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Abstract—The multifrontal method is an efficient direct
method for solving sparse linear systems. This algorithm trans-
forms the factorization of a large and sparse matrix into a
sequence of dense matrix operations. Some of these dense opera-
tions can be accelerated with FPGAs, while others are suitable for
CPUs. In this paper, we propose a tightly coupled heterogeneous
domain-specific architecture (DSA) for the efficient execution
of the multifrontal algorithm. This tightly coupled hardware
architecture ensures low communication overhead between the
CPU and FPGA. Each matrix operation is assigned to the CPU
or FPGA based on its characteristics. Furthermore, we apply the
task-based scheduling model for multi-core architectures to our
heterogeneous DSA. Considering the difference in the storage
structure of the CPU and FPGA, we modify the original task
graph and propose a data-centric task graph that is more suitable
for the FPGA. Based on this scheduling model, we propose two
optimizations to further improve performance. Finally, we test
the scheduling overhead of the system and determine the finest
task granularity accordingly. We evaluate our architecture on
Xilinx ZCU102. Compared to MUMPS, for a set of 5 matrices,
our implementation can achieve an average of 4.3× performance
improvement with just 10% of the computing power.

Index Terms—multifrontal methods, FPGA, heterogeneous
architectures, task-level parallelism

I. INTRODUCTION

Solving sparse linear systems plays a pivotal role in nu-
merous scientific and engineering applications [1]–[3]. The
two primary approaches employed for this purpose are direct
methods and iterative methods. Direct methods can calculate
the result in a finite number of steps, as long as a solution
to the linear system exists. In contrast, iterative methods
tend to converge slowly or even fail to converge for ill-
conditioned matrices with large condition numbers. Among
direct methods, the multifrontal method [4], [5] has proved
to be extremely valuable due to better data locality and its
adaptability to parallel computations. Despite its potential for
parallelization, existing architectures and scheduling strategies
fail to effectively exploit its inherent parallelism.

The multifrontal method transforms the factorization of a
sparse matrix into partial factorizations of a series of smaller
frontal dense matrices by constructing an elimination tree.
The factorization of a frontal matrix comprises three main
operators: panel factorization (PANEL), triangular solve with
multiple right-hand sides (TRSM), and general matrix-matrix
multiply (GEMM) [6]. Since these operators have different

dataflow and the topology of the elimination tree is irreg-
ular, as far as we know, there is no FPGA-based acceler-
ator [7]–[9] for this algorithm. We propose a hybrid CPU-
FPGA architecture and assign each operator to the appropriate
components. The operations involved in TRSM and GEMM
are almost exclusively matrix multiplication. Although these
operations are conceptually straightforward, they exhibit high
time complexity (i.e., O(n3)). FPGAs have excellent energy
efficiency and can provide the desired arithmetic intensity
for these two operators. On the other hand, PANEL has
a lower time complexity (i.e., O(n2)), but entails complex
dataflow and an indefinite loop structure. The CPU, with its
complex control logic, is a good choice for this operator.
Furthermore, our architecture is tightly coupled. Compared
with other heterogeneous architectures, such as the CPU-GPU
approach [10]–[12], the communication latency of the FPGA
and CPU is very low.

The potential for parallelism of the multifrontal method
stems from the fact that the elimination tree points out
the dependencies between the frontal matrices, enabling the
parallel execution of independent frontal matrices. Due to
the irregular topology of the elimination tree, the size of the
workload changes during the execution. Therefore, we propose
a task-based execution model to exploit task-level parallelism
[13], [14]. In task-based scheduling, the dependencies between
tasks are represented by a task graph and tasks with no
dependencies can be executed in parallel. Since there is no
hierarchical storage structure on FPGAs and data movement
is expressed implicitly in the task graph, the input and output
data of a task can only be accessed from DRAM. To hide
the long latency of DRAM accesses on FPGA platforms, we
propose a data-centric task graph that explicitly points out
data movement between DRAM and the on-chip buffer. Based
on the data-centric task graph, we propose two optimizations
for scheduling: Throttle and Immediate Successor. Throttle
aims to reduce scheduling overhead and Immediate Successor
focuses on minimizing off-chip accesses by exploiting data
locality between tasks.

The contributions of this work can be summarized as
follows:

• We introduce a tightly coupled heterogeneous DSA de-
signed to accelerate the multifrontal method, leveraging
the advantages of both CPUs and FPGAs.
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Fig. 1. (a) The nonzero structure of a sparse matrix. The fill-in is represented
by a ‘◦’. (b) The elimination tree of the sparse matrix in (a). (c) Assembling
the frontal matrix indicated by the red arrows in (b).

• We propose a data-centric task-based execution model,
accompanied by the introduction of two optimizations for
scheduling.

• Performance is only improved when task granularity
exceeds a certain threshold. We determine the threshold
experimentally and merge tasks whose granularity is
below this threshold. Then we evaluate the performance
of our architecture and compare it with MUMPS [15].

II. BACKGROUND

Multifrontal methods generally use a three-phase approach
to solve a sparse linear system (i.e., Ax = b): Analysis,
Factorization and Solve.

In Analysis phase, as shown in Fig. 1 (a), the structure of
the coefficient matrix is analyzed and the fill-in entries (i.e.,
extra nonzeros generated during Gaussian elimination process)
are obtained. Based on the nonzero structure of the sparse
matrix, an elimination tree is constructed. To enhance data
locality and computational efficiency, the supernodal version
of multifrontal methods is commonly employed. A supernode
[4], [5] is a contiguous range of columns having the same
lower diagonal nonzero structure in the input sparse matrix,
such as the root node (i.e., Column 7, 8, 9) in Fig. 1 (b).

In Factorization phase, the elimination tree is traversed in a
topological order from bottom to top. We refer to the matrix
corresponding to each node as the original matrix, and Schur
complement generated during factorization of each node as
the contribution matrix. The processing of a node τ consists
of four steps: 1.

1) As illustrated in Fig. 1 (c), the original matrix and the
contribution matrices generated by child nodes of τ are
assembled into the frontal matrix Fτ . This operation is
also called an extend-add operation.

2) PANEL. Performing LU factorization of the block F11:
F11 = L11U11. Updating the block F21: F21 = F21U
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Fig. 2. Heterogeneous architecture for the supernodal multifrontal algorithm.

Although F11 in Fig. 1 (c) is an element, it is a block
matrix in most cases.

3) TRSM. Updating the block F12: F12 = L−1
11 F12.

4) GEMM. Computing the contribution matrix Uτ : Uτ =
F22 − F21F12.

In Solve phase, we obtain the solution by solving two
triangular systems (i.e., Ly = b and Ux = y). It is experi-
mentally demonstrated that most of the execution time of the
multifrontal algorithm is spent on Factorization phase [11].
Therefore, our optimization strategies primarily focus on this
phase.

III. THE TIGHTLY COUPLED HETEROGENEOUS
ARCHITECTURE

In this section, we design a tightly coupled heterogeneous
DSA. We first describe the architecture overview and then
present details of the architecture design.

A. Architecture Overview

Fig. 2 illustrates the tightly coupled heterogeneous DSA.
The architecture comprises Processing System (PS) and Pro-
grammable Logic (PL). PS contains four high-performance
ARM cores. In PL, we design Extend Add modules and
systolic arrays to accelerate the extend-add operation and
matrix multiplication. As mentioned earlier, the algorithm
contains three main tasks: PANEL, TRSM and GEMM. PS
is responsible for managing all tasks and executing PANEL,
while TRSM and GEMM are assigned to PL. PS can directly
access Double Data Rate (DDR) memory through Memory
Controller. While the data transfer between PL and DDR
is accomplished by sending requests to Memory Controller
through Direct Memory Access (DMA). PS and PL are



packaged on the same chip. The data transfer between them
is achieved through the Advanced eXtensible Interface (AXI)
bus, allowing for efficient and low-latency communication.

B. Buffer Management

The multifrontal method produces a large number of in-
termediate matrices with variable sizes during the execu-
tion. Therefore, buffer management is an important issue.
Amestoy and Duff, in [16], discuss several memory manage-
ment schemes in a parallel environment, including garbage
collection, fixed block, binary buddy system and combined
strategies. These schemes target multi-core architectures. They
are either not easy to implement on PL (e.g., buddy system) or
not efficient enough (e.g., garbage collection and fixed block).

Buffer
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Page Address Next EntryState

Page Table Entry
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Fig. 3. Buffer management scheme.

In Fig. 3, we introduce a buffer management scheme based
on page tables. Each matrix is stored in several discrete pages
and these pages are organized in a linked list. Each page
table entry consists of three parts: a Status bit indicating
whether the page is idle or in use, a Page Address pointing
to the first address of the page and a Next Entry pointing
to the next item in the linked list. One crucial aspect of our
buffer management scheme is the selection of the page size.
Choosing an excessively large page size can lead to wastage
of storage space, while opting for a small page size can
increase management overhead and the number of accesses
to the page table. Therefore, the selection of the page size is
done skillfully, striking a balance between storage efficiency
and management overhead.

In summary, our scheme has the following advantages: 1.
1) No memory fragmentation and no need for garbage

collection: The use of discrete pages and the linked list
organization prevent memory fragmentation issues.

2) Hardware-based page selection: We employ a hardware
encoder to select idle pages in real time. This hardware
implementation of buffer management is more efficient
compared to software-based approaches.

3) Minimal overhead of accessing the page table: Since
the page table is stored directly on the buffer of PL, the
overhead of accessing it is minimal.

C. Systolic Array

The classical systolic array can handle GEMM but not
TRSM, because TRSM involves the inverse of the lower
triangular matrix (i.e., L−1

11 ). In the classical systolic array,

one input matrix is fed in a row at a time from the top of
the array and is passed down the array. In the execution of
TRSM, the data passed down the array is no longer the input
matrix itself, but rather the calculation result of the previous
row. This requires a modification to the processing pattern
of the classical systolic array. As shown in Fig. 4, we add a
multiplexer (MUX) and a control signal (represented by the
red arrow) to each PE. Switching between the two processing
patterns (i.e., TRSM and GEMM) is achieved through the
control signal.
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Fig. 4. Systolic array for TRSM and GEMM.

IV. EXPLORING TASK-LEVEL PARALLELISM

In this section, we first describe our task-based scheduling
model without any optimizations. Then we explain the data-
centric task graph. Finally, two optimizations for scheduling
are introduced.

A. Design of Baseline Execution Model

In the task-based execution model, an algorithm is usually
expressed as a Directed Acyclic Graph (DAG) of tasks and
an associated dataflow. Fig. 5 (a) illustrates a task graph
generated from the example depicted in Fig. 1 (b). The size
of the task graph increases with the sparse linear system.
To reduce the storage overhead, the task graph is generated
dynamically rather than being pre-computed and stored in its
entirety. This dynamic generation approach allows for efficient
utilization of memory resources while still enabling effective
task scheduling and execution.

During execution, a controller consisting of a small number
of threads is assigned to generate the task graph and submit
tasks. We set up a ready task FIFO to hold the tasks that can
be issued. Submitted tasks can enter the FIFO only if their
dependencies are released. Otherwise, these tasks are kept in
memory and wait for their task predecessor sets to release
their dependencies. For example, consider a Read-After-Write
(RAW) dependency between tasks A and B, where the output
of B is the input of A. The dependency of task A can be re-
leased by task B after B has been completed. Accelerators and
most threads access the FIFO to fetch ready tasks and execute
them. To prevent race conditions arising from simultaneous
access to the FIFO, lock-based synchronization mechanisms
are employed. However, mutually exclusive access to the FIFO
can occasionally become a performance bottleneck. In our
architecture, PS and PL are responsible for different tasks. To
ensure efficient task management, separate FIFOs are utilized:
Ready Task FIFO for PANEL in PS and Ready Task FIFO for
TRSM & GEMM in PL. When a task is completed, all tasks
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Fig. 5. Task graph for Factorization phase. (a) Baseline. (b) Data-centric task
graph.

that have data dependencies with it are checked to determine
if their dependencies can be released.

B. Data-Centric Task Graph

The task graph can work well on a multi-core architecture,
but not on our heterogeneous DSA. CPUs prioritize accessing
data from the cache to avoid the long latency associated with
DDR accesses, and there is corresponding hardware on CPUs
to automatically perform data movement between DDR and
the cache. However, FPGAs do not have these mechanisms.
Each time PL executes TRSM and GEMM, it needs to read
the input of the task from DDR and write the result back to
DDR. Considering the data transfer overhead, the utilization
of computational resources on PL can be relatively low.

To solve this problem, we introduce data transfer into the
task graph. Fig. 5 (b) and Fig. 6 illustrate our data-centric
task graph and the corresponding dataflow, respectively. In
our approach, we consider the buffer on PL as part of the
address space. For the factorization of a frontal matrix, task
DR moves the original matrix from DDR to the buffer. Since
the contribution matrices are already stored on the buffer,
the extend-add operation can be performed immediately. It
can be seen from Fig. 6 that each computational task (i.e.,
PANEL, TRSM and GEMM) can directly access the input
data from the buffer and writes the result to the buffer.
The factorized matrix is generated after the completion of
TRSM. While GEMM updates the contribution matrix using
the factorized matrix, task DW writes the factorized matrix
on the buffer back to DDR. In Fig. 7, we compare the
execution efficiency before and after optimization. Suppose we
have one CPU core and two systolic arrays. The data-centric
task graph effectively reduces communication with off-chip
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memory. Since computational tasks no longer need to access
off-chip memory, the overall execution efficiency is improved.

C. Throttle

As mentioned in Section IV-A, our task-based execution
model is a centralized scheduling scheme. Typically, each exe-
cution unit (i.e., a thread or a systolic array) sends a message to
the controller upon completing its current task. Upon receiving
the message, the controller releases the dependencies of that
task’s successor set. However, the controller can only receive
messages serially. Furthermore, the process of dependency
release involves memory access and is also serialized. As
a result, a large number of execution units are waiting for
a response from the controller, leading to decreased overall
execution efficiency. In the case of fine task granularity, this
is exacerbated by an increased number of tasks.

To address this issue, we introduce Throttle, a mechanism
that restricts the number of task dependencies that can be
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Fig. 8. An example of Throttle. Write nodes are completed tasks, green nodes
are tasks that are awaiting dependency release, and yellow nodes are tasks
whose dependencies have been released. The threshold is set to 6.

released. We give an example of this mechanism in Fig. 8.
Let’s assume a threshold value of 6. Without Throttle, upon
completing tasks 2 and 3, the dependencies of tasks 4-13 can
be released. However, with Throttle, only the dependencies of
the six tasks (i.e., tasks 4-9) within the red sliding window can
be released. The gain is that the execution unit of task 3 can
proceed to execute the next task as soon as the dependency
of task 9 is released, without waiting for tasks 9-13. The
sliding window is updated periodically, pushing tasks that
are awaiting dependency release and pulling tasks whose
dependencies have been released. In this way, we can limit the
task scheduling overhead to a reasonable range, preventing it
from becoming a performance bottleneck.

D. Immediate Successor

In a task graph, some nodes have unique immediate pre-
decessors. In this case, all input data of the node comes
from its only immediate predecessor. Prioritizing the execution
of such nodes can make full use of on-chip data. We call
this mechanism Immediate Successor. Fig. 9 illustrates an
example of Immediate Successor. Suppose that task D has
been completed. Task A is the only immediate predecessor
of task B, whereas task C has other predecessors. After the
completion of task A, its output data is temporarily stored on-
chip before being sent to memory and cleared. At this point, all
input data of task B can be obtained directly from the on-chip.
To ensure that task B is prioritized, we send it directly to the
local buffer of the execution unit. Since the output data of task
D may have already been cleared from the on-chip, prioritizing
task C would not provide significant benefits. Therefore, task
C enters the ready task FIFO as normal.
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V. EVALUATION RESULTS

We first describe our hardware platforms. Next, we de-
termine the finest task granularity with a semi-quantitative
approach. Finally, we compare our architecture to a parallel
sparse direct solver MUMPS.

A. Experimental Setup

1) Platform: We implement the accelerator in Verilog HDL
on Xilinx ZCU102. This platform features an ARM Cortex-
A53 processor. To evaluate the performance of our proposal,

we compare our architecture with a parallel sparse direct
solver MUMPS that runs on Intel Xeon Gold 6258R Processor.
MUMPS utilizes MPI and OpenMP and has been carefully
fine-tuned for optimal performance.

2) Benchmark: As illustrated in Tab. I, we evaluate our
scheduling model and architecture on five benchmark matrices
generated from electromagnetic field simulations for antennas.
These matrices correspond to different antenna structures,
exhibiting diverse sizes, densities, and element distributions.

TABLE I
BENCHMARK OVERVIEW.

Dimention Nonzeros Matrix Density
case 1 281904 11542476 0.0145%
case 2 618854 25198164 0.00658%
case 3 1373938 56417664 0.00299%
case 4 7702396 320983700 0.000541%
case 5 39863268 1631954894 0.000103%

B. Analysis of Task Granularity

The finer the task granularity, the greater the scheduling
overhead relative to the execution overhead [17], [18]. Tasks
should be coarse enough to fully leverage the performance
benefits offered by the FPGA, considering the scheduling
overhead. We set a threshold for the finest allowed task
granularity, ensuring that the scheduling overhead remains
lower than the execution overhead. The threshold is obtained
with a semi-quantitative approach.

We calculate the execution overhead for each computational
task (i.e., PANEL, TRSM, GEMM, and Extend Add). Because
the input data of each task is a dense matrix and the systolic
array has fixed dataflow, the execution overhead of tasks
performed on the FPGA is a function of the size of the matrix
and the systolic array. For each type of task performed on the
CPU, the execution time is proportional to the task size. We
obtain the scale factor for each type of task experimentally so
that the execution time can be estimated.

We measure the average scheduling
Task granularity is measured in terms of the execution time

of each task. Tasks with granularity below the threshold should
be merged into larger tasks. To increase the task granularity,
we should increase the size of nodes in the elimination tree.
Therefore, it is necessary to treat some logical zeros as nonze-
ros. In this way, nodes/supernodes can be amalgamated into a
larger supernode. We repeat this process until the granularity
of all tasks surpasses the threshold. Fig. 10 illustrates the
distribution of task granularity after merging.

C. Performance Comparison

To achieve optimal performance, the tasks assigned to the
CPU and FPGA should match the architectural characteristics.
As previously mentioned, PANEL is assigned to the CPU,
while GEMM and TRSM are executed by the FPGA. Memory
access involved in DR and DW is controlled by DMA. The
extend-add operation in DR can be expressed as the addition of
multiple sparse matrices. The control logic for this operation
is not complex, while the arithmetic intensity is relatively low.
As a result, it is theoretically difficult to determine which is
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Fig. 10. Task granularity of five benchmark matrices.

better suited to perform this operation, the CPU or the FPGA.
To address this, we design two schemes for comparison. In
Design 1, the extend-add operation is executed by the FPGA.
This requires allocating appropriate resources for the systolic
array and Extend Add module. In Design 2, this operation
is executed by the CPU. In this case, we can allocate more
resources for systolic arrays on the FPGA, but this may
increase the workload on the CPU.

In Tab. II, we list the resource consumption of each module.
The clock frequency is 200 MHz. The systolic array is
designed with a size of 8× 8, while the Extend Add module
performs 16 addition operations per cycle. Design 2 offloads
the extend-add operation to the CPU, allowing for additional
systolic arrays. However, since a single systolic array con-
sumes far more resources than an Extend Add module, Design
2 has only one more systolic array than Design 1.

In Fig. 11, we compare the two designs using MUMPS
as the baseline. It can be noticed in Fig. 10 that GEMM
and TRSM take up most of the execution time. The time
complexity of PANEL and Extend Add is relatively much
smaller, and the CPU has enough computing power to cope
with them. As a result, the performance bottleneck arises from
GEMM and TRSM. In Design 2, due to the additional systolic
array, the performance bottleneck can be slightly alleviated.

Compared to MUMPS, our approach can achieve significant
performance gains for the first three datasets, but not the last
two. In Fig. 10, it is obvious that the size of case 1 to case
5 increases sequentially. For large datasets (e.g., case 4 and
case 5), the execution is dominated by large dense matrix
computations. Consequently, the computing overhead is much

TABLE II
RESOURCE USAGE OF EACH EXECUTION MODULE.

Systolic Array Extend Add Buffer Management
LUT 29686(10.83%) 5085(1.86%) 685(0.25%)
FF 15112(2.76%) 2624(0.48%) 473(0.09%)

BRAM 0(0%) 0(0%) 0(0%)
DSP 256(10.16%) 32(1.27%) 0(0%)

Design 1 8 7 1
Design 2 9 0 1
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Fig. 11. Performance comparison. Design 1 and Design 2 are our schemes.
The extend-add operation is performed by FPGA in Design 1 and by CPU in
Design 2.

larger than the scheduling overhead. Additionally, the floating-
point arithmetic of our DSA is lower than that of the CPU
used for comparison. Therefore, for these two larger datasets,
our DSA does not perform as well as the CPU. On the other
hand, the first three datasets are smaller in size and can benefit
from the schedule of fine-grained tasks. Taking case 1 as an
example, our DSA achieves a 4.3× performance improvement
with approximately 10% of the computing power used by the
CPU.

VI. CONCLUSION

In this paper, we accelerate the supernodal multifrontal al-
gorithm using a tightly coupled heterogeneous DSA. We study
the task-based scheduling model for multi-core architectures
and improve it according to the architectural characteristics of
FPGAs. Moreover, we experimentally obtain the threshold for
the finest allowed task granularity and compare our system
with a parallel sparse direct solver MUMPS. One of the
strengths of our work is the potential for broader applicability
beyond the multifrontal method. Our acceleration scheme can
be adapted and reused in other sparse algebraic applications.
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