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Abstract—With the rapid evolution of artificial intelligence
(AI) technology, the scope of AI application has extended
beyond individual Deep Neural Network (DNN) models, lead-
ing to a growing emphasis on Multi-DNN scenario. Google’s
TPU v1, a prominent DNN hardware accelerator, employs a
systolic array as its core computing module, showcasing high
data reuse and computational parallelism, thereby enabling
efficient processing of DNN tasks. However, applying the
fixed size of monolithic systolic array in Multi-DNN scenario
leads to low hardware utilization due to the computational
heterogeneity of DNN tasks, and it lacks the capability to
concurrently execute multiple DNN tasks. To address these
issues, we propose a multi-core accelerator, with each core
designed based on systolic array. Additionally, we design a
flexible Networks-on-Chip (NoC) specifically tailored for the
systolic array, allowing combinations between systolic arrays
to form a new systolic array with different sizes and shapes to
adapt DNN tasks with varying computational characteristics.
In addition, to fully leverage the composability of the multi-
systolic array blocks, we design a DNN layer execution compiler
and a core allocation compiler, both significantly improving
performance. The experimental results show that our design
significantly outperforms TPU-like architecture and DM-NPU,
achieving an average reduction of 65.5% and 34.8% in the
average normalized turnaround time (ANTT), and an average
improvement of 104.3% and 30.1% in the system throughput
(STP) under the multitasking scenario.

Index Terms—Multi-DNN Accelerators, Systolic Arrays,
Hardware Accelerator

I. Introduction
In recent years, Deep Neural Networks(DNNs) have

played a significant role in various artificial intelligence
(AI) applications [1-7]. However, as tasks become increas-
ingly complex, there is a growing demand for running
multiple DNN workloads [10]. The escalating need for com-
putational resources in AI systems has spurred research
on DNN accelerators. Among these, the systolic array [8]
stands out as a computing network comprised of homoge-
neous processing elements (PEs), which has high off-chip
data reuse rate, parallelism and scalability [9]. However,
a monolithic systolic array faces challenges in Multi-DNN
scenario. It cannot simultaneously execute multiple DNN
tasks, and due to the computational heterogeneity among
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different DNN tasks, a fixed-size systolic array struggles
to efficiently adapt to convolutional operations or matrix
multiplications of various sizes and types, leading to low
hardware utilization, as shown in Figure 1. This example
employs weight-stationary dataflow, where the weights are
fixed [9]. Figure 1 shows that when using a monolithic
systolic array for convolutional computation, if the output
channels of the convolution kernel is less than the systolic
array’s columns, or if the product of kernel size and input
channels is less than the systolic array’s rows, it will result
in a decrease in the process element (PE) utilization.

An effective solution is to employ multiple smaller
systolic arrays that can be flexibly tiled together through
a dedicated Networks-on-Chip (NoC). The specific fusion
form is determined by the computational characteristics
of different DNN tasks, as illustrated in Figure 2. In this
example, four DNN tasks are processed in parallel, and
the fusion configurations of the systolic arrays adopted
by different DNN tasks exhibits distinct shapes and sizes.
This approach effectively addresses the challenges of low
hardware utilization and inability to process multiple DNN
tasks in parallel using a monolithic systolic array in Multi-
DNN scenario.

Although we improve hardware utilization through fine-
grained systolic array blocks, due to the heterogeneity of
different DNN tasks (e.g., layer count, per-layer input and
output shapes) [11], it is important to properly map mul-
tiple systolic arrays to specific DNN tasks. Furthermore,
given the limited number of systolic array blocks, how to
allocate an appropriate number of systolic array blocks to
different DNN tasks will significantly impact the overall
system performance [10].

In summary, this paper makes the following contribu-
tions:

• A Multi-Systolic Array Accelerator: We design a
multi-DNN accelerator based on multiple systolic
arrays, incorporating a flexible NoC that enables
the concatenation of multiple systolic array blocks
into various shapes. This dedicated NoC for systolic
arrays improves the performance of the accelerator in
handling diverse DNN tasks, while maintaing a low
resource overhead.

• A DNN Layer Execution Compiler for Dynamic
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Fig. 1. Weight-stationary systolic array for convolution computation.

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

Systolic 
Array

DNN1:

DNN2:

DNN3:

DNN4:

Target DNN Tasks

4S

S

2S

3S

S

2S

S

4S

Fig. 2. Multi-DNN processing in a multi-systolic array system
(assuming the size of a single systolic array is S×S).

Assembling of Multi-Systolic Arrays: We design a
compiler that aims to maximize hardware utilization
by exploring the optimal tiling configuration of sys-
tolic arrays for DNN layers. It will generates tiling
configuration into a config table, allowing the CPU
to perform table lookups based on DNN layers, thus
generating systolic arrays of different shapes.

• A Core Allocation Compiler Oriented for Multi-
Systolic Arrays: We design a compiler to dertermine
the number of systolic array blocks that should be
occupied by different DNN tasks. This compiler can
generate the optimal core allocation solution based on
the target performance, such as minimizing average
normalized turnaround time (ANTT) or maximizing
system throughput (STP).

II. Related Work
The increasing demand for accelerating execution in

Multi-DNN scenario has propelled the swift evolution
of Multi-DNN accelerators. PREMA [19], utilizing TPU
[9] as its computational core, processes multiple DNN

tasks through time-multiplexing shared computational
resources. Additionally, PREMA presents a scheduling
algorithm for preemptive execution of DNN tasks, en-
suring adherence to the latency requirement of high-
priority tasks. However, due to its reliance on a monolithic
systolic array, it is not suitable for Multi-DNN scenario,
as discussed earlier.

Therefore, Planaria [11] introduces a dynamic fission
architecture, breaking down a large-scale systolic array
into multiple small-scale systolic arrays. Each PE supports
omni-directional data movement, and local crossbar units
facilitate the fusion of systolic arrays, addressing the
issues present in a monolithic systolic array. However, this
design incurs significant overhead and lacks an efficient
DNN mapping strategy to fully utilize the architectural
flexibility. STfusion[12] utilizes multiple systolic arrays
with clustered mapping, enabling weight and input feature
sharing among multiple systolic arrays but lacks support
for the transmission of the intermediate computational
results generated by different systolic arrays, limiting the
flexibility of the integration of multiple systolic arrays.
DM-NPU[13] proposes dataflow-mirroring, a finer-grained
segmentation of the systolic array compared to Planaria’s
coarse-grained approach, achieving higher hardware uti-
lization. It also designs a software scheduler to allocate
optimal resources based on DNN tasks. However, fine-
grained segmentation incurs high overhead, limiting DM-
NPU to supporting the division of a systolic array into
at most four systolic arrays of different sizes. This results
in a decrease in the number of parallelizable DNN tasks.
Additionally, once a fixed resource allocation is made for
a DNN task, all layers within that DNN must utilize
the same-shaped systolic array, inevitably compromising
flexibility.

Although the aforementioned work improves perfor-
mance in Multi-DNN scenario through multiple fine-
grained processing units, they incur substantial hardware
overhead. The restricted collaboration among processing
units impedes their adaptability to the heterogeneous com-
puting characteristics of diverse DNN tasks in Multi-DNN
scenario. Furthermore, while the underlying architecture
boasts flexibility, the lack of an effective mapping strategy
for DNN tasks prevents the complete realization of the
performance potential inherent in this flexibility.

III. Multi-Core Architecture Design
The designed accelerator architecture is shown in Fig-

ure 3. The underlying hardware computation section
comprises Cores, global buffer clusters (GLB Clusters),
Routers, and their respective controllers. The Cores are
responsible for the computation of DNN tasks, and each
Core is equipped with a corresponding GLB Cluster and
Router. The GLB Cluster serves to cache data retrieved
from external DDR as well as intermediate results gen-
erated during computations. The Router facilitates data
transmission among the Cores, and different forms of



systolic array fusion can be achieved by configuring the
Router Controller during runtime.

The upper-level CPU controls the scheduling of all
DNN tasks, the allocation of the number of cores to
them, and the mapping of different DNN tasks onto the
cores. Through the AXI interface, The CPU possesses the
capability to config various controllers of the underlying
hardware, inclusive of the DDR controller. The DDR
controller facilitates the transfer of data from the DDR
to the GLB Clusters via the Crossbar.
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Fig. 3. Proposed accelerator architecture (an example of 4 × 4 cores).

A. Proposed Core Architecture
The architecture of the Core, as depicted in Figure 4,

consists of a controller, multiple FIFOs, multiple MUXes,
a systolic array, and a SIMD vector unit. Core works in
independent mode or multi-core fusion mode, with each
mode having different data source. In independent mode,
data is selected from the GLB Cluster, while in multi-
core fusion mode, data is sourced from the Router. In
multi-core fusion mode, due to the varying positions of
cores in the NoC, there is inconsistent data communication
latency between different cores. To address this issue,
FIFO buffers are strategically employed within core. The
core does not need to care about when the data arrives,
but only starts computation when all FIFOs contain data,
which has less hardware overhead than inserting registers
to balance communication delays. In this paper, we employ
a systolic array with weight-stationary dataflow, which has
the highest weight reuse rate and good versatility [9].

B. Flexible NoC Design
The NoC comprises Routers and Cores, and data flows

between Routers to achieve the fusion of different cores.
In order not to destroy the advantages brought by the
regularity of the systolic array, the designed NoC retains
the overall structure of the systolic array. At the same
time, we introduce ring between Routers to enrich routing
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Fig. 4. Proposed core architecture.

channels and improve the NoC flexibility, as shown in
Figure 3. This lays the foundation for the task mapping
proposed in the next section.

Since the NoC is specifically tailored for the weight-
stationary systolic array, where the weights are stationary
inside the PE during runtime, the data flowing between
the systolic arrays includes only input feature maps and
partial sums. Consequently, we only need to focus the
transfer of these two types of data, as depicted in Figure
5. Horizontally, systolic arrays aligned along the same axis
share input feature maps, showcasing a horizontal fusion
of two systolic arrays. Vertically, the systolic array below
needs to receive partial sums generated by the systolic
array above, resembling a vertical fusion of two systolic
arrays. The detailed design of the Router is depicted in
Figure 6, where ”Act” represents input feature map, ”Ps”
denotes partial sum, and ”U”, ”D”, ”L”, ”R” respectively
represent data from the upper, down, left and right of
the Router. During runtime, the Router receives data
from its associated core and neighboring Routers. By
configuring the Router Controller, the Router transfers
corresponding neighboring Routers’data to the core and
transfers core’s data or data from the other three Routers
to another Router. Since the two systolic array blocks
only transmit input feature maps or partial sums, never
simultaneously, the Router employs a shared bus for both,
thereby significantly reducing design overhead without
performance degradation.

IV. Task Mapping And Core Allocation
In data centers, there are often multiple concurrent

DNN tasks, which are typically heterogeneous [10]. Ap-
plying the same number of PEs but with different shaped
systolic arrays to the same DNN task can result in
significant performance differences [11]. Therefore, it is
crucial to specifically map DNN tasks under a specific
number of systolic arrays. Additionally, since multiple



heterogeneous DNN tasks are executed in parallel, the
allocation of core numbers to specific DNN tasks also
needs to be explored. This section will discuss the task
mapping and core allocation in detail.

A. Task Mapping
The majority of operations in DNN occur in the convolu-

tional layers [27], therefore our discussion on task mapping
focuses on the mapping of convolution on the systolic
array. The convolution operation actually involves block-
wise processing [15], the granularity of the blocks depends
on the size of a single systolic array. Blocks in the same
row share input feature map, while blocks in the same
column propagate the partial sum, which facilitates the
fusion of multiple systolic arrays.

To maximize hardware utilization by identifying the
optimal systolic array fusion form for different layers
given the available number of cores, we design a DNN
layer execution compiler tailored for multiple concatenable
systolic array blocks, as depicted in Figure 7. The compiler
is layer-level. After the DNN layers are divided into
blocks, the compiler will enumerate all possible shapes
of systolic arrays and predict the execution latency based
on the parameters of DNN layer (such as the number of
input/output channels, the size of the input feature map,
etc.), ultimately aiming to derive the optimal solution
with the minimum latency, thus maximizing hardware
utilization. Although the compiler adopts an exhaustive
approach, it can significantly reduce the search space by
eliminating some impossible solutions, such as cross-block
executions that do not fully utilize data reuse.

After attaining the optimal solution, the compiler will
generate a configuration table, which will be used by the
CPU to lookup and configure the Router Controller for
the specific tiling patterns of multiple systolic arrays. This
table records the tiling shape for each execution step of
the layer, along with the precedence relationship of the
systolic array tiling and specfies the DDR data transfer to
a particular GLB cluster. For instance, in step 2 depicted
in Figure 7, Core B, C, and D will be horizontally tiled,
with the input feature map data flowing from Core B
through C to D. Therefore, the off-chip DDR data is stored
in the GLB cluster corresponding to Core B. Meanwhile,
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Fig. 5. Multi-systolic array fusion.
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Core A and Core B will be vertically tiled, with the
results generated by Core A flowing downward into Core
B, ultimately forming an ’L’-shaped configuration. The
order of concatenation in each step is important, enabling
the reuse of input feature maps across various execution
steps. Since the structural parameters of most layers in
DNNs are repetitive [21-28], the corresponding optimal
solutions are identical, making the storage space occupied
by the Config Table generated by compiler acceptable.
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Fig. 7. DNN Layer Execution Compiler (The number inside the
blocks represent the order of execution).

B. Core Allocation
Given a set of co-located DNN tasks, we should iden-

tify the optimal core allocation to maximize the target
performance. We choose two widely-used multitasking
performance metrics: ANTT and STP [29]. ANTT quan-
tifies user-perceived performance, specifically measuring
the slowdowns in turnaround time under multitasking
scenarios. A lower value indicates that the turnaround
time is less affected by multitasking. STP quantifies
system-perceived performance, specifically measuring the
number of DNN tasks completed per unit of time. A higher
value indicates a higher system throughput.

To achieve the optimal performance, we design a core
allocation compiler that generates the optimal resource
allocation for each DNN task based on the optimization
objectives, DNN tasks, the optimal latency of DNN tasks
under different core counts (derived from the DNN Layer
Execution Compiler) and the total number of available
cores, as shown in Figure 8. The core allocation compiler



will enumerate all possible solutions and compare them
based on ANTT or STP to obtain the optimal core
allocation solution. This compiler demonstrates significant
flexibility, enabling it to generate diverse solutions based
on different needs. For instance, it can assign varying
degrees of importance to ANTT and STP to derive the
optimal core allocation solution accordingly. Since we are
targeting datacenter applications, where multiple tasks are
deployed and continuously executed over the long term
[16], the compilation time is not a primary concern.

Once each DNN task is allocated the corresponding
number of cores, all layers of that DNN task will utilize
the currently allocated cores, meaning that each core will
always correspond to different layers of the same DNN
task. This significantly reduces complexity and makes it
easier to deploy the systolic array fusion configurations
generated by the DNN layer execution compiler onto the
hardware architecture. Despite using a fixed number of
systolic arrays, the DNN task can employ varying shapes
of systolic arrays for different layers, demonstrating high
flexibility.

Core Allocation Compiler

Target DNNs 
e.g., ResNet-50, GoogleNet

ResNet-50：11 cores 
GoogleNet：5 cores

Total Core Numbers(e.g. 16)

ResNet-50：1 cores 
GoogleNet：15 coresOptimization objective：ANTT/STP

(1) ResNet-50：2 cores 
GoogleNet：14 cores

(2)

ResNet-50：3 cores 
GoogleNet：13 cores

(3) ResNet-50：4 cores 
GoogleNet：12 cores

(4)

Target DNNs—Optimal Latency

ResNet-50：14 cores 
GoogleNet：2 cores

(14) ResNet-50：15 cores 
GoogleNet：1 cores

(15)

Fig. 8. Core Allocation Compiler

V. Evaluation
A. Experimental Setup

We employ task scenarios that include image classifi-
cation and object detection, and select 8 different DNN
workloads. The selected DNN workloads are commonly
used in industry and have different computational charac-
teristics (i.e. layer type and size), as shown in Table 1. We
conduct experiments by simulating the working scenario
in the data center through multithreading, maintaining
the number of concurrently running DNN tasks on the
accelerator [12]. We define this scenario as N-threaded,
represented as NT (e.g., 8-threaded is 8T). In each thread-
ing scenario, the DNN tasks to be executed are randomly
selected from Table 1, and 1000 sets of experiments are
conducted to ensure that each DNN task is selected. We
adopt ANTT and STP as performance metrics [29], with
the final results presented as the average values of both
metrics. For a fair comparison, the execution time under
single-thread in ANTT and STP is benchmarked against
a TPU-like architecture [19].

We implement the proposed architecture in Verilog and
employ the Xilinx Alevo U250 accelerator card as the
hardware platform to assess, as shown in Table 2. The

TABLE I
Workload Setting

Domain DNN Workload

Image Classification

ResNet50[22]
VGGNet16[25]
GoogleNet[24]

DenseNet121[23]
DenseNet201[23]

Object Detection SSD-ResNet34[22]
Yolo-v3[26]

SSD-MobileNet[28]

TABLE II
Hardware Configuration

Hardware Unit Size
Processing Element Dimension 32×32
# of Cores 16
Frequency 250 MHz
LUT 1539771(89.11%)
FF 610076(17.65%)
URAM 768(60%)
BRAM 4480(60%)
DSP 10432(84.9%)

number of cores is 4×4, and the PE quantity of a single
core is 32×32 to benchmark the size of PREMA [19] and
DM-NPU [13] for a fair comparison. The NoC hardware
overhead is registers and LUTs, accounting for about
10.9% and 5.7% of the total respectively. We also model
PREMA and DM-NPU, where PREMA uses TPU as its
hardware accelerator, essentially consisting of a 128×128
systolic array [19]. In contrast, DM-NPU enables a large
systolic array to be isolated horizontally and vertically,
forming up to four different-sized systolic array blocks.

B. User-Perceived and System-Perceived Performance
We conduct experiments to evaluate the performance of

proposed architecture against the TPU-like architecture
[19] and DM-NPU [13], focusing on ANTT and STP
metrics. A lower ANTT is better, and a higher STP is
better. The experimental results, presented in Figure 9,
demonstrate that our design achieves an average reduction
of 65.5% and 34.8% in ANTT compared to the TPU-like
architecture and DM-NPU, respectively, and an average
STP improvement of 104.3% and 30.1%, respectively.

Compared to TPU-based architecture, our design di-
vides the systolic arrays into multiple smaller blocks, re-
sulting in finer processing granularity. Additionally, these
systolic array blocks can be concatenated through the NoC
based on the computational characteristics of various DNN
tasks, leading to higher hardware utilization. In contrast
to DM-NPU, our architecture allows for the switching of
concatenation forms across different DNN layers, while
DM-NPU is constrained to a single concatenation form
for all layers of DNN tasks due to its complexity, making
our approach more fine-grained in the processing of DNN
tasks. Furthermore, due to the complexity of its archi-
tecture, DM-NPU is incapable of concurrently executing



Fig. 9. ANTT and STP of proposed architecture compared to others with the multitasking benchmarks. Lower ANTT and higher STP
are better.

Fig. 10. Ablation study on the proposed DNN layer execution compiler and core allocation compiler.

more than four DNN tasks, and therefore relies on time-
sharing multiplexing. This limitation prevents us from
assessing DM-NPU’s performance in terms of ANTT and
STP under 5T to 8T, but we can confidently assert that
our design offers superior performance compared to DM-
NPU.

On the other hand, based on our designed flexible
multi-systolic array architecture, we further propose two
compilers, one for maximizing the hardware utilization of
DNN layers during execution, and another for achieving
optimal core allocation in terms of ANTT or STP. These
compilers further enable our architecture to achieve lower
ANTT and higher STP.

C. Ablation Study
To evaluate the impact of the two proposed compilers on

performance, we conducted ablation experiments. In these
experiments, “map” represents the use of the DNN layer
execution compiler, where the number of cores allocated
to each DNN task is random. Meanwhile, “ca” represents
the use of the core allocation compiler, which assigns an
optimal number of cores to each DNN task but employs a
“square” tiling approach, namely, a regular systolic array.
The experimental results demonstrate that both compilers
further improve performance, as shown in Figure 10.

In the DNN layer execution compiler, it is capable of
assembling systolic arrays of different shapes based on the
computational characteristics of various DNN layers given
the number of cores. Even during the execution of a single

DNN layer, the tiling configuration of multiple systolic
array blocks can vary to maximize hardware utilization.
In the core allocation compiler, we employ an exhaustive
search approach to obtain the optimal solution for the
number of cores allocated to each DNN task. The number
of cores determines the amount of hardware resources
available for the DNN task, significantly influencing its
runtime. Therefore, we can reasonably allocate cores based
on different requirements, such as minimizing ANTT or
maximizing STP.

VI. Conclusion

In this paper, we design an efficient multi-DNN acceler-
ator based on multiple systolic arrays. Each systolic array
is interconnected through NoC, capable of assembling into
systolic arrays of various sizes and shapes. To fully leverage
the flexibility of the multi-systolic array architecture, we
design a DNN layer execution compiler that generates
specific systolic array tiling forms for different DNN
layer executions, thus maximizing hardware utilization.
Furthermore, we design a core allocation compiler to
optimize core allocation for each DNN task, minimizing
ANTT or maximizing STP. Experimental results show
that our design achieves significant improvements in both
ANTT and STP performance compared to TPU-like accel-
erators and DM-NPU. Additionally, ablation experiments
demonstrate that the two compilers further enhance the
performance of the multi-systolic array architecture.
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