
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Hardware Trojan Detection Utilizing Graph Neural
Networks and Structural Checking
Hunter Nauman

Department of Electrical Engineering and Computer Science
University of Arkansas

Fayetteville, Arkansas. USA
hjnauman@uark.edu

Jia Di
Department of Electrical Engineering and Computer Science

University of Arkansas

Fayetteville, Arkansas. USA
jdi@uark.edu

Abstract—The integrated circuit (IC) industry has experienced

exponential growth in the complexity and scale of hardware

designs. To sustain this growth, faster development cycles and

cost-effective solutions have been the focus of many companies,

notably through the incorporation of third-party intellectual

property (IP). Outsourcing the production of sub-components

reduces development time and enables faster time-to-market;

however, this approach also introduces the threat of Hardware

Trojans, which are malicious modifications or additions to an IC,

posing significant security risks due to their small size, low

activation frequency, and complex obfuscation techniques. This

research proposes an advancement to the Trojan detection

mechanisms incorporated in the Structural Checking Tool, a

Trojan detection tool that focuses on the identification of logical

Trojans embedded within soft IPs. Leveraging graph structures

generated by the tool and signal-level features, this research

develops a new dataset and three graph neural network

architectures. Each neural network corresponds to classical graph

neural network layers and execute graph-level probabilistic

binary classification of Trojan inclusion. Through rigorous testing

with two potential sets of node-level feature vectors, this research

offers a faster, more accurate, and more adaptable approach than

those existing within the current tool.

Keywords—Hardware Trojan, structural checking, asset, golden

reference matching, graph neural networks

I. INTRODUCTION

The integrated circuit (IC) industry has experienced
exponential growth, marked by an increase in the complexity
and scale of hardware designs. To meet the demand for faster
development cycles and cost-effective solutions, many
companies have adopted the practice of incorporating third-
party intellectual property (IP) into their design processes.
Common IP can be purchased at a relatively low cost and
instantly integrated into the development process. Furthermore,
this approach can streamline synchronous workflows of various
sub-systems and reduce the workload of in-house development
teams, enhancing efficiency. However, despite delivering these
considerable benefits, it allows for the emergence of Hardware
Trojans, which present a pressing security concern.

Hardware Trojans, defined as any intentional malicious
modification to an IC, represent a major threat to the IC
ecosystem. These alterations to the circuit can serve various
malevolent purposes, such as reducing reliability, altering
functionality, or leaking critical data. Due to the pervasiveness
of ICs within military systems, medical devices, critical
infrastructure, and many other sectors where security is a major

concern, the consequences of a Hardware Trojan can be
devastating.

To address these concerns, many researchers have developed
methodologies to detect the inclusion of Trojans within ICs. The
authors of [1] outline a pre-synthesis and post-synthesis
approach which uses both register-transfer level (RTL) code and
gate-level netlists to detect Trojan behavior. The authors used an
SVM-based concept to detect Trojan behavior using features
extracted from both RTL and gate-level netlists of known clean
and Trojan-infested designs. Their pre-synthesis approach,
which focused on the extraction of features in RTL code for
classification, obtained an accuracy of 80%. When combining
both the pre-synthesis and post-synthesis approaches, an
accuracy of 100% was obtained. While this procedure offered
impressive accuracy, it was heavily limited to the detection of
Trojans that only used conditional-based triggers. This resulted
in a severely limited dataset, containing only ten designs.

This research aims at addressing the critical challenge of pre-
synthesis Hardware Trojan detection in the context of modern
ICs. Building upon the foundational work laid out in [2], this
research leverages the Structural Checking (SC) Tool, a
Hardware Trojan detection tool capable of automating the
parsing of Hardware Description Language (HDL) code and
transforming it into a graph structure that represents the intricate
interconnections between signals within an IC. By harnessing
the potential of this graph-based representation and augmenting
it with data gathered from the parsed HDL, this research
endeavors to develop a novel model for Hardware Trojan
detection using graph neural networks. The objective of this
research is to enhance the efficiency of Trojan detection
compared to the SC Tool’s existing methodology while
advancing precision and accuracy.

The remainder of this paper is organized as follows. Section
II will briefly cover background information for Hardware
Trojans, the SC Tool, and graph neural networks. Section III will
explain the methodology and implementation associated with
the graph neural networks incorporated into the SC Tool.
Section IV provides sample results and analysis. Section V
concludes the paper, providing details on future work.

II. BACKGROUND

A. Hardware Trojans

Hardware Trojans are defined as any intentional malicious
modification to an IC. The functionality and design of Hardware
Trojans can be extremely intricate and intentionally convoluted.

Despite the intricacies observed among Hardware Trojan
implementations, the goal of these malicious modifications can
be easily broken down into three distinct categories: reducing
reliability, altering functionality, and leaking critical data. These
three categories of alteration can have devastating effects in
mission-critical systems.

To illustrate the threat that Hardware Trojans pose, two of
the goals defined previously, i.e., altering functionality and
leaking critical data, have been observed within modern military
systems. In 2007 [3] and 2012 [4], respectively. Hardware
Trojans are typically engineered to be extremely small and
challenging to trigger. A Trojan can be implemented with a few
simple logic gates, while a modern processor consists of
millions of gates. Smaller Trojans often leave an inconsequential
impact on metrics such as leakage power, dynamic power, path
delay, and electromagnetic emissions. This, coupled with
process variations in modern nanometer technologies and
measurement noise, can lead to the failure of Trojan detection
methods like side-channel analysis. Furthermore, Trojans are
often programmed to activate under highly improbable
circumstances, such as specific sequences of unlikely input
combinations. Consequently, due to the statistical unlikelihood
of such combinations occurring, conventional testing and
validation methods prove unreliable for Trojan detection.
Moreover, many of these approaches focus on detecting
manufacturing defects and do not address the identification of
additional, malicious functionalities.

B. Structural Checking Tool

The SC Tool, initially introduced in [5] and most recently
updated in [2] and [6], serves as a Trojan detection tool with a
focus on the identification of logical Trojans embedded within
soft IP. Notably, it employs static analysis, eliminating the need
for simulation or synthesis of a circuit for Trojan detection. This
static analysis is significant for multiple reasons. Firstly, it
allows for the detection of Hardware Trojans in HDL code, one
of the earliest and most vulnerable points of the IC design
process. Secondly, because no simulation or synthesis is
required, Trojan detection can be performed far quicker than
alternative methods. From a high-level perspective, the SC Tool
accomplishes this goal through three distinct internal processes:
design parsing and graph creation, asset assignment, and Trojan
detection.

1) Design Parsing and Graph Creation: The tool’s

workflow begins by parsing the HDL source code associated

with an IC whose Trojan status is unknown. This is

accomplished using hdlConvertor [7], a Verilog and VHDL

parsing library built using ANTLR4 [8]. During this parsing

stage, an abstract syntax tree (AST) is generated for each HDL

file associated with the circuit. This AST breaks down each

element of the syntax within the HDL files and converts them

into language-agnostic data types that can then be used to

generate a structural representation of the circuit. The structural

information extracted during this step includes entity

declarations, ports, generics, internal signals, assignment

statements, and more. This information is used to generate a

directed graph representation of the circuit for each component

via the NetworkX [9] Python library. Nodes in the graph are

represented by ports, generics, and internal signals, while edges

in the graph represent the driving and driven connections

between these signals. The edges are defined by assignment

statements and various types of conditional logic within the

HDL. A single graph representation for the circuit can then be

created by referencing component declarations within the HDL.

2) Asset Assignment: After generation of the circuit’s

structural framework, asset assignment begins. Asset

assignment attributes descriptive labels to signals within an IC,

enhancing our understanding of their intended roles and

functionalities. In the SC Tool, assets are classified as either

external or internal. External assets Are assigned manually to

ports and generics of each component within the IC. For

instance, a user might designate a System Timing external asset

to the primary clock of a circuit. Currently, the SC Tool

contains 87 external assets split across seven categories.

Conversely, internal assets are applied automatically to all

signals within an IC, predicated on key aspects identified within

the HDL. For example, the Conditional Expression Driving

asset, is applied to signals influencing Boolean expressions

within if statements, case statements, while loops, and Verilog-

styled for loops. Currently, the SC Tool contains 31

automatically assigned internal assets split across eight

categories. After asset assignment, a filtering step is applied.

This step is designed to disseminate assigned assets through

driving and driven connections, providing a more

comprehensive insight into each signal's role within the circuit.

3) Trojan Detection: The Trojan detection mechanisms

employed by the SC Tool encompass two distinct approaches:

Golden Reference Library (GRL) statistical matching and

structure-based Trojan detection algorithms. GRL statistical

matching, introduced in [10] and most recently updated in [11]

and [12], involves comparing an unknown design – a circuit

whose Trojan status is unknown – against the GRL, a collection

of known clean and Trojan-infested designs [2]. This process

aims to identify the highest match between the unknown design

and a clean or Trojan-infested design within the GRL. A match

percentage is computed based on asset similarity, as well as

other characteristics, between all signals within both the

unknown design and the GRL entry. This matching process is

broken into two stages. The first stages approximates the

unknown design’s functionality by perfomring matching

against the champion GRL, a subset of the GRL containing a

single design per design functionality. The unknown design is

then matched against GRL deisngs matching that functionliaty.

The highest match percentage calculated during this stage is

used to determine the likelihood of the unknown design hosting

Trojan logic. The second approach to Trojan detection relies on

structure-based Trojan detection algorithms [6][13]. Currently,

the SC Tool incorporates seven active Trojan detection

algorithms. Each algorithm aligns with a specific Trojan

taxonomy and leverages structural elements identified in the

unknown design, along with user asset information, to flag

Trojan behavior. The Trojans currently detected by the tool

encompass Trojan clocks, Trojan key leakage, Trojan battery

drain, Trojan counters, sensitive data leakage Trojans, data

modification Trojans, and denial of service Trojans.

C. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of machine
learning models designed to work with data structured as graphs.
Many data structures, such as social networks, molecular
structures, and ICs, can naturally be represented via a graph data
structure. While graph data structures are applicable to many
real-world scenarios, they pose challenges for traditional deep
learning frameworks. Graphs are inherently irregular data
structures. Unlike regular grids or sequences, such as images and
text, graphs have variable-sized neighborhoods for each node.
Traditional deep learning frameworks are designed for regular
data, making it difficult to represent and process the variable-
sized and non-Euclidean nature of graph data.

Deep learning frameworks often rely on the notion of local
connectivity, where each element (e.g., pixel or word) is
connected to a fixed set of neighbors. In contrast, graphs can
have nodes with highly varying degrees making it challenging
to define local neighborhoods. Similar to the notion of local
connectivity, datasets of graphs may also have high variability
in the number of nodes and edges from graph to graph, making
it infeasible to define a standardized model that could apply to
all graphs within the dataset.

GNNs are designed to learn representations for nodes and
entire graphs, capturing both node attributes and their
relationships with other nodes through message-passing and
aggregation functions. In each layer, nodes exchange
information with their neighbors, updating their representations
iteratively over multiple layers, thus gathering information from
progressively larger neighborhoods. Aggregation functions
combine these messages, enabling GNNs to capture complex
relationships and dependencies within the graph. The resulting
node embeddings from this process can be used for various
applications, such as node classification, edge prediction, and
graph classification. For graph classification, an additional
global pooling layer is typically applied to create a graph-level
embedding for downstream tasks.

Various modifications to the message-passing and
aggregation mechanisms in GNN layers have led to the
development of multiple classical GNN models. For instance,
Graph Convolutional Networks (GCNs) [14] and GraphSAGE
[15] are based on convolutional layers adapted for graphs.
Additionally, Graph Attention Networks (GATs) [16] use
attention mechanisms to dynamically assign different levels of
importance to each neighbor, addressing the challenge of
capturing meaningful information from neighboring nodes. At
their core, the designs of these GNN layers contain the same
integral parts, message-passing and aggregation, however, due
to small modifications in these mechanisms, they can obtain
drastically different results given the data used for training.

III. METHODOLOGY AND IMPLEMENTATION

GNNs, present many challenges when considering the
methodology of approach. While the SC Tool, as described in
Section II, offers a strong foundation, there are still many issues
that need to be addressed. These include defining a systematic
and standardized methodology to generate initial node feature

vectors, the creation of a comprehensive dataset of graphs
derived from existing entries within the GRL, defining the
architecture of the GNN models, and developing a
comprehensive methodology for assessing the effectiveness of
the proposed GNN-based Hardware Trojan detection methods.

A. Defining Node Feature Vectors

Due to the work performed in [2], the SC Tool is already
fitted with fully automated parsing and graph generation logic.
There are many candidates for initial node features from the
parsed HDL, however, some may be more useful than others..
More feature information at the node level should theoretically
improve the GNN model’s ability to learn features of the graph,
however, possessing a feature vector that is too large can hurt
performance by increasing computational complexity.

The features currently extracted during the parsing step can
be seen in Table I. Boolean indicators and low-dimensional
features, such as type and direction, are straightforward choices
for the initial node feature vector. However, deciding on the
remaining features, especially those associated with names and
asset assignments, is more challenging. A one-hot encoding [17]
could suffice to embed asset information, but external asset
information creates significant overhead as it requires each
design to be manually assigned when added to the GRL. Manual
external asset assignment can take hours to days for larger
designs. This makes it infeasible to expand the library to include
thousands or tens of thousands of designs which would be ideal
for machine learning tasks. A bag-of-words embedding (BoW)
[18] could be used for name-related information; however,
further analysis on the number of unique signal names and
component names within the GRL is required.

When adding or modifying logic within HDL code to insert
a Hardware Trojan, attackers often apply obfuscation techniques
to disguise their alterations. A common practice is adding
additional malicious signals/components with similar names to
those already existing within a circuit. Performing this
obfuscation allows the additional or modified logic to go
unnoticed, even to individuals that are intricately familiar with
the design. However, it is precisely this obfuscation that makes
semantic information from name-related data so valuable.

By leveraging semantic information contained within name-
related data and other node-level features, identifiers for specific
types of signals can be constructed. In HDL, signal and
component names often reflect their functionality within the
circuit. For instance, the signal name clk commonly denotes
clock signals within synchronous circuits. Given the ubiquitous
usage of clk and the consistent implementations of clock signals
across designs of various functionalities, signals bearing this
name are likely to produce a feature vector that exhibit strong
similarities to other clock signal implementations, regardless of
design functionality. The consistency of these features can be
especially advantageous for identifying Trojan signals. For
example, if an obfuscated Trojan signal is named clk but
performs drastically different functions from those expected of
a clock signal, its feature vector would significantly deviate from
that of a typical clock signal. This principle extends to
functionality-specific signal/component names across a plethora
of various design types, and its usefulness led to
experimentation with BoW embeddings for name-related data.

TABLE I. EXTRACTED NODE FEATURES

Feature Description

signal_name Signal name defined within the HDL

direction Signal direction (input, output, buffer, linkage, inout,
and internal)

is_const Boolean denoting whether the signal is a constant

is_latched Boolean denoting if the logic element can sample and
hold a binary value

is_shared Boolean denoting if the signal can share information
between processes

is_static Boolean denoting static signals within the HDL

type Type definition associated with a signal (e.g.,
std_logic_vector)

value Any initial value assigned to a signal

is_library_signal Boolean denoting if the signal is part of a library
definition

num_bits Number of bits associated with a given signal

parent_module Parent component of which the signal is defined within

instance_name Unique instance name assigned to duplicate
components

To determine the efficacy of a BoW embedding, frequency
analysis of GRL signal/component names was performed. Initial
analysis across all GRL designs showed that of 228,508 signal
declarations and 18,025 component declarations there existed
only 9,510 unique signal names and 361 unique component
names. By further analyzing the frequency of name-related data,
lists of prominent semantic tokens were generated. This process
relied on the frequency of unique names and common tokens
used across various design functionalities. While building these
lists, it was discovered that many tokens share the same semantic
meaning. Examples of common tokens with identical semantic
meaning can be seen in Table II. To reduce dimensionality of
the BoW embedding, these tokens are combined.

TABLE II. COMMON TOKENS WITH SEMANTIC EQUIVELANTS

Token Semantically Equivalent

clock clk

count cnt

reset rst

busy bsy

request rqst

control ctrl

source src

destination dst

clear clr

For signal names a 94-dimensional BoW embedding was
created from a list of 124 tokens, 30 of which were semantically
the same. This embedding allowed for a 66.52% coverage rate
for all unique signal names. For component names a 39-
dimensional BoW embedding was created from a list of 46
tokens, seven of which were semantically the same. This
provided a 57.62% coverage rate of unique component names.
Extending either of these BoW embeddings provided
diminishing returns as name related data become highly sparse
and lacked semantic meaning.

Asset information, unlike name data, has fewer challenges to
consider when determining an embedding method. Both
external and internal assets have a set dimension within the SC
Tool, with 87 external assets and 31 internal assets. Asset
information is categorical, having no inherent ranking applied to

any one specific asset. This makes asset information a great
candidate for one-hot encoding. Due to issues with manual
assignment of external assets, two feature sets are defined. The
initial feature vectors are generated using an automated feature
engineering function. After each feature has been converted
based on its encoding scheme, the features are combined,
flattened, and converted into PyTorch [19] tensors. This results
in two possible feature vectors: a 193-dimensional vector when
excluding external assets and a 280-dimensional vector when
including external assets.

B. Dataset Creation

To construct a dataset of graphs from existing GRL entries,
the selection of a suitable machine learning framework was
crucial. After careful consideration, PyTorch Geometric (PyG)
[20], a Python library built on PyTorch [19], was chosen. To take
advantage of PyG, conversion methods were developed to
transform NetworkX graphs, internal to the SC Tool, to PyG’s
graph representation. Through this process a custom dataset
class was added to the SC Tool which facilitated multiple utility
functions for on-disk storage and data processing. The primary
utility functions developed include PyG graph validation, mini-
batched data loader creation, and dataset splitting. The final
dataset used for evaluation of the GNN models included 144
designs, of which 95 were clean and 49 were Trojan infested,
sourced from Trust-Hub [21][22] and OpenCores [23] designs.

C. Model Implementation

To thoroughly evaluate Hardware Trojan detection using
GNNs, three models were developed, each employing different
classical GNN layers. These three classical layers include GCN,
GraphSAGE, and GAT. All models were designed to be highly
modular for the task of graph-level classification. To ensure
testing remained consistent, a generalized modular architecture,
as seen in Fig. 1, was adopted for all three models. The key
distinction among these models is their node-level
implementations, with differences in the GNN layers utilized.

The input to each model is mini-batched graph data where
each node embedding corresponds to the provided initial feature
vector. This data is then sent through a variable number of GNN
layers used to generate nth-order node embeddings based on a k-
hop neighborhood. Each GNN layer has a different message
passing and aggregation mechanism which is represented in
PyG. GCN layers are represented by GCNConv [14],
GraphSAGE by SAGEConv [15], and GAT by GATv2Conv
[24].

Each GNN layer utilizes batch normalization, non-linearity
in the form of ReLU, and a dropout mechanism. The nth-order
node embeddings are then fed through a mean global pooling
mechanism to generate a single graph embedding. A variable
number of linear layers are then applied for binary classification
using ReLU non-linearity. Finally a sigmoid activation function
is applied at the output of the model to generate a probabilistic
result of Trojan inclusion. Each model includes multiple
configurable parameters which can be seen in Table III.

TABLE III. CONFIGURABLE MODEL PARAMETERS

Parameter Description

num_layers Number of GNN layers

input_dim Input dimension of the node-level model

hidden_dim Hidden dimension of the node-level model

output_dim Output dimension of the node-level model

dropout Dropout percentage used to reduce overfitting

lin_layers Number of linear layers in the graph-level model

heads Number of attention heads (GAT specific)

IV. RESULTS AND ANALYSIS

To compare the GNN-based Hardware Trojan detection
methods to the SC Tool’s current Trojan detection methods it is
important to highlight the differences in both the functionality
and expected result of each method. Functionally, the structure-
based Trojan detection algorithms exhibit the greatest contrast
in approach. Each structure-based Trojan detection algorithm
targets a specific Trojan taxonomy and leverages structural
elements in the unknown design’s graph representation, along
with user asset information, to flag Trojan behavior. The output
of these algorithms consists of a JSON results file which
indicates signals that potentially belong to a specific Trojan
taxonomy as well as their Trojan purpose in the IC.

When comparing this methodology to the GNN-based
approach two major differences can be observed, the first
difference being the granularity at which detections are made.
Within the structure-based Trojan detection algorithms, a signal-
level classification is performed. This differs from the design-
level classification performed by the GNN-based approach. The
second difference between these two methodologies is the way
in which detection is reported. In the GNN-based approach, a
probability of Trojan inclusion is given for the design being
tested, while in the structure-based Trojan detection algorithms
signals are cautiously reported based on their features within the

circuit. Cautious reporting is used during this process to reduce
the chance of missing potential Trojan signals. Due to the drastic
differences in results, comparing these two methodologies is
unsuitable.

GRL statistical matching maintains similar functionality and
a comparable level of granularity in classification. While both
methodologies are used for the classification of Trojan
inclusion, the method by which they perform these
classifications is quite different. Rather than giving a probability
of Trojan inclusion, GRL statistical matching provides
similarity scores between the unknown design and both
champion and functionality subset GRL entries. This
information can be used to determine Trojan inclusion based on
highest match percentage and overall similarity between
circuits. The combination of these factors makes both
methodologies excellent choices for comparison.

A. GNN-Based Trojan Detection

To gather results from the three GNN models, each model
was subjected to an automated hyperparameter tuning session
using both available feature sets. After identifying ideal
hyperparameters, an extended 1000 epoch training session was
applied to each model using 10-fold cross validation. Individual
batch losses are aggregated to form a single epoch loss which is
calculated using binary cross entropy loss [25]. Following this
step, the gradient of the backward pass of the neural network is
calculated and the optimizer, Adam [26], is used to update
model parameters to minimize training loss. Additional
evaluation metrics, such as F1 score, accuracy, and Area Under
the Receiver Operating Characteristic Curve (ROC AUC) score,
are calculated using the scikit-learn Python library [27]. The
metrics aggregated from each fold, after 1000 epochs of training,
can be seen in Table IV.

Fig. 1. Modular node-level and graph-level architecture. Node-level architecture can be seen above graph-level architecture with node-level GNN output acting as
input to the graph-level architecture.

TABLE IV. GNN EVALUATION METRICS AT 1000 EPOCHS

 Loss Accuracy F1-Score ROC AUC Score

Train Test Train Test Train Test Train Test

GCN 0.1730 0.4001 0.9297 0.8649 0.9059 0.7968 0.9892 0.9405

GCN* 0.3590 0.3524 0.9438 0.8752 0.9278 0.8001 0.9984 0.9289

GraphSAGE 0.0541 0.6379 0.9405 0.8486 0.8856 0.7546 0.9944 0.9456

GraphSAGE* 0.1630 0.6196 0.9636 0.9045 0.9458 0.8725 0.9991 0.9801

GAT 0.1189 0.3943 0.9514 0.8973 0.9338 0.8469 0.9973 0.9456

GAT* 0.0946 0.4195 0.9627 0.9036 0.9431 0.8685 1.000 0.9552

a.
 * - includes both external and internal assets in the model’s feature sets while training.

From the results observed in Table IV, several observations
can be made regarding the performance of the GNN models.
Regardless of whether external asset information was included
or excluded from the initial node feature vectors, each model
achieved impressive results. The best model from this selection
was the GAT which excluded external asset information.
Overall, models that excluded external asset information tended
to be more stable and performed slightly better than their
inclusive counterparts.

B. GRL Matching

To gather evaluation metrics comparable to those found
within the GNN models, a GRL matching evaluator was
developed. This evaluator begins by iterating through each
design in the GRL to gather data from the matching process.
GRL matching is heavily dependent on the size and diversity of
designs found within the GRL. For this reason, a leave-one-out
(LOO) approach is used when performing matching. Because of
the deterministic nature of the GRL matching algorithm, only a
single pass of each design is necessary to determine the
algorithm’s effectiveness.

Internally, it is recommended to review more than just the
highest match to prevent any potential Trojans from being
overlooked. To account for this, additional analysis was
performed to observe the top-three highest match percentages
with cautious reporting. Cautious reporting in this context refers
to the method by which a design is classified. Should a Trojan
design be found within the top-three highest match percentages,
the unknown design is marked as having been classified as
Trojan-infested. This is then compared to designs actual
classification. Using this method of evaluation GRL matching
obtained a Trojan inclusion classification accuracy of 67.67%
with an F1 score of 0.5057.

C. Direct Comparisons

When comparing both GNN-based Trojan detection and
GRL matching, the Trojan inclusion classification abilities of
the GNN approach far exceed the current capabilities of GRL
matching. All six models, seen in Table IV, outperformed GRL
matching. The best performing model, GAT, achieved a 32.60%
increase in accuracy and a 67.47% increase in F1 score. The
worst performing model, GraphSAGE was still able to achieve
a 25.40% increase in accuracy and a 49.22% increase in F1
score. Test accuracy and F1 score are used in these comparisons
as they demonstrate how the model performs on data that it has
not been trained on.

Another benefit of the GNN-based approach is the speed at
which Trojan detection can be performed. Although training the
model can take a significant amount of time, this process is

performed in advance and is a one-time operation. Once a model
has been trained, the time required to perform Trojan detection
on a single design is typically less than a second. While training
will take longer as the GNN’s dataset grows, the time required
to perform Trojan detection should remain essentially the same,
assuming model configurations remain constant. GRL
matching, however, can take upwards of 30 minutes to complete
for larger designs. As the GRL expands, the time required to
complete matching will only increase.

V. CONCLUSION AND FUTURE WORK

Through the creation of multiple modular graph-level
GNNs, the SC Tool’s Trojan detection capabilities have been
expanded. This research has demonstrated that GNN-based
Trojan detection offers a faster and more accurate method of
design-level Trojan inclusion classification compared to the SC
Tool’s pre-existing GRL matching technique. Furthermore, the
use of external asset information within initial node feature
vectors yielded similar or inferior results compared to models
excluding the asset information. Automatic feature extraction of
ICs added to the GRL substantially increases the rate at which
the dataset can grow, while also removing the chance of human
error or external asset assignment biases that existed within the
original GRL. Going forward this methodology can be expanded
to node-level Trojan classification. This would provide the
ability to directly identify Trojan signals within RTL code
allowing for comparisons to the SC Tools structure-based
Trojan detection algorithms. Additionally, multi-class graph-
level classification could be used to identify both the
functionality of a circuit and its Trojan inclusion probability.

REFERENCES

[1] H. S. Choo et al., "Machine-Learning-Based Multiple Abstraction-Level
Detection of Hardware Trojan Inserted at Register-Transfer Level," 2019
IEEE 28th Asian Test Symposium (ATS), Kolkata, India, 2019, pp. 98-
980, doi: 10.1109/ATS47505.2019.00018.

[2] Taylor, D. (2022). SC Tool Restructure and Matching Improvements.
Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/4494

[3] S. Adee, "The Hunt For The Kill Switch," in IEEE Spectrum, vol. 45, no.
5, pp. 34-39, May 2008, doi: 10.1109/MSPEC.2008.4505310.

[4] Skorobogatov, S., Woods, C. (2012). Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip. In: Prouff, E., Schaumont, P. (eds)
Cryptographic Hardware and Embedded Systems – CHES 2012. CHES
2012. Lecture Notes in Computer Science, vol 7428. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-33027-8_2

[5] J. Yust, M. Hinds and J. Di, “Structural Checking: Detecting Malicious
Logic without a Golden Reference,” Journal of Computational
Intelligence and Electronic Systems, vol. 1, no.2, p 169177, 2012

[6] Del Carmen, R. D. (2022). Framework of Hardware Trojan Detection
Leveraging SC Tool. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/4462

[7] Nic30, “GitHub - Nic30/hdlConvertor: Fast Verilog/VHDL parser
preprocessor and code generator for C++/Python based on ANTLR4,”
GitHub, 2016. https://github.com/Nic30/hdlConvertor.

[8] antlr, “GitHub - antlr/antlr4: ANTLR (ANother Tool for Language
Recognition) is a powerful parser generator for reading, processing,
executing, or translating structured text or binary files.,” GitHub, Sep. 04,
2023. https://github.com/antlr/antlr4.

[9] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring
network structure, dynamics, and function using NetworkX”, in
Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA
USA), pp. 11–15, Aug 2008

[10] L. Weaver, T. Le and J. Di, "Golden Reference Library Matching of
Structural Checking for securing soft IPs," SoutheastCon 2016, 2016, pp.
1-7, doi: 10.1109/SECON.2016.7506737.

[11] B. McGeehan, F. Smith, T. Le, H. Nauman and J. Di, "Hardware IP
Classification through Weighted Characteristics," 2019 IEEE High
Performance Extreme Computing Conference (HPEC), Waltham, MA,
USA, 2019, pp. 1-6, doi: 10.1109/HPEC.2019.8916225.

[12] N. Waller, H. Nauman, D. Taylor, R. Del Carmen and J. Di, "Character
Reassignment for Hardware Trojan Detection," 2021 IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI,
USA, 2021, pp. 861-864, doi: 10.1109/MWSCAS47672.2021.9531813.

[13] Chapman, Z. (2023). Trojan Detection Expansion of Structural Checking.
Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/5171

[14] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with
graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

[15] Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive
representation learning on large graphs." Advances in neural information
processing systems 30 (2017).

[16] Veličković, Petar, et al. "Graph attention networks." arXiv preprint
arXiv:1710.10903 (2017).

[17] S. J. Russell and P. Norvig, Artificial intelligence : a modern approach,
Fourth edition. Hoboken, N.J: Pearson Education, 2020, pp. 707.

[18] W. A. Qader, M. M. Ameen and B. I. Ahmed, "An Overview of Bag of
Words; Importance, Implementation, Applications, and Challenges,"
2019 International Engineering Conference (IEC), Erbil, Iraq, 2019, pp.
200-204, doi: 10.1109/IEC47844.2019.8950616.

[19] Paszke, A. et al. PyTorch: an imperative style, high-performance deep
learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).

[20] Fey, M., & Lenssen, J. E. (2019). Fast Graph Representation Learning
with PyTorch Geometric [Computer software]. https://github.com/pyg-
team/pytorch_geometric

[21] H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability
analysis and trust benchmark development", IEEE Int. Conference on
Computer Design (ICCD), 2013.

[22] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor,
“Benchmarking of Hardware Trojans and Maliciously Affected Circuits”,
Journal of Hardware and Systems Security (HaSS), April 2017.

[23] OpenCores. Available: http://opencores.org/

[24] S. Brody, U. Alon, and E. Yahav, “How Attentive are Graph Attention
Networks?,” arXiv.org, 2021. https://arxiv.org/abs/2105.14491.

[25] “BCELoss — PyTorch 2.2 documentation,” Pytorch.org, 2023.
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html.

[26] “Adam — PyTorch 2.2 documentation,” Pytorch.org, 2023.
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html.

[27] “scikit-learn: machine learning in Python — scikit-learn 1.4.1
documentation,” Scikit-learn.org, 2024. https://scikit-
learn.org/stable/index.html (accessed Mar. 22, 2024).

