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Abstract—In scientific computing, key algorithms are imple-
mented using domain specific libraries. In many cases these
algorithms cannot be expressed using just one domain library,
instead having to use library calls from various domains. Cross
library implementations are productive but suffer in performance
because library developers cannot optimize library calls outside
their domain. Additionally, automated solutions like compilers
struggle to optimize these cases as they cannot cross the library
call boundary. This leaves manually implementing optimized
algorithms for idealized performance, hindering readability and
productivity. We propose LibraryX as a framework to express key
algorithms using domain libraries while automatically providing
high-performance implementations done by hand. LibraryX uses
a combination of library call semantic capture, abstraction
lifting/code generation, and runtime compilation to provide opti-
mized implementations without modifying the source application.
We demonstrate LibraryX using the example of FFT convolution.

I. INTRODUCTION

Domain-specific libraries have long been the standard for
performance in scientific computing. Library developers focus
on the performance of each of their operators while applica-
tions developers use those operators to clearly express their
computations. This offers a clear separation of concerns for
library developers and application developers. However, as we
near the limits of Moore’s Law, this this separation is fading.
Large intermediate buffers and significant data movement
between domain libraries has made relying solely on optimized
kernels within a domain insufficient. Performance experts are
required to optimize computations by fusing kernels across
domains, stripping away library calls. This aids in performance
at the cost of readability and programmer productivity.

This tradeoff between productivity and performance will
only continue to get more challenging. The cambrian explo-
sion of computer architectures further exacerbates application
complexity. Each new architecture requires new language
extensions and programming models to utilize effectively. This
in turn requires complex control flow or specialized execution
engines, adding additional build complexity. While portability
layers aim to resolve many of these issues they struggle to
achieve similar performance to hand written codes.

We propose LibraryX as a solution to this complicated
search space of performance and productivity. LibraryX can
optimize scientific applications by recognizing known com-
putation patterns and replacing them with optimized variants.
This is done by treating library calls as specifications rather

than implementations. LibraryX utilizes a combination of lazy
evaluation to capture the computation’s semantics, abstraction
lifting to recognize computations, code generation to produce
an architecturally optimized kernel, and runtime compilation
to replace the original library based implementation without
modification to the source implementation.

II. EXAMPLE: FFT CONVOLUTION

Convolution is an important kernel in scientific computing
especially in the area of spectral methods, which have large
inputs at scale. For large inputs the FFT convolution, with
complexity O(n log n), is more attractive than direct convo-
lution which has complexity O(mn) where m is the filter
matrix which is generally much smaller than n. Figure 1 shows
the source code for an FFT convolution using various domain
libraries. It consists of three function calls a forward real-to-
complex FFT, a complex multiplication of the FFT output with
the second input and an inverse complex-to-real FFT.

While easy to read and modify for different architec-
tures this implementation can be significantly optimized. The
temporary buffer for the complex multiply is not needed.
Additionally the memory traffic overhead can be reduced by
using the result of the FFT immediately as its being computed
[3]. Unfortunately, these optimizations are difficult to perform
without significantly modifying the source code and inspecting
the implementation of each library call. We demonstrate
how LibraryX is able to provide these optimizations without
changing the source application.

Delayed Execution. To understand the computation we first
need to capture its semantics. This is done through LibraryX’s
lazy evaluation mechanism. Instead of executing a library
call, LibraryX captures and transforms that call into a no-op.
This allows LibraryX to side effect the function to expose its
semantics details and generate a dataflow graph of the given
computation. This side effect representation is the Operator
Language (OL) formulation that will be used by the SPIRAL
[1] code generation system for analysis and optimization.
Once complete, the function checkOutput acts as the ex-
ecution trigger, invoking abstraction lifting, code generation
and runtime compilation of the optimized implementation. For
convolution this means we generate an OL expression for each
of its components, the FFT, pointwise multiply, and inverse
FFT.



1 #include <iostream>
2 #include <complex>
3 #include <vector>
4 #include <algorithm>
5 #include "fftw3.h"
6 #include "libraryX.hpp"
7 using namespace std;
8

9 int main() {
10 int N = 1024;
11 vector<double> input(N*N*N);
12 vector<double> output(N*N*N);
13 vector<complex<double>> input2(N*N*N);
14 vector<complex<double>> temp(N*N*N);
15 vector<complex<double>> out(N*N*N);
16 buildInput(input);
17 buildInput(input2);
18

19 fftw_plan p = fftw_plan_dft_r2c_3d(N, N, N,
20 input.data(), (fftw_complex*)out.data(),64);
21 fftw_execute(p);
22

23 auto complex_multiply = std::multiplies<>{};
24 std::transform(out.begin(), out.end(), //range
25 input2.begin(), //second input
26 temp.begin(), //output
27 complex_multiply); //operator
28

29 fftw_plan p2 = fftw_plan_dft_c2r_3d(N, N, N,
30 (fftw_complex*)temp.data(), output.data(),64);
31 fftw_execute(p2);
32

33 checkOutput(output);
34 }

Fig. 1. FFT convolution example. This C++ code is transparently executed
on an AMD GPU after it is dynamically translated to HIP.

Abstraction Lifting and Code Generation. After a se-
quence of operations is captured as an OL DAG its needs
to be recognized. We leverage SPIRAL’s extensive pattern
matching engine to discover if the input OL DAG is a known
pattern. This pattern matching engine takes information like
input size and dataflow to find the best expression available.
If successful, the input OL DAG will be lifted into a single
OL expression encapsulating the computation.

The lifted OL convolution goes through SPIRAL’s OL trans-
formation hierarchy which enables optimizations at different
levels of abstraction. This includes different breakdowns for
algorithm selection, loop merging, and index simplification.
For convolution this would be optimizations such as removing
the temporary and pipelining computations. The optimized
expression is then lowered to SPIRAL’s intermediate represen-
tation where traditional compiler optimizations are performed,
such as strength reduction and copy propagation. The final im-
plementation can be generated for various hardware platforms
and ISAs.

Runtime Compilation. After code generation is complete
the generated code needs to be compiled and linked to the
running application executing in place of the delayed imple-
mentation. This is done through a hardware abstraction layer
(HAL). HAL parses the metadata of the SPIRAL generated
code to compile and execute on a given target platform such
as CPUs or GPUs. This metadata includes external temporary
memory buffers, thread blocks and grids, and kernel invocation
order. Once the metadata is parsed HAL uses vendor specific
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Fig. 2. Performance comparison between a baseline, vendor, and LibraryX
implementation of cyclic convolution. LibraryX is competitive with the vendor
implementation, outperforming them for sizes with larger prime factors.

runtime compilation to dynamically link and execute the kernel
using the user provided input and output buffers as arguments.

III. CONCLUSION AND FUTURE WORK

LibraryX is a framework for cross-library call optimization
in scientific applications. Through a combination of semantic
capture, abstraction lifting, code generation, and runtime com-
pilation, LibraryX is able to optimize scientific applications
written against libraries without changing the source applica-
tion. LibraryX translates an application from a direct execution
model to a lazy evaluation model in order to understand the
computations’ semantics. The derived computation graph is
given to the SPIRAL code generation system for analysis
and optimization, producing a high-performance kernel for a
variety of hardware platforms. LibraryX’s backend is then able
to execute the application on a configured target architecture
in place of the original execution, transparently populating
the output buffer. LibraryX is extensible, supporting various
vendor runtime and compilation systems but also other types of
runtime systems such as the IRIS [2] runtime system. We plan
to extend LibraryX to target other application frontends such as
Python and Fortran as well as other domains like cryptography
[5] and graph processing [4].
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