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Abstract—The integrated circuit (IC) industry has experienced 

exponential growth in the complexity and scale of hardware 

designs. To sustain this growth, faster development cycles and 

cost-effective solutions have been the focus of many companies, 

notably through the incorporation of third-party intellectual 

property (IP). Outsourcing the production of sub-components 

reduces development time and enables faster time-to-market; 

however, this approach also introduces the threat of Hardware 

Trojans, which are malicious modifications or additions to an IC, 

posing significant security risks due to their small size, low 

activation frequency, and complex obfuscation techniques. This 

research proposes an advancement to the Trojan detection 

mechanisms incorporated in the Structural Checking Tool, a 

Trojan detection tool that focuses on the identification of logical 

Trojans embedded within soft IPs. Leveraging graph structures 

generated by the tool and signal-level features, this research 

develops a new dataset and three graph neural network 

architectures. Each neural network corresponds to classical graph 

neural network layers and execute graph-level probabilistic 

binary classification of Trojan inclusion. Through rigorous testing 

with two potential sets of node-level feature vectors, this research 

offers a faster, more accurate, and more adaptable approach than 

those existing within the current tool.  
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I. INTRODUCTION 

The integrated circuit (IC) industry has experienced 
exponential growth, marked by an increase in the complexity 
and scale of hardware designs. To meet the demand for faster 
development cycles and cost-effective solutions, many 
companies have adopted the practice of incorporating third-
party intellectual property (IP) into their design processes. 
Common IP can be purchased at a relatively low cost and 
instantly integrated into the development process. Furthermore, 
this approach can streamline synchronous workflows of various 
sub-systems and reduce the workload of in-house development 
teams, enhancing efficiency. However, despite delivering these 
considerable benefits, it allows for the emergence of Hardware 
Trojans, which present a pressing security concern. 

Hardware Trojans, defined as any intentional malicious 
modification to an IC, represent a major threat to the IC 
ecosystem. These alterations to the circuit can serve various 
malevolent purposes, such as reducing reliability, altering 
functionality, or leaking critical data. Due to the pervasiveness 
of ICs within military systems, medical devices, critical 
infrastructure, and many other sectors where security is a major 

concern, the consequences of a Hardware Trojan can be 
devastating.  

To address these concerns, many researchers have developed 
methodologies to detect the inclusion of Trojans within ICs. The 
authors of [1] outline a pre-synthesis and post-synthesis 
approach which uses both register-transfer level (RTL) code and 
gate-level netlists to detect Trojan behavior. The authors used an 
SVM-based concept to detect Trojan behavior using features 
extracted from both RTL and gate-level netlists of known clean 
and Trojan-infested designs. Their pre-synthesis approach, 
which focused on the extraction of features in RTL code for 
classification, obtained an accuracy of 80%. When combining 
both the pre-synthesis and post-synthesis approaches, an 
accuracy of 100% was obtained. While this procedure offered 
impressive accuracy, it was heavily limited to the detection of 
Trojans that only used conditional-based triggers. This resulted 
in a severely limited dataset, containing only ten designs. 

This research aims at addressing the critical challenge of pre-
synthesis Hardware Trojan detection in the context of modern 
ICs. Building upon the foundational work laid out in [2], this 
research leverages the Structural Checking (SC) Tool, a 
Hardware Trojan detection tool capable of automating the 
parsing of Hardware Description Language (HDL) code and 
transforming it into a graph structure that represents the intricate 
interconnections between signals within an IC. By harnessing 
the potential of this graph-based representation and augmenting 
it with data gathered from the parsed HDL, this research 
endeavors to develop a novel model for Hardware Trojan 
detection using graph neural networks. The objective of this 
research is to enhance the efficiency of Trojan detection  
compared to the SC Tool’s existing methodology while 
advancing precision and accuracy. 

The remainder of this paper is organized as follows. Section 
II will briefly cover background information for Hardware 
Trojans, the SC Tool, and graph neural networks. Section III will 
explain the methodology and implementation associated with 
the graph neural networks incorporated into the SC Tool. 
Section IV provides sample results and analysis. Section V 
concludes the paper, providing details on future work. 

II. BACKGROUND 

A. Hardware Trojans 

Hardware Trojans are defined as any intentional malicious 
modification to an IC. The functionality and design of Hardware 
Trojans can be extremely intricate and intentionally convoluted. 



Despite the intricacies observed among Hardware Trojan 
implementations, the goal of these malicious modifications can 
be easily broken down into three distinct categories: reducing 
reliability, altering functionality, and leaking critical data. These 
three categories of alteration can have devastating effects in 
mission-critical systems. 

To illustrate the threat that Hardware Trojans pose, two of 
the goals defined previously, i.e., altering functionality and 
leaking critical data, have been observed within modern military 
systems. In 2007 [3] and 2012 [4], respectively. Hardware 
Trojans are typically engineered to be extremely small and 
challenging to trigger. A Trojan can be implemented with a few 
simple logic gates, while a modern processor consists of 
millions of gates. Smaller Trojans often leave an inconsequential 
impact on metrics such as leakage power, dynamic power, path 
delay, and electromagnetic emissions. This, coupled with 
process variations in modern nanometer technologies and 
measurement noise, can lead to the failure of Trojan detection 
methods like side-channel analysis. Furthermore, Trojans are 
often programmed to activate under highly improbable 
circumstances, such as specific sequences of unlikely input 
combinations. Consequently, due to the statistical unlikelihood 
of such combinations occurring, conventional testing and 
validation methods prove unreliable for Trojan detection. 
Moreover, many of these approaches focus on detecting 
manufacturing defects and do not address the identification of 
additional, malicious functionalities. 

B. Structural Checking Tool 

The SC Tool, initially introduced in [5] and most recently 
updated in [2] and [6], serves as a Trojan detection tool with a 
focus on the identification of logical Trojans embedded within 
soft IP. Notably, it employs static analysis, eliminating the need 
for simulation or synthesis of a circuit for Trojan detection. This 
static analysis is significant for multiple reasons. Firstly, it 
allows for the detection of Hardware Trojans in HDL code, one 
of the earliest and most vulnerable points of the IC design 
process. Secondly, because no simulation or synthesis is 
required, Trojan detection can be performed far quicker than 
alternative methods. From a high-level perspective, the SC Tool 
accomplishes this goal through three distinct internal processes: 
design parsing and graph creation, asset assignment, and Trojan 
detection. 

1) Design Parsing and Graph Creation: The tool’s 

workflow begins by parsing the HDL source code associated 

with an IC whose Trojan status is unknown. This is 

accomplished using hdlConvertor [7], a Verilog and VHDL 

parsing library built using ANTLR4 [8]. During this parsing 

stage, an abstract syntax tree (AST) is generated for each HDL 

file associated with the circuit. This AST breaks down each 

element of the syntax within the HDL files and converts them 

into language-agnostic data types that can then be used to 

generate a structural representation of the circuit. The structural 

information extracted during this step includes entity 

declarations, ports, generics, internal signals, assignment 

statements, and more. This information is used to generate a 

directed graph representation of the circuit for each component 

via the NetworkX [9] Python library. Nodes in the graph are 

represented by ports, generics, and internal signals, while edges 

in the graph represent the driving and driven connections 

between these signals. The edges are defined by assignment 

statements and various types of conditional logic within the 

HDL. A single graph representation for the circuit can then be 

created by referencing component declarations within the HDL.  

2) Asset Assignment: After generation of the circuit’s 

structural framework, asset assignment begins. Asset 

assignment attributes descriptive labels to signals within an IC, 

enhancing our understanding of their intended roles and 

functionalities. In the SC Tool, assets are classified as either 

external or internal. External assets Are assigned manually  to 

ports and generics of each component within the IC. For 

instance, a user might designate a System Timing external asset 

to the primary clock of a circuit. Currently, the SC Tool 

contains 87 external assets split across seven categories. 

Conversely, internal assets are applied automatically to all 

signals within an IC, predicated on key aspects identified within 

the HDL. For example, the Conditional Expression Driving 

asset, is applied to signals influencing Boolean expressions 

within if statements, case statements, while loops, and Verilog-

styled for loops. Currently, the SC Tool contains 31 

automatically assigned internal assets split across eight 

categories. After asset assignment, a filtering step is applied. 

This step is designed to disseminate assigned assets through 

driving and driven connections, providing a more 

comprehensive insight into each signal's role within the circuit. 

3) Trojan Detection: The Trojan detection mechanisms 

employed by the SC Tool encompass two distinct approaches: 

Golden Reference Library (GRL) statistical matching and 

structure-based Trojan detection algorithms. GRL statistical 

matching, introduced in [10] and most recently updated in [11] 

and [12], involves comparing an unknown design – a circuit 

whose Trojan status is unknown – against the GRL, a collection 

of known clean and Trojan-infested designs [2]. This process 

aims to identify the highest match between the unknown design 

and a clean or Trojan-infested design within the GRL. A match 

percentage is computed based on asset similarity, as well as 

other characteristics, between all signals within both the 

unknown design and the GRL entry. This matching process is 

broken into two stages. The first stages approximates the 

unknown design’s functionality by perfomring matching 

against the champion GRL, a subset of the GRL containing a 

single design per design functionality. The unknown design is 

then matched against GRL deisngs matching that functionliaty. 

The highest match percentage calculated during this stage is 

used to determine the likelihood of the unknown design hosting 

Trojan logic. The second approach to Trojan detection relies on 

structure-based Trojan detection algorithms [6][13]. Currently, 

the SC Tool incorporates seven active Trojan detection 

algorithms. Each algorithm aligns with a specific Trojan 

taxonomy and leverages structural elements identified in the 

unknown design, along with user asset information, to flag 

Trojan behavior. The Trojans currently detected by the tool 

encompass Trojan clocks, Trojan key leakage, Trojan battery 



drain, Trojan counters, sensitive data leakage Trojans, data 

modification Trojans, and denial of service Trojans. 

C. Graph Neural Networks 

Graph Neural Networks (GNNs) are a class of machine 
learning models designed to work with data structured as graphs. 
Many data structures, such as social networks, molecular 
structures, and ICs, can naturally be represented via a graph data 
structure. While graph data structures are applicable to many 
real-world scenarios, they pose challenges for traditional deep 
learning frameworks. Graphs are inherently irregular data 
structures. Unlike regular grids or sequences, such as images and 
text, graphs have variable-sized neighborhoods for each node. 
Traditional deep learning frameworks are designed for regular 
data, making it difficult to represent and process the variable-
sized and non-Euclidean nature of graph data. 

Deep learning frameworks often rely on the notion of local 
connectivity, where each element (e.g., pixel or word) is 
connected to a fixed set of neighbors. In contrast, graphs can 
have nodes with highly varying degrees making it challenging 
to define local neighborhoods. Similar to the notion of local 
connectivity, datasets of graphs may also have high variability 
in the number of nodes and edges from graph to graph, making 
it infeasible to define a standardized model that could apply to 
all graphs within the dataset. 

GNNs are designed to learn representations for nodes and 
entire graphs, capturing both node attributes and their 
relationships with other nodes through message-passing and 
aggregation functions. In each layer, nodes exchange 
information with their neighbors, updating their representations 
iteratively over multiple layers, thus gathering information from 
progressively larger neighborhoods. Aggregation functions 
combine these messages, enabling GNNs to capture complex 
relationships and dependencies within the graph. The resulting 
node embeddings from this process can be used for various 
applications, such as node classification, edge prediction, and 
graph classification. For graph classification, an additional 
global pooling layer is typically applied to create a graph-level 
embedding for downstream tasks. 

Various modifications to the message-passing and 
aggregation mechanisms in GNN layers have led to the 
development of multiple classical GNN models. For instance, 
Graph Convolutional Networks (GCNs) [14] and GraphSAGE 
[15] are based on convolutional layers adapted for graphs. 
Additionally, Graph Attention Networks (GATs) [16] use 
attention mechanisms to dynamically assign different levels of 
importance to each neighbor, addressing the challenge of 
capturing meaningful information from neighboring nodes. At 
their core, the designs of these GNN layers contain the same 
integral parts, message-passing and aggregation, however, due 
to small modifications in these mechanisms, they can obtain 
drastically different results given the data used for training.  

III. METHODOLOGY AND IMPLEMENTATION 

GNNs, present many challenges when considering the 
methodology of approach. While the SC Tool, as described in 
Section II, offers a strong foundation, there are still many issues 
that need to be addressed. These include defining a systematic 
and standardized methodology to generate initial node feature 

vectors, the creation of a comprehensive dataset of graphs 
derived from existing entries within the GRL, defining the 
architecture of the GNN models, and developing a 
comprehensive methodology for assessing the effectiveness of 
the proposed GNN-based Hardware Trojan detection methods. 

A. Defining Node Feature Vectors 

Due to the work performed in [2], the SC Tool is already 
fitted with fully automated parsing and graph generation logic. 
There are many candidates for initial node features from the 
parsed HDL, however, some may be more useful than others.. 
More feature information at the node level should theoretically 
improve the GNN model’s ability to learn features of the graph, 
however, possessing a feature vector that is too large can hurt 
performance by increasing computational complexity. 

The features currently extracted during the parsing step can 
be seen in Table I. Boolean indicators and low-dimensional 
features, such as type and direction, are straightforward choices 
for the initial node feature vector. However, deciding on the 
remaining features, especially those associated with names and 
asset assignments, is more challenging. A one-hot encoding [17] 
could suffice to embed asset information, but external asset 
information creates significant overhead as it requires each 
design to be manually assigned when added to the GRL. Manual 
external asset assignment can take hours to days for larger 
designs. This makes it infeasible to expand the library to include 
thousands or tens of thousands of designs which would be ideal 
for machine learning tasks. A bag-of-words embedding (BoW) 
[18] could be used for name-related information; however, 
further analysis on the number of unique signal names and 
component names within the GRL is required. 

When adding or modifying logic within HDL code to insert 
a Hardware Trojan, attackers often apply obfuscation techniques 
to disguise their alterations. A common practice is adding 
additional malicious signals/components with similar names to 
those already existing within a circuit. Performing this 
obfuscation allows the additional or modified logic to go 
unnoticed, even to individuals that are intricately familiar with 
the design. However, it is precisely this obfuscation that makes 
semantic information from name-related data so valuable. 

By leveraging semantic information contained within name-
related data and other node-level features, identifiers for specific 
types of signals can be constructed. In HDL, signal and 
component names often reflect their functionality within the 
circuit. For instance, the signal name clk commonly denotes 
clock signals within synchronous circuits. Given the ubiquitous 
usage of clk and the consistent implementations of clock signals 
across designs of various functionalities, signals bearing this 
name are likely to produce a feature vector that exhibit strong 
similarities to other clock signal implementations, regardless of 
design functionality. The consistency of these features can be 
especially advantageous for identifying Trojan signals. For 
example, if an obfuscated Trojan signal is named clk but 
performs drastically different functions from those expected of 
a clock signal, its feature vector would significantly deviate from 
that of a typical clock signal. This principle extends to 
functionality-specific signal/component names across a plethora 
of various design types, and its usefulness led to 
experimentation with BoW embeddings for name-related data. 



TABLE I.  EXTRACTED NODE FEATURES 

Feature Description 

signal_name Signal name defined within the HDL 

direction Signal direction (input, output, buffer, linkage, inout, 
and internal) 

is_const Boolean denoting whether the signal is a constant 

is_latched Boolean denoting if the logic element can sample and 
hold a binary value 

is_shared Boolean denoting if the signal can share information 
between processes 

is_static Boolean denoting static signals within the HDL 

type Type definition associated with a signal (e.g., 
std_logic_vector) 

value Any initial value assigned to a signal 

is_library_signal Boolean denoting if the signal is part of a library 
definition 

num_bits Number of bits associated with a given signal 

parent_module Parent component of which the signal is defined within 

instance_name Unique instance name assigned to duplicate 
components 

 

To determine the efficacy of a BoW embedding, frequency 
analysis of GRL signal/component names was performed. Initial 
analysis across all GRL designs showed that of 228,508 signal 
declarations and 18,025 component declarations there existed 
only 9,510 unique signal names and 361 unique component 
names. By further analyzing the frequency of name-related data, 
lists of prominent semantic tokens were generated. This process 
relied on the frequency of unique names and common tokens 
used across various design functionalities. While building these 
lists, it was discovered that many tokens share the same semantic 
meaning. Examples of common tokens with identical semantic 
meaning can be seen in Table II. To reduce dimensionality of 
the BoW embedding, these tokens are combined. 

TABLE II.  COMMON TOKENS WITH SEMANTIC EQUIVELANTS 

Token Semantically Equivalent 

clock clk 

count cnt 

reset rst 

busy bsy 

request rqst 

control ctrl 

source src 

destination dst 

clear clr 

 

For signal names a 94-dimensional BoW embedding was 
created from a list of 124 tokens, 30 of which were semantically 
the same. This embedding allowed for a 66.52% coverage rate 
for all unique signal names. For component names a 39-
dimensional BoW embedding was created from a list of 46 
tokens, seven of which were semantically the same. This 
provided a 57.62% coverage rate of unique component names. 
Extending either of these BoW embeddings provided 
diminishing returns as name related data become highly sparse 
and lacked semantic meaning. 

Asset information, unlike name data, has fewer challenges to 
consider when determining an embedding method. Both 
external and internal assets have a set dimension within the SC 
Tool, with 87 external assets and 31 internal assets. Asset 
information is categorical, having no inherent ranking applied to 

any one specific asset. This makes asset information a great 
candidate for one-hot encoding. Due to issues with manual 
assignment of external assets, two feature sets are defined. The 
initial feature vectors are generated using an automated feature 
engineering function. After each feature has been converted 
based on its encoding scheme, the features are combined, 
flattened, and converted into PyTorch [19] tensors. This results 
in two possible feature vectors: a 193-dimensional vector when 
excluding external assets and a 280-dimensional vector when 
including external assets. 

B. Dataset Creation 

To construct a dataset of graphs from existing GRL entries, 
the selection of a suitable machine learning framework was 
crucial. After careful consideration, PyTorch Geometric (PyG) 
[20], a Python library built on PyTorch [19], was chosen. To take 
advantage of PyG, conversion methods were developed to 
transform NetworkX graphs, internal to the SC Tool, to PyG’s 
graph representation. Through this process a custom dataset 
class was added to the SC Tool which facilitated multiple utility 
functions for on-disk storage and data processing. The primary 
utility functions developed include PyG graph validation, mini-
batched data loader creation, and dataset splitting. The final 
dataset used for evaluation of the GNN models included 144 
designs, of which 95 were clean and 49 were Trojan infested, 
sourced from Trust-Hub [21][22] and OpenCores [23] designs. 

C. Model Implementation 

To thoroughly evaluate Hardware Trojan detection using 
GNNs, three models were developed, each employing different 
classical GNN layers. These three classical layers include GCN, 
GraphSAGE, and GAT. All models were designed to be highly 
modular for the task of graph-level classification. To ensure 
testing remained consistent, a generalized modular architecture, 
as seen in Fig. 1, was adopted for all three models. The key 
distinction among these models is their node-level 
implementations, with differences in the GNN layers utilized. 

The input to each model is mini-batched graph data where 
each node embedding corresponds to the provided initial feature 
vector. This data is then sent through a variable number of GNN 
layers used to generate nth-order node embeddings based on a k-
hop neighborhood. Each GNN layer has a different message 
passing and aggregation mechanism which is represented in 
PyG. GCN layers are represented by GCNConv [14], 
GraphSAGE by SAGEConv [15], and GAT by GATv2Conv 
[24].  

Each GNN layer utilizes batch normalization, non-linearity 
in the form of ReLU, and a dropout mechanism. The nth-order 
node embeddings are then fed through a mean global pooling 
mechanism to generate a single graph embedding. A variable 
number of linear layers are then applied for binary classification 
using ReLU non-linearity. Finally a sigmoid activation function 
is applied at the output of the model to generate a probabilistic 
result of Trojan inclusion. Each model includes multiple 
configurable parameters which can be seen in Table III. 



TABLE III.  CONFIGURABLE MODEL PARAMETERS 

Parameter Description 

num_layers Number of GNN layers 

input_dim Input dimension of the node-level model 

hidden_dim Hidden dimension of the node-level model 

output_dim Output dimension of the node-level model 

dropout Dropout percentage used to reduce overfitting 

lin_layers Number of linear layers in the graph-level model 

heads Number of attention heads (GAT specific) 

 

IV. RESULTS AND ANALYSIS 

To compare the GNN-based Hardware Trojan detection 
methods to the SC Tool’s current Trojan detection methods it is 
important to highlight the differences in both the functionality 
and expected result of each method. Functionally, the structure-
based Trojan detection algorithms exhibit the greatest contrast 
in approach. Each structure-based Trojan detection algorithm 
targets a specific Trojan taxonomy and leverages structural 
elements in the unknown design’s graph representation, along 
with user asset information, to flag Trojan behavior. The output 
of these algorithms consists of a JSON results file which 
indicates signals that potentially belong to a specific Trojan 
taxonomy as well as their Trojan purpose in the IC. 

When comparing this methodology to the GNN-based 
approach two major differences can be observed, the first 
difference being the granularity at which detections are made. 
Within the structure-based Trojan detection algorithms, a signal-
level classification is performed. This differs from the design-
level classification performed by the GNN-based approach. The 
second difference between these two methodologies is the way 
in which detection is reported. In the GNN-based approach, a 
probability of Trojan inclusion is given for the design being 
tested, while in the structure-based Trojan detection algorithms 
signals are cautiously reported based on their features within the 

circuit. Cautious reporting is used during this process to reduce 
the chance of missing potential Trojan signals. Due to the drastic 
differences in results, comparing these two methodologies is 
unsuitable. 

GRL statistical matching maintains similar functionality and 
a comparable level of granularity in classification. While both 
methodologies are used for the classification of Trojan 
inclusion, the method by which they perform these 
classifications is quite different. Rather than giving a probability 
of Trojan inclusion, GRL statistical matching provides 
similarity scores between the unknown design and both 
champion and functionality subset GRL entries. This 
information can be used to determine Trojan inclusion based on 
highest match percentage and overall similarity between 
circuits. The combination of these factors makes both 
methodologies excellent choices for comparison. 

A. GNN-Based Trojan Detection 

To gather results from the three GNN models, each model 
was subjected to an automated hyperparameter tuning session 
using both available feature sets. After identifying ideal 
hyperparameters, an extended 1000 epoch training session was 
applied to each model using 10-fold cross validation. Individual 
batch losses are aggregated to form a single epoch loss which is 
calculated using binary cross entropy loss [25]. Following this 
step, the gradient of the backward pass of the neural network is 
calculated and the optimizer, Adam [26], is used to update 
model parameters to minimize training loss. Additional 
evaluation metrics, such as F1 score, accuracy, and Area Under 
the Receiver Operating Characteristic Curve (ROC AUC) score, 
are calculated using the scikit-learn Python library [27]. The 
metrics aggregated from each fold, after 1000 epochs of training, 
can be seen in Table IV.  

  

 

 

Fig. 1. Modular node-level and graph-level architecture. Node-level architecture can be seen above graph-level architecture with node-level GNN output acting as 
input to the graph-level architecture. 



TABLE IV.  GNN EVALUATION METRICS AT 1000 EPOCHS 

 Loss Accuracy F1-Score ROC AUC Score 

Train Test Train Test Train Test Train Test 

GCN 0.1730 0.4001 0.9297 0.8649 0.9059 0.7968 0.9892 0.9405 

GCN* 0.3590 0.3524 0.9438 0.8752 0.9278 0.8001 0.9984 0.9289 

GraphSAGE 0.0541 0.6379 0.9405 0.8486 0.8856 0.7546 0.9944 0.9456 

GraphSAGE* 0.1630 0.6196 0.9636 0.9045 0.9458 0.8725 0.9991 0.9801 

GAT 0.1189 0.3943 0.9514 0.8973 0.9338 0.8469 0.9973 0.9456 

GAT* 0.0946 0.4195 0.9627 0.9036 0.9431 0.8685 1.000 0.9552 

a.
 * - includes both external and internal assets in the model’s feature sets while training.

From the results observed in Table IV, several observations 
can be made regarding the performance of the GNN models. 
Regardless of whether external asset information was included 
or excluded from the initial node feature vectors, each model 
achieved impressive results. The best model from this selection 
was the GAT which excluded external asset information. 
Overall, models that excluded external asset information tended 
to be more stable and performed slightly better than their 
inclusive counterparts. 

B. GRL Matching 

To gather evaluation metrics comparable to those found 
within the GNN models, a GRL matching evaluator was 
developed. This evaluator begins by iterating through each 
design in the GRL to gather data from the matching process. 
GRL matching is heavily dependent on the size and diversity of 
designs found within the GRL. For this reason, a leave-one-out 
(LOO) approach is used when performing matching. Because of 
the deterministic nature of the GRL matching algorithm, only a 
single pass of each design is necessary to determine the 
algorithm’s effectiveness.  

Internally, it is recommended to review more than just the 
highest match to prevent any potential Trojans from being 
overlooked. To account for this, additional analysis was 
performed to observe the top-three highest match percentages 
with cautious reporting. Cautious reporting in this context refers 
to the method by which a design is classified. Should a Trojan 
design be found within the top-three highest match percentages, 
the unknown design is marked as having been classified as 
Trojan-infested. This is then compared to designs actual 
classification. Using this method of evaluation GRL matching 
obtained a Trojan inclusion classification accuracy of 67.67% 
with an F1 score of 0.5057. 

C. Direct Comparisons 

When comparing both GNN-based Trojan detection and 
GRL matching, the Trojan inclusion classification abilities of 
the GNN approach far exceed the current capabilities of GRL 
matching. All six models, seen in Table IV, outperformed GRL 
matching. The best performing model, GAT, achieved a 32.60% 
increase in accuracy and a 67.47% increase in F1 score. The 
worst performing model, GraphSAGE was still able to achieve 
a 25.40% increase in accuracy and a 49.22% increase in F1 
score. Test accuracy and F1 score are used in these comparisons 
as they demonstrate how the model performs on data that it has 
not been trained on. 

Another benefit of the GNN-based approach is the speed at 
which Trojan detection can be performed. Although training the 
model can take a significant amount of time, this process is 

performed in advance and is a one-time operation. Once a model 
has been trained, the time required to perform Trojan detection 
on a single design is typically less than a second. While training 
will take longer as the GNN’s dataset grows, the time required 
to perform Trojan detection should remain essentially the same, 
assuming model configurations remain constant. GRL 
matching, however, can take upwards of 30 minutes to complete 
for larger designs. As the GRL expands, the time required to 
complete matching will only increase. 

V. CONCLUSION AND FUTURE WORK 

Through the creation of multiple modular graph-level 
GNNs, the SC Tool’s Trojan detection capabilities have been 
expanded. This research has demonstrated that GNN-based 
Trojan detection offers a faster and more accurate method of 
design-level Trojan inclusion classification compared to the SC 
Tool’s pre-existing GRL matching technique. Furthermore, the 
use of external asset information within initial node feature 
vectors yielded similar or inferior results compared to models 
excluding the asset information. Automatic feature extraction of 
ICs added to the GRL substantially increases the rate at which 
the dataset can grow, while also removing the chance of human 
error or external asset assignment biases that existed within the 
original GRL. Going forward this methodology can be expanded 
to node-level Trojan classification. This would provide the 
ability to directly identify Trojan signals within RTL code 
allowing for comparisons to the SC Tools structure-based 
Trojan detection algorithms. Additionally, multi-class graph-
level classification could be used to identify both the 
functionality of a circuit and its Trojan inclusion probability. 
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