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Abstract—Deep neural networks (DNNs) have revolutionized
fields like image recognition and natural language processing but
face limitations with traditional von Neumann architectures due
to high energy consumption and limited computing speed. We
propose a hybrid architecture for DNN training combining a
digital processing unit (DPU) and analog phase-change memory
(PCM) chips using 40 nm CMOS technology. The DPU manages
precise computations, while the PCM chip handles matrix-vector
multiplication (MVM) with a novel nonlinear pulse scheme
for accurate conductance tuning. Our architecture successfully
trained a 3-layer fully connected neural network, achieving
a classification accuracy of 97.26%, on par with software-
based training. Simulations confirm the feasibility of extending
this approach to more complex convolutional neural networks,
demonstrating its adaptability to PCM device characteristics and
potential for high-efficiency DNN training.

Index Terms—phase-change memory, deep neural network,
analog in-memory computing

I. INTRODUCTION

Deep neural networks (DNNs) have achieved significant

advancements in fields such as image recognition [1], [2],

natural language processing [3], intelligent transportation [4],

and finance [5]. However, the increasing complexity and scale

of these models present substantial challenges for traditional

von Neumann architectures, which suffer from high energy

consumption and limited computing speed due to the separa-

tion of computation and memory units [6]. This bottleneck

becomes particularly evident during the training of large-

scale models like OpenAI’s GPT-3, which requires immense

computational resources and time [7].

Currently, most DNN training is conducted using Graph-

ics Processing Units (GPUs) due to their high parallelism.

Despite their computational power, GPUs are not ideal for

edge computing owing to their high cost and energy con-

sumption. Moreover, the von Neumann bottleneck persists,

limiting memory access speed and bandwidth [8]. Analog

In-Memory Computing (AIMC) emerges as a promising al-

ternative, integrating computation and memory to overcome

these limitations [9]. At the core of AIMC is the use of

crossbar arrays of nonvolatile memories (NVMs) for matrix

multiplication operations, leveraging Ohm’s and Kirchhoff’s

laws to achieve constant time complexity for these operations.

Phase-change memory (PCM), a type of NVM, is particularly

suitable for storing neural network weights in an analog form,

making it a key component in AIMC.

Despite its potential, AIMC with PCM faces significant

challenges, primarily due to the nonideal characteristics of

PCM devices, such as drift and variability, which hinder accu-

rate weight mapping. Existing solutions have addressed these

issues to some extent. Rasch et al. [10] proposed hardware-

aware training methods that accommodate the nonideal char-

acteristics of PCM, achieving inference accuracy comparable

to floating-point operations. Joshi et al. [11] demonstrated

that training methods could maintain accuracy even when

transferring weights to PCM devices. Additionally, introducing

noise during training has been shown to enhance inference

accuracy [12], [13]. However, these approaches often focus

on single factors, limiting their practical applicability.

To address these limitations, we propose a hybrid architec-

ture combining a digital processing unit (DPU) with analog

PCM chips using 40 nm CMOS technology. Our architecture

leverages the DPU for precise computations and error gradi-

ent calculations, while the PCM chip performs matrix-vector

multiplication (MVM) operations. A novel nonlinear pulses

scheme is introduced to achieve approximate linear tuning of

PCM conductance. This architecture not only adapts to the

nonideal characteristics of PCM devices but also optimizes

the conventional stochastic gradient descent algorithm for the

tuning process. Our experiments demonstrate that a 3-layer

fully connected neural network trained using this architecture

achieves a classification accuracy of 97.26%, comparable

to software-based training. Furthermore, simulations confirm

the feasibility of extending this approach to more complex

convolutional neural networks, highlighting its potential for

high-efficiency DNN training.
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Fig. 1: Schematic diagram of the hybrid architecture for neural

network training. The architecture is mainly composed of two

parts: the DPU and the analog PCM chip.

II. HYBRID ARCHITECTURE FOR NEURAL NETWORK

TRAINING

In several current studies on PCM, digital-analog hybrid

computing architectures have made greater research progress

in the training as well as inference of deep neural net-

works [14], [15]. We propose a novel hybrid computing

architecture for training deep neural networks using PCM, as

shown in Fig. 1. Our proposed system architecture consists

of two main components: a digital processing unit (DPU)

and an analog PCM chip. The DPU is responsible for high-

precision computation, especially for calculating the error

gradient, determining the direction of weight update, and pulse

calculation. In the training process, the main task of the DPU

is to calculate the error δ using the back propagation algorithm.

The analog PCM chip is responsible for storing the synaptic

weights and performing the analog computations, such as

weighted summation, with high energy efficiency. In the for-

ward propagation process, the analog PCM chip calculates the

sum of weights and inputs
∑

i Wjixi, where Wji represents

synaptic weights, and xi represents input activations. This

operation is carried out in analog mode, fully leveraging the

inherent parallelism of the PCM array. A flow controller within

the DPU manages data flow between the DPU and PCM

chip, ensuring that the operation is synchronized. The gradient

direction discrimination is obtained based on the result of

the computed error δ and the input activation x. The main

purpose is to enable the computed weight gradient to reduce

the accuracy and better compensate for the randomness of

the device. The pulse calculation is based on the programmed

pulse combinations calculated from the obtained weights gra-

dient steps for more accurate conductance tuning.

The mathematical framework and operation of this archi-

tecture is as follows.

A. Forward Propagation

The input activation xi is fed into the analog PCM chip.

The chip performs a weighted summation yj =
∑

i Wjixi.

The activation value xi of the neuron is converted to a voltage

V and applied to the rows of the crossbar array. According

to the conductance value of each PCM cell, current flows

in the column direction. The total current Ij =
∑

i GjiVxi

corresponds to the weighted sum yj =
∑

i Wjixi and serves as

the input for the next layer of neurons. This operation exploits

the analog nature of the analog PCM chip to achieve high

parallelism and energy efficiency.

B. Backward Propagation

This part is mainly operated in the DPU.

• Error calculation: DPU calculates the error δ for each

layer using the output of the forward propagation and the

target: δl = (yl − ŷ) · f ′(zl), where f ′ is the derivative

of the activation function, yl is the output of layer l, and

ŷ is the target.

• Gradient calculation: DPU calculates the gradient of the

loss function with respect to the weights: ∇w(l)L =

δ(l)
(

x(l−1)
)T

, where ∇w(l)L is the gradient value of the

weights W of the loss function for layer l, δ(l) is the

error for layer l, x(l−1) is the output of layer (l − 1).
• Gradient direction discrimination: DPU will add sign

discrimination operation to the calculated gradient. The

main role is to take out the gradient direction and add con-

stant compensation. The specific formula is as follows:

∇w(l)L = c× sign
(

∇w(l)L
)

=











c, ∇w(l)L > 0

0, ∇w(l)L = 0

−c, ∇w(l)L < 0
where c is a constant compensation that we set according

to the device characteristics of the analog PCM chip, and

sign(·) is the sign discriminant function.

• Pulse Calculation: Set the combination of programmed

pulses based on the actual pulse conductance relationship

measured by the analog PCM chip.

• Weights update (conductance update): Based on the pro-

grammed pulse combinations obtained from the pulse

calculation in the DPU, the target weights are set by the

pulse generator and the peripheral circuits integrated in

the PCM chip.

C. Advantages of Hybrid Computing Architecture

The architecture integrates a digital processing unit and

an analog PCM chip to efficiently perform high-precision

computations and low-energy weight updates. In the hybrid

architecture, the analog PCM chip can utilize its nonvolatile

nature to store a large number of network weight parameters

with low power consumption and high computational density.

The digital processing unit is used to compute the gradients in

the backward propagation process, and these operations can be

implemented more efficiently in digital circuits. The advantage

of this hybrid architecture is that it can fully utilize the

analog computational characteristics of PCM and the efficient

computational power of digital circuits. Thus, high precision

computation and low energy consumption weight updating of

neural networks can be realized.



III. NONLINEAR PROGRAMMED PULSES SCHEME

The analog PCM chip used in this experiment is based on

40 nm CMOS technology, its interface type is a parallel bus

interface of SRAM-like. The chip supports real-time writing

of data by address, and the written data will not be lost after

power-down. The symmetric and linear tuning of the PCM

conductance can be realized by using specific programmed

pulses [16], [17]. Through experimental verification, we use

the programmed pulses shown in Fig. 2 to realize the ap-

proximate linear tuning of the conductance. The programmed

potentiation pulses consist of 60 nonlinear pulses, all with a

pulse width of 3 µs, as shown in Fig. 2a. The voltage amplitude

of the first 36 of these pulses is from 0.44 V to 0.88 V in 12

step stages. The voltage amplitude increases by 0.04 V in each

step stage, and the same pulse is repeated 3 times in each stage.

The voltage amplitude of the last 24 pulses is from 0.9 V to

1.0 V in 6 step stages. The voltage amplitude is increased by

0.02 V for each step stage and the same pulse is repeated 4

times for each step stage. The programmed depression pulses

also consist of 60 nonlinear pulses with a pulse width of 75

ns, as shown in Fig. 2b. Of these 60 pulses, the amplitude

of the first 50 pulses increases linearly, with the amplitude of

each pulse increasing by 0.01 V. Starting at 3.0 V, it increases

to 3.49 V. The last 10 pulses are nonlinear and the amplitude

of the final pulse reaches 3.9 V.
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Fig. 2: Diagrams of programmed pulses scheme: (a) The

diagram of programmed potentiation pulses; (b) The diagram

of programmed depression pulses.

Based on the programmed pulses scheme, we use 120

programmed pulses as a complete conductance tuning cycle

to simulate linear, symmetric tuning of conductance. The

conductance variations of all PCM cells on the chip for a single

read/write cycle are shown in Fig. 3. For a single tuning cycle,

the conductance variation of the PCM chip ranges from 0 µS
to 120 µS. And this range is also the range for network weights

mapping. The simulation results indicate that PCM cells can

display approximately linear, symmetric conductance response

within a single tuning cycle (120 programmed pulses).

After resetting all the cells in the PCM chip, the pro-

grammed pulses scheme is used to perform 30 cycles of

continuous conductance tuning experiments on all the cells

in the chip, and the simulation results are shown in Fig. 4. It

can be seen that the PCM chip has an approximately linear

and symmetric conductance response with good consistency
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Fig. 3: Conductance response of PCM cells during one com-

plete tuning cycle. There are 120 pulses in total, of which 60

are potentiation pulses and 60 are depression pulses.

and repeatability. This approximate linear and symmetric

conductance response is very important for us to train the

neural network, especially for adjusting the weights during

the training process.

IV. IMPLEMENTATION OF FULLY CONNECTED NEURAL

NETWORK TRAINING

In this experiment, we trained a 3-layer fully connected

network using an analog PCM chip for experimental vali-

dation, and its network structure is schematically shown in

Fig. 5a. This fully connected neural network has 784 input

neurons and 10 output neurons, using sigmoid as the activation

function. Except for the input layer, each layer has bias

neurons, with the numbers of bias neurons being 256, 128,

and 10, respectively. The bias neurons are not shown in

the network architecture diagram. We also reviewed previous

papers [11], [18], [19] and found that using a 2-PCM approach

to implement weight mapping can effectively mitigate device

noise and drift. Therefore, this experiment maps each weight

as a differential PCM unit located on two columns, as shown

in Fig. 5b. This fully-connected neural network has 235,146

neural weight synapses, which are mapped into 470,292 PCM

devices. Each network weight corresponds to the conductance

of 2 PCM devices, i.e., W ∝ [G+−G−]. A modified stochastic

gradient descent (SGD) method is used for network training

with a loss function that minimizes the mean square error

function. The batch size for network training is set to 32, the

learning rate is fixed at 0.1, and the training lasts for 50 epochs.

The dataset used in the experiment is the MNIST handwritten

digit dataset, which includes 60,000 training samples and

10,000 test samples, all of which are 28×28 grayscale images.

It is worth noting that in order to facilitate our training process,

the grayscale images need to be normalized before starting the

training of the neural network. During the training process

of the neural network, the adjustment of the PCM device

conductance was performed using our previously proposed
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Fig. 4: Conductance response of the PCM device during 30 consecutive conductance tuning cycles of 120 pulses each.

programmed pulses scheme. After 50 training epochs, the

training loss of the fully-connected network is shown in

Fig. 6a. The experimental results demonstrate that smooth

convergence of the network can be achieved using the modified

SGD training method and the programmed pulses scheme. The

classification performance of this network is shown in Fig. 6b,

with a maximum classification accuracy of 97.26% over 50 test

epochs, which can basically reach the accuracy of software

training.
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Fig. 5: Training experiment verification of the three-layer fully

connected network with hybrid architecture: (a) Schematic

diagram of network structure; (b) Schematic diagram of dif-

ferential configuration of weights (2-PCM).

Experiments show that neural networks trained using ana-

log phase-change memory chips can achieve classification

accuracy comparable to software training. It is noteworthy

that directly training neural networks on analog PCM chips

can incorporate the nonideal characteristics of PCM into the

training process, which is also a method to mitigate these

nonideal characteristics. For the analog PCM chip used in this

experiment, we simulated the drift behavior of PCM devices

for specific weights, with the drift characteristics for specific

weights shown in Fig. 7a. The drift behavior of PCM devices

can cause changes in stored neural network weights, thereby

affecting the accuracy of neural network [20], [21]. This is

also an important factor affecting in-memory computing with

PCM and similar analog devices. Using the training method

proposed in this paper, after the neural network training
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Fig. 6: Experimental results for 3-layer fully connected net-

works: (a) Training loss of the network; (b) Classification

accuracy of the network.

is completed, the classification accuracy of the network is

evaluated within a certain time frame. The results are shown

in Fig. 7b, from which it can be seen that the neural network

inference accuracy only decreases by about 0.56% over a

timeframe of more than one month. The experimental results

clearly show that using an analog PCM chip to directly train

a deep neural network mitigates the effects of device nonideal

characteristics. This is mainly due to the direct incorporation

of the nonideal characteristics of the device into the training

process. In addition, the training of the network directly on the

analog PCM chip does not require separate consideration of

the nonideal characteristics of the device. The training process

of the neural network will be adaptive to the nonideal charac-

teristics of the device. This also greatly reduces the difficulty

of deploying neural networks on nonvolatile memories.

V. SIMULATION OF CONVOLUTIONAL NEURAL NETWORK

TRAINING

Due to the limitation in the number of devices on analog

PCM chips, it is currently not possible to directly deploy larger

deep neural networks entirely onto analog PCM chips. To

demonstrate the generality of using PCM analog arrays for

training neural networks, we built an experimental simulation

platform based on measured chip data to simulate larger

neural networks. It is important to note that the focus of this

simulation experiment is to model the weight update behavior

of analog PCM chips during deep neural network training. The
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Fig. 7: Study of the drift characteristics of PCM devices:

(a) Drift characteristics of normalized weights; (b) Network

classification accuracy over a certain time scale.

main purpose is to demonstrate the feasibility of using analog

PCM chips for training deep neural networks. Therefore,

unlike the previous experimental setup, we simplified the

calculations originally done in the digital processing unit to

software computations. And the weight update behavior of the

analog PCM chip was entirely based on our previous pulse-

conductance data. The simulation process was implemented

based on a look-up table of the analog PCM chip data. All

pulse-conductance data is set up as a lookup table that is

queried when a weight update is required.
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Fig. 8: Training simulation experiments with LeNet-5: (a)

Neural network structure diagram of LeNet-5; (b) Training

Simulation Losses for LeNet-5; (c) Classification accuracy of

training simulation experiments for LeNet-5.

In this simulation experiment, we designed network struc-

tures for the commonly used MNIST handwritten digit dataset

and CIFAR-10 dataset for image classification tasks. The

network structure of LeNet-5 [22] is shown in Fig. 8a. It

consists of 2 convolutional layers, 2 pooling layers, and 3 fully

connected layers, which can classify handwritten digits. The

training loss of this network is shown in Fig. 8b. This network

can be directly trained using the analog PCM chip to achieve

convergence. The classification accuracy of this network is

shown in Fig. 8c. The highest classification accuracy on the

training set is 96.76%, and the highest classification accuracy

on the validation set is 95.44%. The network structure of

VGG-16 [23] is shown in Fig. 9a. This network structure

is relatively complex and has more parameters, making it

suitable for the classification task of the CIFAR-10 dataset.

The training loss of this network is shown in Fig. 9b. The

successful convergence of this complex network confirms the

feasibility of training deep neural networks with PCM devices.

The classification accuracy of this network is shown in Fig. 9c,

which is up to 98.26% for the training set and 94.98% for the

validation set.
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Fig. 9: Training simulation experiments with VGG-16: (a)

Neural network structure diagram of VGG-16; (b) Training

Simulation Losses for VGG-16; (c) Classification accuracy of

training simulation experiments for VGG-16.

VI. CONCLUSION

In this paper, we proposed a novel deep neural network

training architecture combining a digital processing unit with

analog phase-change memory chips using 40 nm CMOS tech-

nology. Our innovative nonlinear programmed pulses scheme

ensures precise adjustment of neural network weights, effec-

tively mitigating the impact of PCM device nonideal character-

istics. Experimental results show that our architecture success-

fully trained a three-layer fully connected neural network with

a classification accuracy of 97.26%, comparable to software-

based training, and simulations validated its feasibility for

more complex convolutional neural networks. Future research

directions include optimizing PCM design, developing new

algorithms, and validating the architecture for larger network



structures, which collectively aim to address the von Neumann

bottleneck and advance high-efficiency DNN training.
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