OCO-GAT: An Accelerator for Graph Attention
Network with Optimized Calculation Order

Qi Liu, Wenjin Huang, WenLu Peng, Yihua Huang
School of Electriconics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China
Email: {liug295, hwenjin, pengwlu} @mail2.sysu.edu.cn, huangyih@mail.sysu.edu.cn

Abstract—The Graph Attention Network (GAT) introduces an
attention mechanism to focus on the most significant aspects of
the data and utilizes weighted sums for aggregation. As a result,
GAT exhibits superior performance in tasks involving graph
data compared to previous Graph Neural Networks (GNNs).
However, this also introduces a more complex computational
process and stronger data dependencies, making previous GNN
accelerators inadequate for GAT inference. Therefore, we pro-
pose an optimized calculation order for GAT along with the
corresponding accelerator architecture, OCO-GAT, specifically
tailored for GAT inference, which includes efficient pipeline
design. Additionally, we introduce a distributed fine-grained on-
chip storage scheme, ensuring computational parallelism while
mitigating significant growth in storage resource consumption.
We deployed OCO-GAT on Xilinx Alveo U250 FPGA and
the experimental results demonstrate that optimized calculation
order reduces the workload of division operations by an average
of 17.2% across four datasets. OCO-GAT achieves high energy
efficiency and improves inference performance from 1.2x to
301.1x compared to CPU, GPU, and three peer works.

Index Terms—GNN, GAT, accelerator, FPGA, Graph

I. INTRODUCTION

Graph Neural Networks (GNNs) have become powerful
tools for managing graphs, a typical type of non-Euclidean
data [1]. GNNs have shown considerable advantages over
traditional neural networks in diverse applications, including
social networks [2], [3], recommendation systems [4], [5],
transportation networks [6], and the prediction of chemical
molecular structures [7], [8]. Unlike earlier GNN models such
as Graph Convolutional Networks (GCNs), Graph Attention
Networks [9] incorporate an attention mechanism [10] into
the original Combination and Aggregation stages. This mech-
anism evaluates the relevance of various neighbors of a node
by employing attention coefficients, enabling the model to
concentrate on the most pertinent aspects of the data. By
aggregating neighbors using weighted sums, GAT enhances
its ability to represent complex relationships within graphs.

The pursuit of improved performance introduces complexity
in computational processes. GAT involves hybrid charac-
teristics with operations like division and softmax. During
inference, the Aggregation and part of the Attention stages
heavily rely on graph adjacency, requiring irregular and sparse
memory access. In contrast, the Combination stage and another
part of the Attention stage need more regular but denser mem-
ory access. These characteristics pose challenges for CPUs
and GPUs, the predominant computing architectures. CPUs
lack computational power for dense calculations, leading to
latency. GPUs face inefficiencies due to irregular memory ac-

cess, reducing computational efficiency and increasing power
consumption. In contrast, advanced FPGAs integrate ample
resources, including storage, computation, logic, and bus re-
sources. They excel in parallel computing, offering flexibility
to handle GAT’s complex demands. This establishes FPGAs
as the ideal platforms for speeding up GAT inference.

To meet the challenges of efficient inference of GAT ,
We proposed an architecture OCO-GAT based on FPGA.
”OCQO” stands for the "Optimized Calculation Order”. Our
contributions in this paper are as follows:

1) Without modifying the original GAT algorithm, we
reordered its calculations to decompose the complex
computation, minimize division operations, and lessen
data dependencies. Compared to the original GAT, the
GAT with optimized calculation order averaged only
17.2% division operations across four datasets.

2) We devised an accelerator tailored for GAT with the
optimized calculation order. Our design employs graph
partition method to divide a complete graph into slices
and sub-slices and exploits parallelism among sub-slices.

3) We utilized efficient pipelined architecture to exploit
parallelism between node pairs during GAT’s Atten-
tion and Aggregation stages. This design enables parallel
computation of node pairs, minimizing pipeline stalls
between tasks of different source nodes.

4) We introduced a distributed fine-grained storage
scheme to enable computational parallelism while lim-
iting the growth of on-chip storage resource usage.

II. BACKGROUND
A. Graph Attention Network

The original calculation process of the GAT is as follows.
The Combination stage transformed the original node fea-
ture h; € RFX! by the weight matrix W € RF *F";

B, = Wh, (1)

Then execute the Attention stage. The attention weight
a;; is calculated through softmax. Where a” ¢ R'M2F
represents the transpose of attention kernel, ij represents a
node pair of a source node and a target node, ¢ represents
the source node, j represents the neighbor node of the source
node (the target node). || stands for concatenation operation,
LeakyReLU stands for non-linear activation function.

exp(LeakyReLU(a” [n}]|1/]))
"~ Yken, exp(LeakyReLU(a” [hf][R)]))

2

427

The last stage is Aggregation. Compute the final embedding
z;. o denotes the activation function.

Zi; = 0'(Z awh;) (3)

JEN;
B. Related Works

Existing efforts aimed at accelerating GAT inference typi-
cally commence with algorithmic optimizations before propos-
ing corresponding hardware architectures. Hou et al. intro-
duced a node tailoring algorithm based on sorting attention
coefficients, suggesting that nodes with higher degrees may
only require information from a subset of their neighbors to
yield accurate results. They proposed an corresponding accel-
erator architecture NTGAT [11], including a pipeline insertion
sorting scheme and a computational engine. By diminishing
the number of aggregation computations, this architecture aims
to reduce inference latency and power consumption. However,
it lacks an appropriate graph partition method and slices
switching strategy thus heavily relying on on-chip storage
resources. He et al. employed the ternary weight networks
(TWNs) [12], [13] in GAT, presenting FTW-GAT, which
reduces the model’s memory footprint, simplifies processing
elements, and eliminates reliance on digital signal processors
(DSPs). The architecture includes multi-level pipelines and
corresponding computing units. Nonetheless, due to the com-
plex computational process and data dependencies inherent in
GAT inference, FTW-GAT still experiences numerous stalling
cycles during pipeline execution.

Hence, our design aims to enhance computational paral-
lelism and accelerate inference while mitigating a substantial
surge in storage resource consumption.

III. GAT WITH OPTIMIZED CALCULATION ORDER

A. Algorithm Decomposition

The calculation of attention weights represented by equation
(2) is disassembled by extracting the dense computation as
given in equation (4).

aT[h;Hh;'] 231h§+a2h; =pi+g; 4)

Here, a; and as denote the left and right attention kernel
vectors respectively, where a;,a, € R™F and a” = [a||ay].
Consequently, the original calculation of attention weights in
(2) can now be expressed by equations (4) to (6). p; and
p; represent the left and right attention coefficient vectors,
respectively.

ei; = LeakyReLU(p; + ¢;))

exp(e;;)
2 ken, exP(eir)
B. Optimized Calculation Order

(6)

aij =

The computation process above reveals a significant data
dependency between equations (5), (6), and the final Ag-
gregation (3). In equation (6), calculating attention weights
requires accumulating attention coefficients e;; for all node

pairs, determined by equation (5). This necessitates traversing
all neighbors of the source node ¢ before the denominator’s
value is known, delaying the aggregation in equation (3). This
leads to two problems:

1) A ”boundary” exists between the calculation of attention
weights and the aggregation step of a source node. The
pipeline stalls when switching between these steps, as
it must await the completion of the current step before
proceeding to the next step of the source node.

2) Given that division must be computed for each node
pair, the corresponding hardware design will necessitate
a considerable number of DSPs to execute numerous
division operations.

To solve the above problems, the above equation (6)
is substituted into equation (3), and then the fraction
1/(Xken, exp(eir)) is extracted through the distributive law
of multiplication, so that the division operation in equation (6)
is moved back and the multiplication and addition operation
in equation (3) is performed in advance. Thus, the entire GAT
algorithm with an optimized calculation order is as follows:

p; = a1h;; 4; = th;' ®
e;j = LeakyReLU(p; + ¢;) ©)
¢l; = exple) (0
" o
) a’ .
oo = FLU(ZEN (12)
ZkENL' Cik

By placing the summation at the final step in the equa-
tions above, the earlier mentioned “boundary” is removed.
This adjustment enables computation without waiting for all
neighbors to be traversed. The coefficient e’ij and the product
e'ij - h; can be calculated in a pipelined and parallel manner,
with sequential accumulation. The final outcome involves
division and a non-linear activation function (ELU) in the
last step. Furthermore, this approach eliminates the need for
division operations for each node pair, requiring division only
once per node in equation (12).

IV. ARCHITECTURE DESIGN

A. Design Overview

An overview of OCO-GAT is depicted in Fig. 1. Due to
the typically large size of graph data, the External Storage is
required to store both the data of a complete graph and the
computing results. The Main Controller initiates read requests
and write requests via DMA to read data from or write data
to the External Storage. Additionally, the Main Controller
controls the switching of computing tasks.

The Combination Module executes the Combination stage
and a portion of the Attention stage, which is further explained
in section IV-B. The Aggregation Part manages the remaining
Attention stage and the Aggregation stage to derive final

5 q Aggregation
Combination Module Aggregation Computing Module Sygng e l\glodule
o h ’ < Indexing Computing cor |V Ve
; ﬁ i |/ -_—
' i > I Sum | i i
p »| Left-attn I Ly i
4 " [] ' —|
] ‘Weight Buffer L3 ' Buffer " | Coeff Reg | 1] !
1 f > i ' o ! :
] !] li lp,« H i !
i ol pE |po{ PE |1l PE| | ' ; | PEs ! ‘
. . . ! AN [Right-attn ||| Wi S : % R
' g + | Buffer 4 4 H I s | !
b = ' - . Pi | . 0
: g : 49j " | Indexing IR VPU : i > i é ‘
I E il e —»|Controller L] '] = = !
: I < 1 o | Com-result '] P ' 1 A 2 !
, ! A | Buffer <«) :] g S |
: 1 .] : l —> :
1 ' . 1 adj o v |Product}, . ‘
1 :_H’ ' Y o | Adjacency i ! S,mi : i :
4 ' . 7| Buffer /+ | Product Regr 1 —> |
E Node Feature Buffer ||| : 1 J —1— E
T T T—— o] | | Aggregation Computing Module I— — A
\ 4

| Main Controller |

I

I External Storage I

Fig. 1. Overall architecture of OCO-GAT.

embeddings, as detailed in section IV-C. The Aggregation Part
is subdivided into several Aggregation Computing Modules
and an Aggregation Sync Module. As described in section
IV-F below, different sub-slices are fed into different Aggrega-
tion Computing Modules and processed in parallel. Moreover,
different PEs compute different groups of tasks in parallel.

B. Combination Module

In the Combination Module illustrated in Fig. 1, the PEs
array performs two types of linear transformations by access-
ing features, weights, and attention kernels stored in on-chip
buffers. Firstly, the feature h; is multiplied by the weights
matrix W to obtain the combination result &}, as described in
(8). Additionally, 2} undergoes vector inner products with the
left and right attention kernel vectors to derive the left and right
attention coefficient vectors pg and qg, respectively, as outlined
in (9). The outputs of the Combination Module are then
transmitted to the corresponding buffers of the Aggregation
Computing Modules via the Distributor.

C. Aggregation Part

Tllustrated in Fig. 1, the Aggregation Part comprises several
parallel Aggregation Computing Modules and an Aggregation
Sync Module. The Aggregation Computing Modules index the
on-chip memories and handle the primary computing tasks,
while the Aggregation Sync Module collects intermediate
results from parallel Aggregation Computing Modules, com-
putes the final results, and stores them in the Result Bank.

1) Aggregation Computing Module: In Fig. 1, an Aggrega-
tion Computing Module is divided into the Indexing and Com-
puting parts. The Indexing part includes Indexing Controllers
and on-chip buffers. Controllers fetch data from buffers based
on input source node IDs and transfer it to the Computing
part. Within Computing, Vector Process Units (VPUs) perform
primary computations. Processing Elements (PEs) accumulate
coefficients and products from VPUs, storing partial sums
in registers (Coeff Reg and Product Reg). Upon completing

computations for all neighbors in the Adjacency Buffer, sums
from registers are output to the Aggregation Sync Module.

I' . \‘
! Computing PE Computing
;v |7 istStep Ty 2nd Step Ty 1 3rd Step) L,
K 1 : ' PP
= ka———>hal——>frab: —
pi | 0" Lon L., V| coer
Ty |E e i i || 2 ! Sum
:] 2 . exp ‘. 2) »| coeff reg >
B | zzzzfod h T i
4 @’ K r '
h+ I :: " A ' 1 ; \Product
B |} e’ | | Sum
Jh ' '
— > : »| product |
N S O O "

Fig. 2. The Computing Part of the Aggregation Computing Module.

Fig. 2 shows a detailed block diagram of the Computing
part of the Aggregation Computing Module. The PEs in the
computation part are divided into three steps:

1) 1st Step receives the input left and right attention
coefficients and performs addition followed by a non-
linear activation (LeakyReLU) as described in (9).

2) 2nd Step executes the exponential operation (exp) ac-
cording to (10).

3) 3rd Step performs (11), which involves multiplying the
input 1; by the e} ;. Subsequently, it accumulates a part
of the product e;; - h’; and the e;; at the corresponding

position of the source node ¢ in the registers.

Registers are set in the hardware circuit of each step to store
the IDs of the source nodes being processed, ensuring that the
partial sums in 3rd Step are accumulated accurately and stored
in the correct designated positions within the registers.

2) Aggregation Sync Module: In Fig.l, the Aggregation
Sync Module comprises a PE array and a Result Bank.
Each PE within the array initially receives and accumulates
partial sums from the Aggregation Computing Modules, then
proceeds to compute the embedding of nodes. The Result
Bank serves as a temporary storage for the node aggregation

results, i.e., the embeddings, which are then read by the Main
Controller and transferred to the External Storage.

Sync PE

Coeff E
Sum 1| Coeff
1 Buffer

Result|
Bank

1

Product |
Sum__ | |Product

| | Buffer

i

Fig. 3. The Sync PE of the Aggregation Sync Module.

Fig. 3 presents a detailed block diagram of the Sync PE in
the Aggregation Sync Module. This Sync PE includes a Coeff
Buffer and a Product Buffer, utilized for caching partial sums
of coefficients and partial sums of products from the Aggrega-
tion Computing Modules. Consequently, upon completing the
computation of one source node, the preceding modules can
commence computing the next source node without delay.

By summing up the partial sum of coefficients of the source
node ¢ from each Aggregation Computing Module , we derive
the denominator), _ . €'ik of (12). Similarly, by summing
up the partial sum of products, we obtain the numerator
> JEN; agj of (12). Dividing the sum of coefficients by the sum
of products, and subsequently applying ELU to the division
result, yields the embedding z; of the source node i.

D. Pipeline Design

Llst T, T, T, T; Time
ayer ————— —
Com _[Attn1 J\ : i
1st Head : : i
Attn2 | Agg N

2nd Head] — ,

i n: 28 L L

P com [aum

i o Attn2 | Agg E

1| Com [Attn1 |

2nd Layer i Az [age |

v i :

Fig. 4. Inter-head and inter-layer pipelines.

1) Inter-head and Inter-layer Pipeline: In Fig. 4, our
approach utilizes both inter-head (attention heads) and inter-
layer pipelines. Initially, the Combination Module conducts
feature transformation in the Combination (Com) and Atten-
tion (Attnl) stages of the 1st attention head in the 1st layer.
Subsequently, the Aggregation Part manages the remaining
stages (Attn2 and Agg). Concurrently, Com and Attnl of the
2nd attention head commence. This iterative process continues
until all heads in the 1st layer are computed. During the final
Attn2 and Agg stages of the last attention head in the st layer,
Com and Attnl of the 2nd layer are executed simultaneously.
OCO-GAT employs ping-pong buffers to prevent data conflicts
and ensure smooth pipeline operation.

2) Pipeline in the Attention and the Aggregation stage:
Fig. 5 illustrates the adjacency matrix of an example graph.
Numbers correspond to the IDs of nodes. Each square with
a letter represents a node pair, and squares of the same color
indicate that they belong to the same source node.

Target Node j
1 2 3 4
1(a b

Source 2 | ¢ | d |e | f

Nodei 3
4

Fig. 5. The adjacency matrix of an example graph.

5 10 15 20 25 30 35 40 45 S50 54
Indexing : : ‘ ‘ ; I I %Ti;e
2nd Step I 2 bvlstnlli ¢ |ld [o [l‘_ 3
3rd Step 3 3 stall: al:bl stall: :lclldleil‘_
\4

Fig. 6. Original GAT’s node-grained pipeline.

In the original GAT, equation (5) is denoted as the 1st Step,
(6) is termed the 2nd Step, and (3) is labeled as the 3rd Step.

In this example, Fig. 6 depicts the node-grained pipeline of
the original GAT in the Attention and Aggregation stages. Due
to “boundary” between different node pairs within these three
steps, a hardware module corresponding to one step can only
sequentially compute tasks for each node pair. Without clarity
on task results belonging to specific node pairs, simultaneously
processing tasks for different node pairs will cause errors.

To resolve this, a refined pipeline design subdivides steps
into sub-steps. Registers between these sub-steps enable hard-
ware modules to concurrently process tasks for multiple node
pairs. Additional registers store source node IDs within each
sub-step, detailed in section IV-C1, allowing error-free com-
putation for different source nodes and increasing parallelism.
Thus, the node-pair-based pipeline of the original GAT in
Attention and Aggregation stages is shown in Fig. 7.

Indexing

IstStep|

2nd Step | ---

3rd Step| YT E

s|o|ale [~
o
-

stall

stall
=
-
a
Sy

\4

Fig. 7. Original GAT’s node-pair-grained pipeline.

By employing the above optimization, the “boundary” be-
tween node pairs is effectively eliminated. However, there
are still stalls due to the "boundary” between 2nd Step and
3rd Step as discussed in section III-B. For instance, the
computation of source node 2 in the 3rd Step must wait until
the computation of 2 in the 2nd Step is completed.

3) Node-pair-grained pipeline of OCO-GAT: To eliminate
the “boundary” between steps, as illustrated in Fig. 8, we
designed a node-pair-grained pipeline for the Aggregation Part
of OCO-GAT. As described in sections I'V-C1 and IV-C2, in

the GAT with optimized calculation order, equation (9) and
(10) is designated as the 1st Step and 2nd Step respectively,
while the (11) is assigned as the 3rd Step. Equation (12)
is handled by the Sync. The pipeline of the Aggregation Part
comprises Indexing, 1st Step, 2nd Step, and 3rd Step within
the Aggregation Computing Module, alongside Sync within
the Aggregation Sync Module.

0 5

Indexing ol

={=lala

1st Step

=[=|ela]e
s|zlela]le |~

2nd Step |-}

3rd Step

Sync

num stall

A\ 4

Fig. 8. Our work’s node-pair-grained pipeline for the Aggregation Part.

Thanks to the optimized calculation order, steps no longer
wait for previous steps to finish traversing all source node
neighbors. This eliminates pipeline stalls between hardware
modules of these steps. The Aggregation Sync Module in-
cludes intermediate buffers for coefficient and product sums,
facilitating accurate node embedding computation. Stalls may
occur in Sync when a source node has multiple neighbors, yet
these are concealed during execution due to parallel operation
with preceding steps and only introduce delays of processing
Sync of the last node such as Node 4 in Fig. 5.

E. Distributed Fine-grained Storage Scheme

We use a distributed fine-grained storage scheme to elim-
inate storage conflicts, ensure computational parallelism, and
mitigate on-chip storage resource growth. For the Aggregation
stage, four types of data—Ieft attention coefficients, right
attention coefficients, combination results, and adjacency in-
formation—are required. Allocating four coarse-grained on-
chip memories per slice necessitates shared buffers among
all Aggregation Computing Modules will result in high band-
width demands and potential access conflicts. So we adopt a
distributed fine-grained storage scheme (Fig. 1), assigning on-
chip buffers for each data type within every Aggregation Com-
puting Module based on task-specific partitions of graph data.
This method maintains parallelism while effectively managing
on-chip storage resource consumption, without exponential
growth as the number of modules increases.

FE. Graph PFartition

As noted earlier, the Main Controller controls task switch-
ing, and Aggregation Computing Modules execute tasks in
parallel. Our distributed fine-grained storage scheme partitions
data based on these modules’ distinct tasks. How are tasks
divided? We use the graph partition method illustrated in Fig.
9, marking the computation sequence with red arrows.

Fig. 9(a) shows an adjacency matrix of a complete graph,
segmented into green rectangles based on on-chip storage
capacity and adjacency size. The Distributor and Main Con-
troller partition data into sub-slices by target node IDs for
Aggregation Computing Modules. Each sub-slice is stored in
distributed on-chip storage. Fig. 9(b) depicts N sub-slices
when using N modules, each dedicated to an Aggregation
Computing Module task. Tasks within sub-slices are further
subdivided into source node groups based on adjacency ma-
trix columns. PEs within modules compute these groups in
parallel. Fig. 9(c) illustrates a group within a sub-slice: white
squares denote no connections, dark green squares indicate
connections, and solid arrows show sequential aggregation
computation for source nodes and their neighbors.

(a) Adjacency Matrix (b) A Slice
i |E| . B
i
\

’
’
/
’

’

N
,A Sub-slice

N,

Eom -0 ©
v | EEE=55| s gow n

a Sub-slice

Fig. 9. Graph Partition.

V. EXPERIMENTS
A. Experimental Setup

1) Platforms and Methods: We utilize Verilog HDL to
design OCO-GAT and employ Xilinx Vivado 2021.1 for syn-
thesis and implementation on the Xilinx Alveo U250 hardware
platform. External storage includes DDR4 and the Xilinx
Memory Interface Generator. We evaluate the performance
and power efficiency of OCO-GAT against PyTorch Geomet-
ric (PyG) [14] running on CPU (AMD Ryzen Threadripper
3960X) and GPU (NVIDIA GeForce RTX 3090, PyTorch ver-
sion 1.9.0). Additionally, comparisons are made with FPGA-
based accelerators FP-GNN [15], FTW-GAT, and NTGAT.
Python is used for data preprocessing and generating hardware
architecture parameters based on dataset statistics.

TABLE I
STATISTICS OF DATASETS

Dataset \ Nodes Edges Feature ~ Weight
Cora 2708 10556 1433 16

Citeseer 3327 9104 3703 16

Pubmed | 19717 88648 500 16
PPI 44906 1226368 50 128

2) Datasets: As indicated in Table I, four datasets are used
in our experiments: Cora, Citeseer, Pubmed, and PPI. Across
all datasets, we apply a two-layer GAT with eight attention
heads. The hidden layer dimension (weight dimension) is set
to 16 for Cora, Citeseer, and Pubmed, while for PPI, it is set
to 128.

TABLE 11
COMPARISON WITH BASELINES

CPU | GPU NTGAT [11] | FP-GNN [15] FTW-GAT [16] OCO-GAT
Platfrom TR 3960X RTX 3090 Alveo U200 VCU128 VCU128 Alveo U250
Frequency 2.9GHz 1.4GHz 300MHz 225MHz 225MHz 250MHz
Bandwidth - 936GB/s 77GBls 460GB/s 460GB/s 71GB/s
‘ 24 Cores, 10496 4096 PEs, 2048 PEs, 7040 PEs, 5120 CPEs,
Size 48 threads CUDA Cores 64 node engines 256 ALUs 64 ALUs, 64 ACPEs,
1024 MACs 16 ASPEs
Resources Utilization

DSP - - 6208 (91%) 8704 (96%) 1216 (13%) 6272 (51%)
On-chi 7.0MB (89%) 5.87MB (75% 6.54MB (61%

RAMp)) 32.5MB (93%) (1792 Bl(zAMs) (1502.5 Bl(zAMl) (1674 BR(AMS))

LUT B . B 1068077 (82%) 436657 (33%) 1027253 (59%)

FF B . B 727254 (28%) 470222 (18%) 621250 (18%)

Inference Latency

Cora 1472ms (1x) | 1.287ms (11.4x) | 0.559ms (26.3x) 46.3us (317.9%) 4495 (327.8X) 33.1us (444.7x)
Citeseer 17.39ms (1x) | 1.412ms (12.3X) | 1.465ms (11.9x) T1.4us (243.6X) 50.8us (342.3%) 478115 (363.8%)
Pubmed 199.4ms (1x) | 1.706ms (116.9x) | 2.097ms (95.1x) 616us (323.7x) 339us (588.2X) 286us (697.2X)

PPI 1714ms (1x) | 46.39ms (36.9%) B B B 17.37ms (98.7x)

Energy Efficiency (graph/kJ)

Cora - 8.27x10% (I1x) | 3.68x10% (4.5x) | 1.46x10° (176.5x) | 3.65x10° (441.4x) | 1.65x10° (199.5x)
Citeseer - 7.23x103 (1x) 1.41x10% (2.0x) | 9.46x10% (130.8x) | 3.14x10% (434.3x) | 1.14x10% (157.7x)
Pubmed - 5.43x103 (1x) 9.81x103 (1.8x) | 1.10x10° (20.3x) | 3.87x10° (71.3x) 1.91x10% (35.2x)

PPI - 6.76x 10T (1x) - - - 3.15x 102 (46.6x)

B. Algorithm Evaluation

We evaluate how optimizing calculation order impacts divi-
sion operations in GAT across diverse datasets. The reduction
in division operations for the optimized GAT compared to the
original is shown in Fig. 10. Results indicate that the opti-
mized version required only 3.47% to 26.76% of the division
operations across datasets. This reduction is influenced by the
density of adjacency matrix and the size of the graph and it
is particularly effective for dense or larger graphs.

26.76

204 2042 Dataset

e

X

< =2 17.21 Cora

) ites

= Citeseer

S

g Pubmed

5 107 PPI

A On average

347

T T T T
Citeseer Pubmed PPI On average

Dataset

J
Cora

Fig. 10. The percentages of the number of division operations.

C. Hardware Performance

1) Resource Utilization: Table II displays the hardware
resource usage of OCO-GAT. Our configuration includes 5120
PEs (CPEs) in the Combination Module, 64 Computing PEs
(ACPEs) in the Aggregation Computing Modules, and 16 Sync
PEs (ASPEs) in the Aggregation Sync Module. The Main
Controller integrates four DDR_MIGs with a bandwidth up to
77GB/s. The results show that OCO-GAT operates efficiently
without resource bottlenecks at this scale, suggesting potential
for scaling up to speed up inference or handle larger graphs.

2) Energy Efficiency: The dynamic power consumption
of OCO-GAT measures 18.3W according to Vivado power
reports. GPU power measurements, obtained via the Nvidia
System Management Interface, include active and idle states,
with dynamic GPU power calculated by difference. Notably,
NTGAT only specifies its total on-chip power at 48.6W,
omitting details on dynamic power. As shown in Table II,
we calculate energy efficiency (graphs/kJ) based on dynamic
power and inference latency. This metric indicates the number
of graphs processed per kilojoule of energy.

3) Inference Latency: Our work significantly boosted GAT
inference speeds, achieving a remarkable acceleration by
301.1x and 19.3x on average compared to CPU and GPU.
In comparison with NTGAT, OCO-GAT utilized fewer storage
but achieved 18.3x improvements on average. Compared to
FP-GNN, OCO-GAT runs 1.68x faster with fewer resources.
OCO-GAT delivers superior performance than FTW-GAT,
reducing inference latency by an average of 1.20x.

VI. CONCLUSION

In this paper, we introduce OCO-GAT, a highly efficient
GAT accelerator based on FPGA. We propose an optimized
calculation order for GAT, serving as a blueprint for the
hardware design of the overall architecture, processing ele-
ments, and the multi-level pipeline. Through an exploration of
node pairs parallelism, we mitigate pipeline stalls and reduce
costly division operations, thereby enhancing overall perfor-
mance. Moreover, we utilize a graph partition method and
employ a distributed fine-grained storage scheme to prevent
excessive storage resources utilization while ensuring parallel
computation. Experimental results demonstrate that OCO-GAT
outperforms multiple baselines across various datasets and
achieves high energy efficiency.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grant 62276278 and GuangDong
Basic and Applied Basic Research Foundation under Grant
2022A1515110006 and 2024A1515011259.

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

X. Song, T. Zhi, Z. Fan, Z. Zhang, X. Zeng, W. Li, X. Hu, Z. Du, Q. Guo,
and Y. Chen, “Cambricon-g: A polyvalent energy-efficient accelerator
for dynamic graph neural networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, pp. 116-128,
2021.

S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Computational Social Networks,
vol. 6, no. 1, 2019.

D. F. Nettleton, “Data mining of social networks represented as graphs,”
Computer Science Review, vol. 7, no. 1, p. 1 — 34, 2013.

S. Wu, E Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: A survey,” ACM Computing Surveys, vol. 55,
no. 5, 2022.

W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in The Web Conference
2019 - Proceedings of the World Wide Web Conference, WWW 2019.
Association for Computing Machinery, Inc, 2019, p. 417 — 426.

W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” Expert Systems with Applications, vol. 207, 2022.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in 34th International
Conference on Machine Learning, ICML 2017, vol. 3. International
Machine Learning Society (IMLS), 2017, p. 2053 — 2070.

C. McGill, M. Forsuelo, Y. Guan, and W. H. Green, “Predicting infrared
spectra with message passing neural networks,” Journal of Chemical
Information and Modeling, vol. 61, no. 6, p. 2594 — 2609, 2021.

P. Velickovi¢, A. Casanova, P. Lio, G. Cucurull, A. Romero, and Y. Ben-
gio, “Graph attention networks,” in 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings.
International Conference on Learning Representations, ICLR, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, vol. 2017-December. Neural
information processing systems foundation, 2017, p. 5999 — 6009.

W. Hou, K. Zhong, S. Zeng, G. Dai, H. Yang, and Y. Wang, “Ntgat:
A graph attention network accelerator with runtime node tailoring,” in
Proceedings of the Asia and South Pacific Design Automation Confer-
ence, ASP-DAC. Institute of Electrical and Electronics Engineers Inc.,
2023, p. 645 — 650.

C. Zhu, H. Mao, S. Han, and W. J. Dally, “Trained ternary quantization,”
in 5th International Conference on Learning Representations, ICLR
2017 - Conference Track Proceedings. International Conference on
Learning Representations, ICLR, 2017.

B. Liu, F. Li, X. Wang, B. Zhang, and J. Yan, “Ternary weight networks,”
in ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings, vol. 2023-June. Institute of Electrical
and Electronics Engineers Inc., 2023.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” in 7th International Conference on Learning Repre-
sentations, ICLR 2019 - Conference Track Proceedings. International
Conference on Learning Representations, ICLR, 2019.

T. Tian, L. Zhao, X. Wang, Q. Wu, W. Yuan, and X. Jin, “Fp-gnn:
Adaptive fpga accelerator for graph neural networks,” Future Generation
Computer Systems, vol. 136, p. 294 — 310, 2022.

Z. He, T. Tian, Q. Wu, and X. Jin, “Ftw-gat: An fpga-based accelerator
for graph attention networks with ternary weights,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 70, no. 11, p. 4211 —
4215, 2023.

J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang, “A
systematic survey of general sparse matrix-matrix multiplication,” ACM
Computing Surveys, vol. 55, no. 12, 2023.

