
JACC.shared: Leveraging HPC Metaprogramming
and Performance Portability for Computations That

Use Shared Memory GPUs
Pedro Valero-Lara

Advanced Computing Systems Research Section
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
valerolarap@ornl.gov

William F. Godoy
Advanced Computing Systems Research Section

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

godoywf@ornl.gov

Keita Teranishi
Advanced Computing Systems Research Section

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

teranishik@ornl.gov

Jeffrey S. Vetter
Advanced Computing Systems Research Section

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

vetter@ornl.gov

Abstract—In this work, we present JACC.shared, a new fea-
ture of Julia for ACCelerators (JACC), which is the performance-
portable and metaprogramming model of the just-in-time and
LLVM-based Julia language. This new feature allows JACC ap-
plications to leverage the high-performance computing (HPC) ca-
pabilities of high-bandwidth, on-chip GPU memory. Historically,
exploiting high-bandwidth, shared-memory GPUs has not been
a priority for high-level programming solutions. JACC.shared
covers that gap for the first time, thereby providing a high-
level, portable, and easy-to-use solution for programmers to
exploit this memory and supporting all current major accelerator
architectures. Well-known HPC and AI workloads, such as
multi/hyperspectral imaging and AI convolutions, have been used
to evaluate JACC.shared on two exascale GPU architectures
hosted by some of the most powerful US Department of Energy
supercomputers: Perlmutter (NVIDIA A100) and Frontier (AMD
MI250X). The performance evaluation reports speedup of up
to 3.5× by adding only one line of code to the base codes,
thus providing important accelerators in a simple, portable, and
transparent way and elevating the programming productivity
and performance-portability capabilities for Julia/JACC HPC,
AI, and scientific applications.

Index Terms—Julia, JACC, metaprogramming, performance
portability, high-bandwidth on-chip memory

I. INTRODUCTION

Metaprogramming-based solutions allow for generic pro-
gramming, in which programmers focus on the general struc-
ture of an application while target-specific code specialization
is handled by different alternative specializations, which are
transparent to the programmer. This technique can be used
effectively for performance portability. Julia for ACCelera-
tors (JACC) is the first and only performance-portable, and
architecture-agnostic metaprogramming model for the just-
in-time (JIT) and LLVM-based Julia programming language.
JACC is an open-source library that enables programmers to

move past the low-level details of vendor- or target-specific
programming models and the varying characteristics of the tar-
geted hardware architectures. JACC provides multiple device-
specific backends that are implemented to support the most im-
portant high-performance computing (HPC) platforms (CPUs,
NVIDIA GPUs, AMD GPUs, and Intel GPUs). Although most
of the current and major HPC accelerators contain software-
managed (programmable), high-bandwidth, on-chip memory,
historically, its exploitation has not been a priority for high-
level programming models, thereby making it difficult, or even
impossible in some cases, for the programmers to leverage this
kind of memory. In this work, we present JACC.shared,
a portable, transparent, and easy-to-use function as part of
the JACC model. JACC.shared allows programmers to
benefit from the use of high-bandwidth, on-chip GPU memory,
thereby providing a high-level programming solution that
supports all the current major HPC accelerators for the first
time. The main contributions of this work are as follows:

1) The design and implementation of a novel performance-
portable and transparent (programming productivity)
JACC function (JACC.shared) allow users to eas-
ily exploit high-bandwidth and on-chip GPU memory
(shared memory GPUs).

2) JACC.shared is supported for the three current HPC
vendor accelerators: Intel, AMD, and NVIDIA.

3) Two well-known and characteristic problems for HPC
(multi/hyperspectral imaging) and AI (convolutions)
were used as test cases.

4) A deep performance analysis was performed for two
important hardware accelerators deployed on some of
the most powerful supercomputers: Perlmutter (NVIDIA
A100) and Frontier (AMD MI250X).

II. JULIA FOR ACCELERATORS (JACC)

Julia was created to provide a unified programming lan-
guage, community, and integrated ecosystem (e.g., packaging,
testing, software tools, AI) to enhance productivity while
providing performance mechanisms that rely on LLVM ad-
vancements, addressing the main weaknesses of current HPC
programming languages as outlined in a recent community
paper [1]. Julia uses the LLVM framework for JIT compilation,
enabling the same run-time speed as other compiled languages
such as C. Julia is also compatible with any external library
implemented in Python, Fortran, and C. Similar to Python,
Julia’s syntax is simple and efficient, and users interact either
by passing source code files as arguments to the julia
command or optionally via its interactive read-eval-print loop
command line to easily add commands, scripts, and packages.

Julia offers several advantages:
• Julia syntax is optimized for mathematics and scientific

environments similar to the formulas used by domain-
specific experts.

• JIT compilation on top of LLVM enables Julia to outper-
form other high-level languages (e.g., Python, R, MAT-
LAB) in terms of speed.

• Its native support for AI makes Julia a real asset for HPC-
AI integration.

• Julia provides a community and integrated ecosystem
motivated by performance and productivity.

The support of Julia for HPC, although not as ma-
ture as in other languages, is already significant. The Julia
ecosystem supports parallel computation on CPUs by using
Base.Threads, which is a Julia package that is imple-
mented in pthreads on top of LLVM and that enables
the distribution of the computation on different CPU cores
by using decorators on top of loops (similar to OpenMP
and OpenACC). Julia natively supports GPU accelerator pro-
gramming thanks to vendor packages, such as CUDA.jl,
AMDGPU.jl, and OneAPI.jl. Other packages, such as
Distributed.jl and MPI.j [2], allow Julia codes to run
on distributed-memory environments.

Julia is not different from other programming languages in
facing performance-portability challenges. Currently, Julia’s
programming models tend to closely follow vendor layers,
which could still be too low level, thereby hindering program-
ming productivity. JACC addresses this challenge for Julia
programmers and applications, providing an HPC-portable and
highly productive model targeting current HPC (CPU and
GPU) hardware, which could potentially be extended to other
architectures (e.g., AI custom hardware, field-programmable
gate arrays) and configurations (e.g., distributed memory,
multidevice use).

The JACC model (Fig. 1) is divided into two main compo-
nents: memory and compute. These components have different
implementations, and one per backend is supported. We im-
plemented four backends so far on top of Base.Threads,
CUDA, AMDGPU, and OneAPI to target CPUs, NVIDIA
GPUs, AMD GPUs, and Intel GPUs, respectively.

Fig. 1. JACC model illustrating its interactive and lightweight nature on top
of LLVM for performance-portable code.

Owing to the dynamic and JIT nature of the Julia
language, JACC differs from other existing metaprogram-
ming solutions in how the backend is chosen [3], [4]. We
use Julia’s Preferences package, which generates the
LocalPreferences.toml file before precompilation to
store the preferences (backend) used for JACC. Additionally,
JACC leverages the recently introduced package extensions
in Julia version 1.9 to allow for optional package depen-
dencies or weakdependencies. Therefore, vendor-specific
backend implementations (e.g., CUDA, AMDGPU, OneAPI)
inside JACC can coexist via function overloading and multiple
dispatches without incurring additional costs when installing
JACC. The default backend is Julia’s Base.Threads imple-
mentation, which targets CPUs.

The memory management in JACC is transparent to the
programmer, and we use a very similar syntax to that used
in other Julia packages: JACC.Array. JACC.Array is
mapped on the equivalent Julia function depending on the
target backend. Notably, when using Base.Threads as the
backend, using JACC.Array is not necessary.

As depicted in Fig. 2, JACC has two primary constructs:
parallel_for and parallel_reduce, and this is sim-
ilar to metaprogramming solutions in other languages [3], [4].
We also included two variants to be chosen based on the
data layout used: unidimensional or multidimensional. These
constructs comprise three main components: (1) the number
of iterations of the for-loop or reduction, which is typically
equal to the size of the arrays; (2) the name of the function
that defines the operations to be computed in each iteration of
the loop; and (3) the parameters used in the function.

As shown, JACC provides a very simple way to parallelize
codes by providing a unified front end that can be deployed
on top of other Julia packages and use different architectures.
When using JACC, programmers do not need to burden
themselves with low-level details at the hardware or software
levels, and this abstraction provides a high-level and portable
solution to make Julia a productive programming solution for
HPC, AI, and scientific software.

Unidimensional arrays
function axpy(i, alpha, x, y)

x[i] += alpha * y[i]
end

function dot(i, x, y)
return x[i] * y[i]

end

SIZE = 1_000_000
x = round.(rand(Float64, SIZE) * 100)
y = round.(rand(Float64, SIZE) * 100)
alpha = 2.5
dx = JACC.Array(x)
dy = JACC.Array(y)
JACC.parallel_for(SIZE, axpy, alpha, dx, dy)
res = JACC.parallel_reduce(SIZE, dot, dx, dy)

Multidimensional arrays
function axpy(i, j, alpha, x, y)

x[i,j] = x[i,j] + alpha * y[i,j]
end

function dot(i, j, x, y)
return x[i,j] * y[i,j]

end

SIZE = 1_000
x = round.(rand(Float64, SIZE, SIZE) * 100)
y = round.(rand(Float64, SIZE, SIZE) * 100)
alpha = 2.5
dx = JACC.Array(x)
dy = JACC.Array(y)
JACC.parallel_for((SIZE,SIZE),axpy,alpha,dx,dy)
res = JACC.parallel_reduce((SIZE,SIZE),dot,dx,dy)

Fig. 2. JACC front-end example.

III. JACC.SHARED

The hierarchy of memory in GPUs, depicted in Fig. 3
(right), usually comprises a local (cache) hierarchy memory
with a private L1 cache per block of threads and an L2 cache
shared by all the blocks of threads or multiprocessors. Besides
the local memory, one other type of in-core memory exists:
a software-managed (programmable) scratchpad memory that
is a so-called shared memory. Each block of threads or mul-
tiprocessor features its own space within the shared memory.
Only threads of the same thread block may share data through
shared memory. Accesses to shared memory are usually one
or two orders of magnitude faster than accesses to global
memory.

The main difference between CPU on-chip memory and
GPU on-chip memory is that in the case of GPUs, the
programmer is responsible for using this memory (shared
memory in Fig. 3), whereas the compiler can manage on-
chip memory without the intervention of the programmer in
the case of CPUs. In the case of GPU accelerators, these
memories provide much higher bandwidths than the off-chip
global memory. However, its control and management require
manually loading pieces of data from global memory. To
effectively use this kind of memory, multiple threads in the
same block of threads must repeatedly access the same space
of memory.

Fig. 3. On-chip memory hierarchy on CPUs and GPUs.

To simplify the control and use of on-chip memory, we
implemented JACC.shared. JACC.shared is an easy-to-
use and portable function implemented on top of all the JACC
backends (Fig. 1). To keep this function as simple as possible,
we propose the next syntax to be used in the Julia/JACC
functions:

shared_array = JACC.shared(global_array)

where global array is a JACC.Array (an array stored in
the off-chip GPU global memory), and the shared_array
type depends on the backend used—for instance,
cuDynamicSharedMem, ROCDynamicLocalArray,
oneLocalArray, or Base.Array for CUDA, AMDGPU,
OneAPI, and Threads backends, respectively. The type
used by the shared_array is transparent to the users.
As a parameter, JACC.shared accepts any dimension
and size for global_array; however, the output
must be a unidimensional array. This is due to Julia’s
current limitations in dealing with shared memory in
accelerators. JACC.shared internally deals with any
necessary transformation from a bidimensional array to a
1D array if necessary. Additionally, the memory transfer
from global memory to shared memory is computed in
parallel, all the threads of a thread block are involved in
this process. The size of shared memory in accelerators
depends on the architecture to be used, so the array passed
as the argument (global_array) for JACC.shared to
be moved to shared memory must fit into the memory size
limit of shared memory. In the case of the implementation of
JACC.shared for CPUs, JACC.shared delegates to the
compiler to apply any special optimization.

Unlike the other JACC features, JACC.shared is imple-
mented to be used inside the functions, not outside. This does
not influence other JACC capabilities, such as JACC.Array,
JACC.parallel_for, or JACC.parallel_reduce.
As an example, Fig. 5 illustrates a simple example code used
for multi/hyperspectral computation with and without using
JACC.shared. Unlike proposals from other metaprogram-
ming solutions [5], [6] in which the use of shared memory
must be defined externally, or its efficient exploitation depends
on particular scenarios, JACC.shared allows JACC users

to define with no requirements where and when to use on-
chip shared memory simply and transparently to improve
performance for those applications that can leverage the
capacities of on-chip GPU memory. To achieve the maxi-
mum performance when using JACC.shared, the threads
per block to be used internally in JACC.parallel_for
and JACC.parallel_reduce are recommended to be the
highest possible number. Additionally, we configure the shared
memory to use the maximum size possible depending on
the architecture limits by using dynamic memory allocation,
which requires specifying the size of this memory at kernel
invocation time. All this is transparent to the programmer.

IV. PERFORMANCE EVALUATION

For performance evaluation, we use two well-known ker-
nels, one for HPC (multi/hyperspectral imaging) and one for
AI (convolutions), that can leverage on-chip GPU shared mem-
ory. Although both cases have similarities, we demonstrate that
the benefit yielded by using JACC.shared can greatly differ
depending on the particular characteristics or demands of the
applications. One important factor to evaluate the efficiency
reached by using on-chip GPU shared memory is the speedup
reached depending on the number of times that a block of
threads accesses shared memory—that is, the number of times
that it does not access global memory. Generally, the higher
this number, the better the performance.

A. Multi/Hyperspectral Imaging

Fig. 4. Multi(hyper)spectral (left) and AI convolution (right) diagrams.

Multi/hyperspectral imaging [7] is a well-known problem
applied to multiple applications, such as health care [8], space-
based imaging [9], defense, remote sensing [10], farming,
and environmental monitoring, among many others. Fig. 4-left
illustrates a simple scheme representing the standard structure
for this kind of operation. Depending on the application,
we have a higher or a lower number of bands, each one
representing a particular characteristic, such as color spectra,
wavelengths, and spatial resolution. Every band is an image

that comprises a set of voxels. The size of the image or number
of voxels per image also depends on the application. Usually, a
filter or a set of filters must be applied to each of the voxels that
compose an image to capture a particular component, object,
or characteristic of that band.

function spectral_shared(i, j, image, filter,
num_bands)

#Shared memory initialization
filter_shared = JACC.shared(filter)
for b in 1:bands
@inbounds image[b, i, j] *= filter_shared[j]
end
end

num_bands = 60
num_voxel = 10_240
size_voxel = 64*64
image = init_image(Float32,

num_bands, num_voxel, size_voxel)
filter = init_filter(Float32, size_voxel)
jimage = JACC.Array(image)
jfilter = JACC.Array(filter)
JACC.parallel_for((num_voxel,size_voxel),

spectral, jimage, jfilter, num_bands)

Fig. 5. JACC.shared example for multispectral computation.

To keep the analysis simple and general, we used the
kernels illustrated in Fig. 5 and selected a set of representative
parameters corresponding to the three main components of this
kind of operation: number of bands, size of the images, and
size of voxels/filter (Fig. 6). This is a simple kernel in which
a filter is applied to all the voxels of each of the images. As
shown in Fig. 4-left, the filter must be accessed by all the
threads. To avoid using a higher number of threads than the
one supported by the GPUs, every thread accesses a specific
part (pixel) of the filter and applies it to the corresponding
pixel of a given voxel for each of the images or bands of the
multi/hyperspectral image. So, in this case, moving the filter
from global memory to shared memory should provide better
performance.

As shown in Fig. 6, the number of bands is the most influen-
tial factor when using shared memory, reaching a speedup on
the NVIDIA GPU of about 1.4× and 1.83× for multispectral
images of 30 and 60 bands, respectively. Generally, the more
bands, the better the performance. This is, in fact, an important
increment of performance given the relatively low number of
memory accesses to shared memory w.r.t. the total memory
accesses to global memory and the minimal modification
required to reach such a speedup (just adding one line of
code). On the AMD GPU, no speedup is achieved when
using shared memory. This is caused by a higher software
and/or hardware overhead when using this kind of memory
on AMD GPUs than on NVIDIA GPUs. The support for
AMD GPUs in the Julia ecosystem is still not as mature
as the support for NVIDIA GPUs. Additionally, differences
exist in the capabilities (bandwidth) for shared memory in
both architectures, NVIDIA and AMD, thereby also affecting
the performance, which may require a higher usage of shared

Fig. 6. Multispectral performance (NVIDIA A100 GPU top and AMD
MI250X GPU bottom).

memory to obtain the desired extra performance, as will be
demonstrated in the next subsection.

B. Convolution

Convolutions are the core operation of deep learning ap-
plications based on convolutional neural networks (CNNs).
CNNs have become a key operation for AI. This interest comes
from their impressive results in tasks such as image classifi-
cation, speech recognition, and natural language processing.
Two main factors were necessary to enable the success of
CNNs: (1) the availability of large datasets and (2) the high
performance of current computing systems. Large datasets are
needed to train the deep neural network parameters until a
highly accurate result is reached. In turn, such an amount of
data requires the use of HPC accelerators to keep the training
time of deep neural networks within reasonable limits.

CNNs are based on the use of convolutional layers, which
are the result of weighted sums of inputs, like in fully
connected layers. Convolutional layers use an operation called
convolution to implement the weighted sums. Most of the
execution time of a convolutional layer is spent performing
convolutions. A convolution operation is a 2D discrete convo-
lution, and it uses a 3D input and a filter. Each output element
is computed as the dot product of the filter with a subvolume
of the input, as depicted in Fig. 4-right.

Given the particular characteristics of this operation, the
granularity used for this operation is higher than the one used
in the previous case. Every thread is responsible for computing

function convolution_shared(i, j, input, ouput,
filter, filter_size, num_inputs)

#Shared memory initialization
filter_shared = JACC.shared(filter)
for n in 1:num_inputs
find = 1
conv = 0.0
i_ind = i - filter_size
j_ind = j - filter_size
for fi in 1:filter_size

for fj in 1:filter_size
if (i_ind + fi > 0) && (j_ind + fj > 0)
@inbounds conv += filter_shared[find] *

input[n, i_ind + fi, j_ind + fj]
end find += 1

end find += 1
end
@inbounds ouput[n, i, j,] = conv

end
end

SIZE_x = 1024
SIZE_y = 1024
NUM_inputs = 256
SIZE_filter = 5
input = init_input(Float32,

NUM_inputs, SIZE_x, SIZE_y)
output = init_output(Float32,

NUM_inputs, SIZE_x, SIZE_y)
filter = init_filter(Float32,

SIZE_filter*SIZE_filter)
jinput = JACC.Array(input)
joutput = JACC.Array(output)
jfilter = JACC.Array(filter)
JACC.parallel_for((SIZE_x,SIZE_y),

convolution, jinput, joutput, filter,
SIZE_filter, NUM_inputs)

Fig. 7. JACC.shared example for convolution computation.

a dot product on a particular part of the input and the filter and
for storing the result of that operation in the proper position
of the output. As shown in Fig. 4-right, every thread must
access the same filter, so moving the filter to shared memory
should improve the performance. By using this distribution or
granularity, we maximize the use of shared memory such that
each thread of the same block of threads must access the same
entire filter multiple times instead of just one element of the
filter (as in the multi[hyper]spectral test case). For clarity and
simplicity, Fig. 7 illustrates a simple JACC code that computes
convolution.

Unlike in the test case running the multi(hyper)spectral
imaging code, here we have a much higher number of accesses
to shared memory per block of threads, which is about 3
million memory accesses for the biggest configuration (256,
1,024, 5) evaluated when the number of accesses to global
memory is about the same. As a result, we observe (Fig. 8)
a much better speedup when using shared memory in this
case compared with the test case running the multispectral
imaging code. On the NVIDIA GPU, we observe a speedup
of up to 3.5× when using shared memory. Once again, this
extra performance required adding only one line of code to the
base code (Fig. 7). The most impactful factor for performance
is the size of the input. On the AMD GPU, the performance
gain reached by using shared memory, although smaller than

Fig. 8. Convolution performance (NVIDIA A100 GPU top and AMD MI250X
GPU bottom).

on the NVIDIA GPU, is much greater than in the previous
test case when running the multispectral imaging code, thus
constituting a speedup of up to 2.1×. On the smallest test
cases, with an input size equal to 5122, we do not observe
better performance when using shared memory on the AMD
GPU. This is in agreement with the results presented in the
previous application, strengthening the hypothesis that a higher
overhead exists in the use of shared memory on the AMD GPU
than on the NVIDIA one.

V. RELATED WORK

Previously to this work, these authors evaluated the per-
formance of Julia against other languages or models such as
Kokkos, Python, OpenMP, HIP, or CUDA on multiple HPC
configurations, concluding that Julia is competitive or even
better in terms of performance than other C/C++ vendor-
specific or open-source models [11].

The use of high-bandwidth, on-chip memory in accelerators
requires low-level programming efforts, which in some cases
can be complicated to implement. However, we can find
multiple examples and applications in which effective use
of this kind of memory is supposed to achieve important
increments in performance—for instance, in image process-
ing [12], [13], string matching (information retrieval) [14],
[15], computational fluid dynamics [16]–[18], sparse [19], [20]
and dense [21], [22] linear algebra, and AI [23], among others.
As a result, modern and high-level programming solutions
have proposed different ways to bring this capability to their
specifications. For instance, #pragma acc cached was

proposed in OpenACC as a way to use shared memory. We
can find similar efforts in the C++ metaprogramming models
RAJA [6] and Kokkos [5], [24] with RAJA::LocalArray,
which is defined externally as another array to use in a RAJA
application, or with scratch_memory_space in Kokkos.
These last efforts depend on the backend or specific scenarios,
such as the use of Team policy in Kokkos, for the shared
memory to be used. Unfortunately, all these efforts present
some limitations. For example, they are not supported in all
the backends, not all the compilers provide support, and they
are implemented in a way that does not leverage this kind of
memory.

VI. CONCLUSIONS

This study describes the efforts for JACC.shared, which
is a novel feature part of JACC, the metaprogramming and
performance-portable model for the Julia programming lan-
guage. JACC.shared is a transparent Julia-like function that
users can easily use to define when and where to use on-chip
GPU memory.
JACC.shared is compatible with CPUs, NVIDIA GPUs,

AMD GPUs, and Intel GPUs. The performance that the users
can reach by using JACC.shared depends on application
and hardware characteristics. For the test cases evaluated,
multispectral imaging and AI convolutions, we achieved a
speedup of up to 1.8× and 3.5× on the first and second test
cases, respectively. The NVIDIA A100 GPU performs better
than the AMD MI250X GPU when on-chip shared memory
is used.

With JACC.shared, we increment the performance porta-
bility and the programming productivity for Julia/JACC appli-
cations to yield greater performance. For this effort, we use the
high-bandwidth, on-chip memory on a large variety of GPUs
by adding only one line of code to the base code.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility and the Experimental Computing Labo-
ratory (ExCL) at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the US Department
of Energy under Contract No. DE-AC05-00OR22725. This
research was funded in part by the DOE ASCR Stewardship
for Programming Systems and Tools (S4PST) project, and by
Bluestone, a X-Stack project in the DOE ASCR Office. Notice:
This manuscript has been authored by UT-Battelle LLC under
contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US government retains and the publisher,
by accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan (https://www.energy.gov/doe-public-
access-plan).

REFERENCES

[1] V. Churavy, W. F. Godoy, C. Bauer, H. Ranocha, M. Schlottke-Lakemper,
L. Räss, J. Blaschke, M. Giordano, E. Schnetter, S. Omlin, J. S.
Vetter, and A. Edelman, “Bridging HPC Communities through the Julia
Programming Language,” submitted for review, 2022.

[2] S. Byrne, L. C. Wilcox, and V. Churavy, “MPI.jl: Julia bindings
for the Message Passing Interface,” Proceedings of the JuliaCon
Conferences, vol. 1, no. 1, p. 68, 2021. [Online]. Available:
https://doi.org/10.21105/jcon.00068

[3] D. Beckingsale, R. D. Hornung, T. Scogland, and A. Vargas,
“Performance portable C++ programming with RAJA,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
455–456. [Online]. Available: https://doi.org/10.1145/3293883.3302577

[4] C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-
Grandié, J. Madsen, N. A. Awar, M. Gligoric, G. Shipman, and
G. Womeldorff, “The kokkos ecosystem: Comprehensive performance
portability for high performance computing,” Comput. Sci. Eng.,
vol. 23, no. 5, pp. 10–18, 2021. [Online]. Available: https:
//doi.org/10.1109/MCSE.2021.3098509

[5] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Q. Dang, N. D.
Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber,
J. R. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam,
M. Simberg, D. Sunderland, B. Turcksin, and J. J. Wilke, “Kokkos
3: Programming model extensions for the exascale era,” IEEE Trans.
Parallel Distributed Syst., vol. 33, no. 4, pp. 805–817, 2022. [Online].
Available: https://doi.org/10.1109/TPDS.2021.3097283

[6] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“Raja: Portable performance for large-scale scientific applications,” in
2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019, pp. 71–81.

[7] M. E. Paoletti, J. M. Haut, X. Tao, J. Plaza, and A. Plaza, “A new
GPU implementation of support vector machines for fast hyperspectral
image classification,” Remote. Sens., vol. 12, no. 8, p. 1257, 2020.
[Online]. Available: https://doi.org/10.3390/rs12081257

[8] P. Valero-Lara, J. L. Sánchez, D. Cazorla, and E. Arias, “A gpu-
based implementation of the MRF algorithm in ITK package,” J.
Supercomput., vol. 58, no. 3, pp. 403–410, 2011. [Online]. Available:
https://doi.org/10.1007/s11227-011-0597-1

[9] P. Valero-Lara, “MRF satellite image classification on GPU,” in
41st International Conference on Parallel Processing Workshops,
ICPPW 2012, Pittsburgh, PA, USA, September 10-13, 2012. IEEE
Computer Society, 2012, pp. 149–156. [Online]. Available: https:
//doi.org/10.1109/ICPPW.2012.24

[10] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu,
“Big data for remote sensing: Challenges and opportunities,” Proc.
IEEE, vol. 104, no. 11, pp. 2207–2219, 2016. [Online]. Available:
https://doi.org/10.1109/JPROC.2016.2598228

[11] W. F. Godoy, P. Valero-Lara, T. E. Dettling, C. Trefftz, I. Jorquera,
T. Sheehy, R. G. Miller, M. G. Tallada, J. S. Vetter, and
V. Churavy, “Evaluating performance and portability of high-level
programming models: Julia, python/numba, and kokkos on exascale
nodes,” in IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2023 - Workshops, St. Petersburg, FL, USA,
May 15-19, 2023. IEEE, 2023, pp. 373–382. [Online]. Available:
https://doi.org/10.1109/IPDPSW59300.2023.00068

[12] P. Valero-Lara, “MRF satellite image classification on GPU,” in
41st International Conference on Parallel Processing Workshops,
ICPPW 2012, Pittsburgh, PA, USA, September 10-13, 2012. IEEE
Computer Society, 2012, pp. 149–156. [Online]. Available: https:
//doi.org/10.1109/ICPPW.2012.24

[13] ——, “Accelerating solid-fluid interaction based on the immersed
boundary method on multicore and GPU architectures,” J. Supercomput.,
vol. 70, no. 2, pp. 799–815, 2014. [Online]. Available: https:
//doi.org/10.1007/s11227-014-1262-2

[14] ——, “hlcs. A hybrid GPGPU approach for solving multiple short
and unbalanced LCS problems,” in Computational Science and Its
Applications - ICCSA 2014 - 14th International Conference, Guimarães,
Portugal, June 30 - July 3, 2014, Proceedings, Part VI, ser. Lecture
Notes in Computer Science, B. Murgante, S. Misra, A. M. A. C. Rocha,
C. M. Torre, J. G. Rocha, M. I. Falcão, D. Taniar, B. O. Apduhan, and

O. Gervasi, Eds., vol. 8584. Springer, 2014, pp. 102–115. [Online].
Available: https://doi.org/10.1007/978-3-319-09153-2 8

[15] R. U. Paredes, P. Valero-Lara, E. Arias, J. L. Sánchez, and D. Cazorla,
“Similarity search implementations for multi-core and many-core
processors,” in 2011 International Conference on High Performance
Computing & Simulation, HPCS 2012, Istanbul, Turkey, July 4-8, 2011,
W. W. Smari and J. P. McIntire, Eds. IEEE, 2011, pp. 656–663.
[Online]. Available: https://doi.org/10.1109/HPCSim.2011.5999889

[16] P. Valero-Lara, “Accelerating solid-fluid interaction based on the
immersed boundary method on multicore and GPU architectures,” J.
Supercomput., vol. 70, no. 2, pp. 799–815, 2014. [Online]. Available:
https://doi.org/10.1007/s11227-014-1262-2

[17] J. Gounley, M. Vardhan, E. W. Draeger, P. Valero-Lara, S. V. Moore,
and A. Randles, “Propagation pattern for moment representation
of the lattice boltzmann method,” IEEE Trans. Parallel Distributed
Syst., vol. 33, no. 3, pp. 642–653, 2022. [Online]. Available:
https://doi.org/10.1109/TPDS.2021.3098456

[18] P. Valero-Lara, J. S. Vetter, J. Gounley, and A. Randles, “Moment
representation of regularized lattice boltzmann methods on NVIDIA
and AMD gpus,” in Proceedings of the SC ’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, SC-W 2023, Denver, CO, USA, November
12-17, 2023. ACM, 2023, pp. 1697–1704. [Online]. Available:
https://doi.org/10.1145/3624062.3624250

[19] P. Valero-Lara, A. Pinelli, and M. Prieto-Matı́as, “Fast finite difference
poisson solvers on heterogeneous architectures,” Comput. Phys.
Commun., vol. 185, no. 4, pp. 1265–1272, 2014. [Online]. Available:
https://doi.org/10.1016/j.cpc.2013.12.026

[20] Valero-Lara, Pedro, Martı́nez-Pérez, Ivan, Sirvent, Raül, Peña, Antonio
J., Martorell, Xavier, and Labarta, Jesús, “Simulating the behavior
of the human brain on gpus,” Oil Gas Sci. Technol. – Rev.
IFP Energies nouvelles, vol. 73, p. 63, 2018. [Online]. Available:
https://doi.org/10.2516/ogst/2018061

[21] J. J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The design and performance of batched BLAS
on modern high-performance computing systems,” in International
Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland, ser. Procedia Computer Science, P. Koumoutsakos,
M. Lees, V. V. Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot,
Eds., vol. 108. Elsevier, 2017, pp. 495–504. [Online]. Available:
https://doi.org/10.1016/j.procs.2017.05.138

[22] N. R. Miniskar, M. A. H. Monil, P. Valero-Lara, F. Liu, and J. S. Vetter,
“IRIS-BLAS: towards a performance portable and heterogeneous BLAS
library,” in 29th IEEE International Conference on High Performance
Computing, Data, and Analytics, HiPC 2022, Bengaluru, India,
December 18-21, 2022. IEEE, 2022, pp. 256–261. [Online]. Available:
https://doi.org/10.1109/HiPC56025.2022.00042

[23] M. Jordà, P. Valero-Lara, and A. J. Peña, “cuconv: CUDA
implementation of convolution for CNN inference,” Clust. Comput.,
vol. 25, no. 2, pp. 1459–1473, 2022. [Online]. Available: https:
//doi.org/10.1007/s10586-021-03494-y

[24] P. Valero-Lara, S. Lee, M. G. Tallada, J. E. Denny, and J. S.
Vetter, “Kokkacc: Enhancing kokkos with openacc,” in 9th Workshop
on Accelerator Programming Using Directives, WACCPD@SC 2022,
Dallas, TX, USA, November 13-18, 2022. IEEE, 2022, pp. 32–
42. [Online]. Available: https://doi.org/10.1109/WACCPD56842.2022.
00009

https://doi.org/10.21105/jcon.00068
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.3390/rs12081257
https://doi.org/10.1007/s11227-011-0597-1
https://doi.org/10.1109/ICPPW.2012.24
https://doi.org/10.1109/ICPPW.2012.24
https://doi.org/10.1109/JPROC.2016.2598228
https://doi.org/10.1109/IPDPSW59300.2023.00068
https://doi.org/10.1109/ICPPW.2012.24
https://doi.org/10.1109/ICPPW.2012.24
https://doi.org/10.1007/s11227-014-1262-2
https://doi.org/10.1007/s11227-014-1262-2
https://doi.org/10.1007/978-3-319-09153-2_8
https://doi.org/10.1109/HPCSim.2011.5999889
https://doi.org/10.1007/s11227-014-1262-2
https://doi.org/10.1109/TPDS.2021.3098456
https://doi.org/10.1145/3624062.3624250
https://doi.org/10.1016/j.cpc.2013.12.026
https://doi.org/10.2516/ogst/2018061
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1109/HiPC56025.2022.00042
https://doi.org/10.1007/s10586-021-03494-y
https://doi.org/10.1007/s10586-021-03494-y
https://doi.org/10.1109/WACCPD56842.2022.00009
https://doi.org/10.1109/WACCPD56842.2022.00009

	Introduction
	Julia for ACCelerators (JACC)
	JACC.shared
	Performance Evaluation
	Multi/Hyperspectral Imaging
	Convolution

	Related Work
	Conclusions
	References

