained in specified reference context, 3) question verbiage
so vague that a specific, correct answer could not be reasonably
determined. Once this gold standard was established, the
expert graded the answers generated in each of the two trial
methods and categorized each response into one of nine
categories (see Appendix C for definitions and examples):
false response, irrelevant response, correct response, correct
absence, incorrect absence, irrelevant response, incomplete
response, RAG error, and context regurgitation responses. The
results of these two trials are summarized in figure 6.



Fig. 6. Context-Based Question Evaluation versus Expert Assessment

D. AIKIT User Interface

A Ruby on Rails web interface was developed for AIKIT.
The AIKIT UI includes a user interface enabling access to doc-
uments, document queries (LLM RAG), tests, and test results.
LLM model queries and LangChain [10] chaining of questions
is also included. The instructor interface is also included with
access to test questions and answers, and evaluation of test
questions.

E. Documents Query

Querying knowledge base documents is implemented in
AIKIT as standard RAG embedding of documents with a
LLM. Queries can be run via command line, Jupyter notebook,
or AIKIT web interface (Figure 3). The AIKIT web interface
database retains query results.

IV. DISCUSSION

A. SQuAD

The DaaDy framework combined with SQuAD for QAR
generation resulted in 100% content utilization in large doc-
uments, a significant improvement over current methods. As
the quality of a question stems directly from the utility of the
source context and the studied documents lack an accepted
metric for relative or absolute sentence utility, no quantitative
data was generated from this study to determine whether
the question quality using DaaDy/SQuAD was superior or
inferior than single-prompt LLM RAG. While quantitative
observations were not produced, there were a number of
relevant qualitative assessments made based on the observation
of SQuAD QAR-generation. By using a single sentence as the
context provided to the LLM RAG, a significant portion of
context/background knowledge was removed from the LLM
RAG, which may have caused at least four of the seven
categories of anomalous QAR generation (unable to answer,

repetitive QA, missing context-lists, non-sequitur, and possi-
bly, misleading). Rudimentary trials (data not shown) showed
that, generally, when context length was kept to less than 1000
characters, the full context was utilized for QAR generation.
Thus, we hypothesize that if the SQuAD method instead of
passing a sentence, passed 1000 or less characters that group
together coherent sentences, paragraphs, or sections within the
DaaDy, the generation of anomalous QARs would decrease
while maximizing context utilization.

In the area of SQuAD QAR evaluation, three scenarios
were studied. When the answer was contained in the provided
context, LLM RAG of the full document performed better at
QA than the localized context (72.7% vs. 64%), see Figure 6.
Additionally, QA on the localized context reported incorrect
absences significantly more than when queried against the
full document (24% vs. 6.1%) (Figure 6). When the answer
was not contained in the provided context, RAG of the
full document produced significantly more false (33.3% vs.
11.8%) and irrelevant (11.1% vs. 0%) responses than querying
only the localized context (Figure 6). We also observe that
the full-document LLM RAG malfunctioned more than the
localized-context LLM RAG, producing RAG errors (11.1%)
whereas the localized-context RAG produced none (Figure
6). While the study of answering poorly-phrased questions
lacks significant benefit, it is interesting to note that the full-
document query produced irrelevant responses (50%), RAG
errors (25%), and context regurgitation (25%) responses, while
the localized-context query either accurately recognized the
vagueness and reported that insufficient context was provided
to answer the question (50%), provided a correct but in-
complete response (25%), or stated that the answer was not
contained in the context (25%). (Figure 6). From this data, we
draw the conclusion that an increased quantity of background
information permits higher certainty on QA when the answer
is contained explicitly in the context. However, when the
answer is not contained in the provided context, the presence
of extraneous material produces undesirable (irrelevant and
false) responses as well as text-generation malfunctions (RAG
errors and context regurgitation). Using localized context in
these cases produce a more desirable and transparent result.

The use of DaaDy and SQuAD creates a framework where
LLM RAG behavior is more predictable and the context
utilized can be known with high fidelity. Due to this increase in
both transparency and predictability, we assert that LLM RAG
can be implemented as a tool to improve human efficiency
in knowledge-intensive professions. The importance of expert
supervision and quality assurance cannot be understated.
LLM RAG enhanced with SQuAD and DaaDy can increase
efficiency and comprehensiveness are still susceptible to the
aforementioned anomalies observed in text generation. Thus,
it is absolutely critical that these methods be utilized with
appropriate levels of supervision and a framework for quality
assurance, else the enormous increase inefficiency could turn
into a rapid spread of false information [22].



B. AIKIT UI

Access to LLMs currently is via graphical user inter-
faces or frequently by developing small Python programs.
New interfaces providing LLM RAG capabilities are being
rapidly developed. Getting the technical details connected
properly is a barrier for many projects to easily access LLM
RAG capabilities. The two Python tools docs to vs.py and
llm rag query.py provide configurable access to creating LLM
RAG embedded documents and querying them. The Ruby on
Rails AIKIT web interface profiles configurable creation and
querying of documents in LLM RAG knowledge bases. AIKIT
provides web viewing and downloading of knowledge base
documents. AIKIT also includes support of test-taking with
feedback on test questions to instructors. LLM RAG queries
and responses and test question responses for learners are
retained in the AIKIT database.

C. Recommendations for Knowledge Base Management

Throughout this research there were numerous roadblocks
that, if avoided, will significantly improve or simplify the
process by which LLM RAG can be wielded to assist in
knowledge-intensive professions. Well-structured documents
can make the parsing from text to DaaDy expedient and easy.
First, maintaining the master copy of each document in the
corpus in a purely text form (void of headers, footers, page
numbers, and other formatting characters) will significantly
ease the burden on coding and debugging automatic parsers.
Using word-processing software that encodes the document
structure in text form that can be parsed using regular expres-
sions [23] will simplify the process by which the knowledge
can be accessed using LLM RAG. Finally, for professions
that generate and maintain QARs, avoiding the following will
allow straightforward usage of LLM RAGs for test evaluation:
1) avoid asking vague or open-ended questions, 2) avoid
using different verbiage in the question than in the context
(e.g. “night” versus “between sunset and sunrise”), 3) avoid
referencing the publication title in the question unless that data
is included in the prompt.

V. FUTURE WORK

The results of this research showed that while there is
currently an upper limit to the length of context that can
be fully utilized effectively by LLM RAG, there is also a
minimum length at which the context is so isolated that its
utility decreases to the point of difficulty and inconvenience
for the user. In future iterations of SQuAD, research should
be pursued to determine the optimal context length and chunk
size to maximize effective context utilization. Once these
parameters are defined, LLM RAG can be optimized for
question generation and evaluation. Improvements to LLM
RAG should provide sentence context metadata aligned with
the document’s structure.

The prototype for the AIKIT UI, due to its fully offline
implementation, has the potential to transition to secure sys-
tems. The ability to use AI in querying and updating a vast
knowledge base while keeping one’s data and documents

secure has enormous potential in many fields with highly-
restrictive security requirements.

VI. CONCLUSION

While the capability of LLMs to produce human-like, accu-
rate, and attributable responses has improved significantly in
recent years, LLM RAG utilization of text in long documents
is an area in need of improvements; these deficiencies render
LLM RAG unsuitable as a tool for professions which require
accountable and full utilization of the profession’s knowledge
base. The document organization framework, DaaDy, and the
querying method, SQuAD, presented in this paper significantly
improve the utilization rate of LLM RAG over long documents
and provide transparency for QA tasks. By utilizing SQuAD
and DaaDy, human expertise and intuition can be enhanced
by expedient context-querying and content generation.

Additionally, the AIKIT prototype is a fully-containerized,
offline solution which can be easily deployed on laptops,
workstations, high-performance computing (HPC) clusters,
and cloud solutions. AIKIT can thus provide easy-to-use
LLM RAG to a wide audience. AIKIT runs on any platform
- from a system on a chip (SOC) [19] to HPC or cloud
infrastructure. AIKIT is being released as open source at
https://github.com/mit-ll/AIKIT. Please contact the authors
with questions, requests, or feedback.

ACKNOWLEDGMENT

This research was facilitated by the Department of the
Air Force Artificial Intelligence Accelerator at Massachusetts
Institute of Technology (MIT) and MIT/Lincoln Laboratory.
The authors acknowledge the MIT SuperCloud and Lincoln
Laboratory Supercomputing Center teams for providing the
HPC resources that were utilized to generate the research
results reported within this paper. The authors would also like
to acknowledge Jason Williams from MIT Lincoln Laboratory
for providing graphic artist support.

REFERENCES

[1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” 2021.

[2] K. Wu, E. Wu, A. Cassasola, A. Zhang, K. Wei, T. Nguyen, S. Ri-
antawan, P. S. Riantawan, D. E. Ho, and J. Zou, “How well do llms cite
relevant medical references? an evaluation framework and analyses,”
2024.

[3] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
vol. 12, pp. 157–173, eprint: https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl a 00638/2336043/tacl a 00638.pdf. [Online].
Available: https://doi.org/10.1162/tacl a 00638

[4] P. Xu, W. Ping, X. Wu, L. McAfee, C. Zhu, Z. Liu, S. Subramanian,
E. Bakhturina, M. Shoeybi, and B. Catanzaro, “Retrieval meets long
context large language models,” 2024.

[5] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute.” [Online]. Available: https:
//journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0177459

[6] “Docker: lightweight linux containers for con-
sistent development and deployment.” [On-
line]. Available: https://www.linuxjournal.com/content/
docker-lightweight-linux-containers-consistent-development-and-deployment

https://github.com/mit-ll/AIKIT
https://doi.org/10.1162/tacl_a_00638
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0177459
https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0177459
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment


[7] “Mistral-7b-instruct-v0.2, 2024.” [Online]. Available: https://
huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

[8] “Mixtral-8x7b-instruct-v0.1.” [Online]. Available: https://huggingface.
co/mistralai/Mixtral-8x7B-Instruct-v0.1

[9] “Python programming language.” [Online]. Available: https://www.
python.org

[10] “Langchain.” [Online]. Available: https://python.langchain.com/v0.1/
docs/get started/introduction

[11] “Faiss ai.” [Online]. Available: https://faiss.ai/index.html
[12] “chroma.” [Online]. Available: https://www.trychroma.com
[13] “Huggingface all-mpnet-base-v2.” [Online]. Available: https:

//huggingface.co/sentence-transformers/all-mpnet-base-v2
[14] “Langchain pypdfloader.” [Online]. Available: https:

//api.python.langchain.com/en/latest/document loaders/langchain
community.document loaders.pdf.PyPDFLoader.html

[15] “Ruby on rails.” [Online]. Available: https://rubyonrails.org
[16] “Ruby programming language.” [Online]. Available: https://www.

ruby-lang.org/en/
[17] “Gnu parallel.” [Online]. Available: https://www.gnu.org/software/

parallel/
[18] “Intel xeon gold 6258r processor.” [Online]. Available:

https://www.intel.com/content/www/us/en/products/sku/199350/
intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz/specifications.
html

[19] “Apple m2.” [Online]. Available: https://en.wikipedia.org/wiki/Apple
M2

[20] “Tx-green on top 500 list.” [Online]. Available: https://www.top500.
org/system/178939/

[21] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell,
M. Jones, P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scalable
system scheduling for HPC and big data,” Journal of Parallel and
Distributed Computing, vol. 111, pp. 76–92, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731517301983

[22] R. Fernando, “Module 1: Setting the stage,” Online Lecture, 2022.
[23] G. Van Rossum, The Python Library Reference, release 3.8.2. Python

Software Foundation, 2020.
[24] “Mistral basic rag documentation.” [Online]. Available: ttps://docs.

mistral.ai/guides/rag/

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://www.python.org
https://www.python.org
https://python.langchain.com/v0.1/docs/get_started/introduction
https://python.langchain.com/v0.1/docs/get_started/introduction
https://faiss.ai/index.html
https://www.trychroma.com
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
https://rubyonrails.org
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.intel.com/content/www/us/en/products/sku/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz/specifications.html
https://en.wikipedia.org/wiki/Apple_M2
https://en.wikipedia.org/wiki/Apple_M2
https://www.top500.org/system/178939/
https://www.top500.org/system/178939/
https://www.sciencedirect.com/science/article/pii/S0743731517301983
ttps://docs.mistral.ai/guides/rag/
ttps://docs.mistral.ai/guides/rag/


APPENDIX A
PROMPTS FOR SQUAD GENERATION AND EVALUATION

Prompt for SQuAD QAR Evaluation [24]:

prompt_input = """Answer the following question as concisely as possible
based only on the provided context. If you are not sure of the answer,
your answer should be "Insufficient context provided."
Keep your answer short and to the point. Avoid using the words "the context"
in your answer.

<context>
{context}
</context>

Question: {input}"""

Prompt for SQuAD QAR Generation:
The input prompt used for this research was built off of previous research from Wu et al. [2]

prompt_input = """Answer the following question based only on the provided context:

<context>
{context}
</context>

Question: {input}""")

input = """You are given context that contains information. Generate a
question and answer pair that tests the reader’s understanding of the
information contained within the prompt. Each question should provide
sufficient context so that the question does not require the context to be
fully understood. Do not reference the word ’context’ in the question or
answer. The question should have a straightforward answer that can be easily
verified with the context. In addition to the question, provide the answer that
is succinctly taken from the prompt.
Provide the question and answer in the following format:
Question: Provide the question here.
Answer: Provide the Answer here. Make the answer as concise as possible."""



APPENDIX B
SQUAD GENERATION - ANOMALOUS QAR CATEGORY DEFINITIONS AND EXAMPLES

1) Unable to Answer - the QAR produced included a question that the context did not answer, to which it correctly answered
that the answer was not available in the context provided. Example:

• Question: “Under what circumstances are runway operations automatically suspended?”
• Answer: “Runway operations are automatically suspended when not specified in the context. The context does not

provide information on the specific reasons for suspension.”
2) Repetitive QA - the QAR produced included a question and answer pair where the answer was a part of the question,

resulting in either a confusing question or an obvious answer. Example:
• Question: “In what situation might you need to evacuate an airport runway in an emergency?”
• Answer: “In an emergency runway evacuation.”

3) Unnecessary Justification - the QAR produced included a, generally obvious, justification after the answer despite the
fact that it was prompted to avoid doing so and that the context was very short. Example:

• Question: “Who or what must approve cable certifications?”
• Answer: “The 20 OG/CC must approve cable certifications. Answer derived from the prompt: ‘Cable certifications

must be approved by the 20 OG/CC.’”
• Context: “Cable certifications must be approved by the 20 OG/CC.”

4) Missing Context (Lists) - the LLM RAG was prompted on each sentence, resulting in the complete loss of context when
the sentence was a part of a list of items or actions. When sub-items in a list were taken out of context, the result was
inaccurate and confusing information which could be seriously detrimental to the learner if not caught. Example:

• Question: “Under what circumstances are pop patterns allowed in this situation?”
• Answer: “Pop patterns are allowed only if required for syllabus sorties.”
• Localized Context: “No pop patterns unless required for syllabus sorties.”
• List context:

– “2.4.2. [Bird Watch Condition] Moderate — Low approaches and chase aircraft limited to events that could not
be accomplished at other airfields and are required for training or checkrides. No formation approaches.”

– “2.4.2.1. Low Altitude Structure. 1,000 feet AGL minimum, except as required for weapons delivery (defined as
within 10 NM of target). If low altitude currency is required for contingency operations or training requirements,
minimize time in low altitude structure below 1,000 feet AGL.”

– “2.4.2.2. Poinsett Range. 1,000 feet AGL minimum, except as required for weapons delivery (defined as base
position for the curve pattern). No pop patterns unless required for syllabus sorties.”

• Explanation: The question uses the verbiage “in this situation” rather than “during a Bird Watch Moderate condition”
which lacks the critical connection between cause and effect for this context.

5) Non-Sequitur - when context was very short and non-descriptive, LLM RAG generated what the expert categorized as
accurate but useless QAR. Example:

• Question: “In what domain does the term ‘Airfield Lighting Systems’ belong?”
• Answer: “Airfield Lighting Systems belong to the domain of aviation or airfield infrastructure.”

6) Misleading - in an effort to be concise, LLM RAG would produce a QAR that was misleading. Example:
• Question: “On which Mondays are both runways open for use?”
• Answer: “Both runways are open on Mondays that are not the 1st, 2nd, 3rd, or 4th Monday of the month.”
• Context: “Runway 04L/22R will close every 1st/3rd Monday and Runway 04R/22L will close every 2nd/4th Monday

of the month from 0700L to 1100L for preventative maintenance (PM).”
• Explanation: The QAR produced indicates that both runways are closed on the 1st, 2nd, 3rd, and 4th Monday of

the month; in reality, only one runway is closed between 0700L and 1100L.
7) Acronym Hallucination - in many cases where an acronym was used, LLM RAG hallucinated the full title and provided

the incorrect entity in the question and/or the answer. Example:
• Acronym: SOF
• Correct Entity: Supervisor of Flying
• Hallucinated Entity: Senior Operations Force commander



APPENDIX C
SQUAD EVALUATION - RESPONSE CATEGORY DEFINITIONS

1) False Response - the response provided was an incorrect answer to the question.
2) Irrelevant Response - the response provided was not relevant to the question asked.
3) Correct Response - the response provided was assessed as correct by the expert.
4) Correct Absence - the response accurately reported that the answer to the question was not contained within the provided

context.
5) Incorrect Absence (false negative) - the response inaccurately reported that the answer to the question was not contained

within the provided context, even though it was.
6) Vague Response - the response accurately reported that there was no specific answer to the questio asked.
7) Incomplete response - the response provided was true but was missing some critical information from the same context.

Example:
8) RAG Error - the response provided was obviously cut off mid word, acronym, or sentence.
9) Content Regurgitation - the response provided was an excerpt or series of excerpts copied exactly from the context.


	Introduction
	Methods
	Document as a Dictionary – DaaDy
	Structured Question Answer Dictionary – SQuAD
	Containerized AI tools for knowledge intensive tasks (AIKIT)
	Large Language Models and Retrieval-Augmented Generation
	Web interface
	Multi-GPU Enabled Systems
	Prototyping Environment
	HPC System Implementation (2-NVIDIA-V100)

	Results
	Document as a Dictionary – DaaDy
	Test Questions Generation
	Test Questions Evaluation
	AIKIT User Interface
	Documents Query

	Discussion
	SQuAD
	AIKIT UI
	Recommendations for Knowledge Base Management

	Future Work
	Conclusion
	References
	Appendix A: Prompts for SQuAD Generation and Evaluation
	Appendix B: SQuAD Generation - Anomalous QAR Category Definitions and Examples
	Appendix C: SQuAD Evaluation - Response Category Definitions



