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Abstract—The GNN computation process described by the
message passing network mainly consists of two processes:
combination and aggregation. Among them, the combination
process (matrix multiplication) is consistent with the matrix
multiplication computation process in traditional DNNs and
does not have special characteristics of GNNs. The aggregation
process, on the other hand, is unique to GNN and imposes a
large random access pressure on memory. Most of the currently
available accelerator solutions focus on the whole computational
process of GNN or sample-aggregation on GPU/CPU, while
there are fewer FPGA/ASIC-based accelerators dedicated to the
sample-aggregation process. The hardware acceleration scheme
proposed in this paper focuses on two aspects: First, an innovative
streaming sampler is proposed to accelerate sampling from
the power-law distribution characteristics of degree in GNN
datasets. Second, the feature acquisition is accelerated by the high
bandwidth advantage of HBM, and an innovative aggregation
scheme is realized to match the readout data from HBM. The
proposed hardware streaming sampler scheme is tested by FPGA
and achieves a speedup of 2× to 20× relative to traditional
FPGA-based node sampling, and the feature acquisition and
aggregation accelerator achieves up to 300× speedup relative
to the GPU platform.

Index Terms—GNN, sampling, aggregation, HBM, accelerator,
FPGA

I. INTRODUCTION

Graph neural networks (GNNs) [1]–[3] have achieved
widespread application, including scenarios such as networks
formed by social groups, protein relationship networks, paper
citation networks, and relationships between natural language
words [4], [5].

Message passing network is a generalized model for de-
scribing GNNs. A variety of existing GNN frameworks such
as GCN [6], GraphSAGE [7], GAT [8], etc. can be described
by message passing networks. Sampling and aggregation in
this work is performed based on the message passing network.

In message passing network for GNN node classification
task, each central node needs to aggregate the feature infor-
mation of the nodes connected to it (neighbor nodes). For each
central node to be classified, its neighbor nodes are randomly
distributed over a large storage space, which brings about a
large number of random accesses to the memory, making the
whole system speed limited by the memory bandwidth and
slowing down the system. Therefore this process needs to be
optimized. In addition, the number of neighbor nodes (degree)
of different central nodes of most GNN datasets varies greatly.
Some of the central nodes have a large number of neighbor
nodes, which will result in large memory access and time
overhead, so it is necessary to select a part of a specific amount

of neighbor nodes to participate in the aggregation (sampling),
so as to reduce the computation and access overhead, making
the data regularized. [9], [10].

Current accelerators (e.g., HyGCN [11], AWB-GCN [12],
SmartSAGE [13], and GNNLab [14]) focus on optimizing
the overall GNN arithmetic process or performing sampling
using the CPU/GPU. There are fewer dedicated FPGA/ASIC-
based sampling-aggregation accelerators optimized for random
memory access.

In response to the above issues, the present work makes the
following innovative efforts and contributions.

1) According to the characteristics of a typical GNN
dataset, the vast majority of nodes have small degrees,
while a small fraction of nodes have large degrees
(power law distribution). Therefore, this work innova-
tively proposes a streaming sampler that shifts node sam-
pling from the spatial domain to the temporal domain
corresponding to the process of reading neighbor nodes,
so that the sampling time is proportional to the number
of neighbor nodes, thus achieving the acceleration of the
node sampling process.

2) The acceleration of feature acquisition is realized by
using the high bandwidth advantage of HBM. Mean-
while, the min-heap pipeline aggregation accelerator
is innovatively proposed to solve the problems of re-
sponse speed difference (time imbalance) and random
distribution of the number of sample nodes (number
imbalance) of different read channels of HBM to realize
the aggregation task of feature vectors.

II. BACKGROUND

A. Unified Representation of GNN - Message Passing Network

According to the existing research results [15]–[18], multi-
ple GNN frameworks (e.g., GCN [6], GraphSAGE [7]) can
be uniformly described as message passing networks. The
message passing network can be described by Eq. 1 as follows.

h′
i = f

hi,
⋃

j∈N(i)

g (hi,hj , ej,i)

 (1)

where hi represents the feature vector of node i and
N(i) represents the set of neighbor nodes of node i. ej,i
represents the edges connected between node i and node j.
The edge features can be empty.

⋃
denotes an operation

that satisfies specific conditions, such as average function,
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Fig. 1. Sampling and aggregation in GNNs.

maximum function, or minimum function. f and g denote
differentiable functions according to the GNN structures. This
equation represents the unified form of a layer of GNN.
The repetition of multiple layers of message-passing networks
constitutes different kinds of GNN frameworks.

For example if the network structure is GraphSAGE, its
network can be represented in the form shown in Eq. 2.

h′
i = W · aggrj∈N(i)hj (2)

where W is the weight matrix and aggr represents the
aggregation function, the specific form of its implementation
can be the average aggregation, the maximum value, with
weight aggregation and other aggregation methods.

B. What is the process that this paper is concerned with -
Sampling and Aggregation

In a message passing network expression, the nodes in-
volved in the aggregation are specified by the expression
j ∈ N(i). Where N represents the set of neighboring nodes
of node i. If the criterion for selecting N(i) is to strategically
choose a fraction of all nodes, then N represents sampling.
Fig. 1 illustrates the process that is the concern of this work.
As shown in the Fig. 1, in a specific algorithm implementation
or hardware implementation, the index number of the sampled
node needs to be selected first (node sampling), and then
the feature vectors need to be read from the memory storing
the feature vectors according to the index number (feature

acquisition). This work addresses both of these aspects with
innovative optimization and acceleration.
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Fig. 2. Percentage of total elapsed time for sampling and feature acquisition
in typical GNN architectures.

C. Application scenarios of this work - time consumption of
sampling in GNN computation

In the GNN computation process, especially the GNN train-
ing process, sampling and the subsequent feature acquisition
and feature aggregation usually account for a considerable
proportion of the total elapsed time.

Based on the data measured or investigated in existing work
such as GNNLab [14], Jangda [19] and SmartSAGE [13], the
proportion of time taken by sampling and feature acquisition
is shown in Fig. 2. Data based on the Reddit and PPI datasets
were chosen for the figure, respectively. The test or research
results shown in the figure show that sampling and feature
acquisition take up a percentage of time between 20% and
80%, slowing down the system, so it is practical and necessary
to speed them up.

III. MOTIVATION

A. Motivation of Proposed Streaming Sampler

Traditional sampling generally takes place in the address
space where the object to be sampled is located, i.e., it occurs
in the spatial domain.

As shown in the Fig. 4, the traditional form of sampling
generates an address signal by means of a random number
generator and a random access memory by means of the
generated address. The nodes to be sampled are stored in
memory. In this way, one sampling result can be obtained per
work cycle, and the time complexity of the sampling task is
then O(S), where S is the sample size. If a certain degree of
parallel work is performed, the time consumed for sampling is
reduced by a corresponding multiplier, but its time complexity
is still O(S).

Therefore, in order to accelerate the sampling process,
improvements need to be made for the characteristics of the
GNN dataset. The advantage of platforms such as FPGAs over
software optimization on the CPU side is that they can utilize
the transfer characteristics of the bus in a more direct and
bottom-up manner at the hardware level.

Fig. 3 shows the number of nodes of different degrees in six
typical GNN datasets in the form of histograms. According to
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Fig. 3. The node degree distributions of the typical datasets shown in the figure all obey an approximate power law distribution, i.e., the vast majority of
nodes possess very low degrees, while only a small number of nodes have large degrees. The vertical coordinates in the figure are logarithmic axes.
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Fig. 4. Traditional sampling.

this figure, the vast majority of the nodes have a small number
of neighbors, and their distribution form shows a power law
distribution, i.e., the vast majority of the nodes are low-degree
nodes. This feature of the GNN dataset can be enlightening,
and if the time complexity of the aforementioned sampling
process can be shifted to O(degree), the time of sampling
can be reduced.

The sampler proposed in this paper samples the neighbor
nodes while transferring them to the chip using burst transfer.
Thus this sampler works directly during the bus data stream
transfer and is a streaming sampler. The time it consumes is
the time required to read the neighboring node to the chip
without additional time overhead. According to this method,
the time complexity of sampling is O(degree). This proposed
sampler accomplishes sampling at the same time as the bus
burst transmission, occurring in the time domain.

B. Motivation of Feature Acquisition and Aggregation

After completing the node sampling, the index of the sample
node can be obtained, and it is also necessary to obtain the
feature vector of the sample node based on the index. This
process will bring large-scale random memory access.

The feature vectors of the sample nodes are usually dis-
tributed irregularly and discontinuously scattered in the mem-
ory space. At the same time, unlike the node index values
obtained from sampling, feature vectors usually contain data
of several hundred or more dimensions, so that the length of
data to be read for each random memory access increases.

FPGA with HBM can better cope with the above problem.
First of all, the HBM has a high read bandwidth, which is
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Fig. 5. Structure of streaming sampler. As each node is sampled, the random
number port is held constant and the counter is incremented each clock cycle.
The comparator array outputs the sampling result after the OR operation. If
the result after OR operation is 1, then it means that the neighbor node of the
corresponding way is selected, otherwise it means that it is not selected.

suitable for the above task of intensive memory access. At
the same time, it has more read ports, which can store the
node features of different segments in the address segments
corresponding to each port, so that multiple read ports can
work in parallel when reading the feature vectors of different
node segments, which greatly improves the access efficiency
and the bandwidth utilization of the HBM.

However, for each central node, its multiple neighbor nodes
are unevenly distributed across the different port segments of
the HBM, and it is possible that multiple neighbor nodes are
clustered at one port for reading, while other ports may have
no neighbor nodes distributed. Meanwhile, the response time
of different ports varies, and the neighbor nodes of the same
central node distributed in different ports may be read out at
different times. As a result, the multi-channel reads of the
HBM bring about a temporal and spatial imbalance in the
feature reads of neighbor nodes. Facing this imbalance, there is
a need to propose an aggregation accelerator that is compatible
with it.

IV. PROPOSED HARDWARE

A. Streaming Sampler

Based on the descriptions in the previous sections, this work
proposes an innovative streaming sampler in the time domain.



As shown in Fig. 5 as an example, the width of the neighbor
node input port is set to be wide enough to accommodate 4-
way neighbor node indexes, and the sample size is set to be
4.

The four random numbers given by the previous random
number generator module are used in parallel as input to the
streaming sampler and are latched by the it. At the same time,
at each clock cycle, the 4-way neighbor node index data is
also input in parallel using the burst transmission of the data
bus.

There is a counter set up in the module with a step size of
4 (the step size of the counter is the number of ways to input
neighbor node indexes). Every time neighbor node indexes are
input for one clock cycle, the value of this counter is increased.
The first neighbor node input way in the array uses the value of
the counter directly, the second neighbor node input way input
uses the value of the counter after adding 1, and so on. This
results in 4 counter offset values. Each counter offset value
is compared to the four input random numbers respectively.
In this way, each neighbor node index input way gets four
comparator outputs. If one of the random numbers is equal to
the counter value, it gets one bit of 1 in the four comparator
outputs. The value obtained from the four comparator outputs
is fed into a logical OR gate to get the result. The resulting
value of the OR gate output identifies whether the neighbor
node of that way is sampled or not and becomes a sample
mask.

In this way, the sampler continues to provide sampling
results as the data stream continues to enter the sampler.
Thereby the sampling process does not consume dedicated
time anymore, but is done while acquiring neighbor node
indexes. This approach greatly saves time consumption and
fits the characteristics of bus burst transmission.

At the same time, the streaming sampler has the advantage
of being compatible with both playback and non-playback
sampling: the 4 random number inputs are connected to 4
comparators that give their respective comparison results. If
some of the random numbers give the same value (There
are duplicate entries in the samples obtained with playback
sampling.), then the number of 1’s in the 4-bit comparison
result is the result of playback sampling. If an OR operation
is performed on the 4-bit comparison result, the value given
is the result without playback sampling.

B. HBM-based Feature Acquisition & Aggregation Accelera-
tor

The second part of the system is the HBM-based feature
acquisition and aggregation accelerator. During the feature
acquisition process, the address range of the random memory
accesses is the entire feature table of the GNN dataset, rather
than being limited to a segment as in the case of accessing the
neighbor table. Therefore, it is reasonable to choose HBM as
the memory for this task.

The accelerator uses up to 32 independent HBM ports, each
port accesses one segment of HBM space, and the feature
vectors of different nodes are uniformly distributed in each
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TABLE I
THE PARAMETERS OF THE DATASET USED.

Dataset #Nodes #Edges #Features Ave. Deg.

PubMed 19, 717 88, 648 500 4.5
PPI 56, 944 1, 612, 348 50 28.3

NELL 65, 755 251, 550 61278 3.8
Flickr 89, 250 899, 756 500 10.1

OGBN arxiv 169, 343 1, 166, 243 128 6.9
Reddit 232, 965 114, 615, 892 602 491.9

segment in order according to the node index, and the space
size of each HBM segment is 256 MB. if the size of the dataset
after segmentation is less than 256 MB, unutilized regions are
left in each segment. The sample node indexes obtained from
the sampler are fed to the HBM through the address port to
obtain the feature vectors. The sample nodes corresponding to
different central nodes are identified with each other using the
AXI ID of the AXI interface, so that the neighboring nodes
read by different channels can be identified by the AXI ID to
which central node they belong to, and then aggregated to the
correct central node.

The schematic is drawn using 8 segments as shown in the
Fig. 6. When the neighbor nodes are read out, partial aggre-
gation is first performed in the partial aggregator module to
aggregate the features of neighbor nodes belonging to the same
central node in each channel into one partial aggregation result.
Then, the partial aggregation results in different segments enter
the aggregator tree. Each cell in the aggregator tree receives
the feature vectors from two upstream cells and the central
node AXI ID (CID) of the partial aggregation results. The cell
works according to the following rules: if the CIDs of the two
inputs are equal, then the two feature vectors are aggregated
and passed downstream pass, if the CIDs of the two upstream
child cells are different, the feature vector of the child cell with
the smaller CID is selected to pass downstream while keeping
the state of the child cell with the larger CID unchanged and
also recursively locking the state of its upstream child cells.

The example in Fig. 7 shows the working process of the
proposed aggregation accelerator. After each segment in the
HBM is partially aggregated, the partial aggregation results are
fed into the pipeline aggregation tree for aggregation between
different segments in the HBM. The task to be accomplished
is shown in the figure where features of partial aggregations
belonging to different central nodes are distinguished by differ-
ent CIDs. Whereas the distribution of some of the aggregation
results is uneven, there are more features to be aggregated on
some channels.

In the cycle n of the work of the aggregator in the figure, the
two child cells of the root cell with CID = 2 have the same
CID, so they are aggregated and passed downstream to the
root cell. And the child cells of the cell with CID = 3 have
different CIDs, so only the path with small CID is passed
downstream to get the result for the cycle (n + 1). About
the two child cells of the root cell in the cycle (n + 1), the
path with CID = 4 is the path with the smaller CID and is

therefore activated and transmitted downstream. The two sub-
paths of the cell with CID = 4 have the same CID and both
are aggregated. This gives the result for the cycle (n + 2).
And so on, the aggregator can continuously receive data from
upstream and work as a pipeline. At each clock cycle, the root
cell can output an aggregation result

The two aforementioned hardware modules are the main
components of this work and they are placed in the hard-
ware system (Fig. 8). In addition, there are other auxiliary
modules: the Controller controls the whole system, the On-
Chip Memory holds the degree of the dataset and the base
address of the neighbor indexes of each node, the Rand Gen
generates the random numbers used for sampling, the Feature
Acquisition Array buffers the samples and reads the feature
vectors, and the HBM is divided into two parts, storing the
neighbor indexes and the node feature vectors, respectively.

V. EVALUATION

The graph datasets vary greatly in size, and datasets from
small to large sizes were selected for testing separately in the
experiments. The information of the selected datasets is shown
in the Tab. I.

The number of nodes in these datasets ranges from around
19,000 to 230,000. The maximum feature vector dimension
supported by the aforementioned feature vector acquisition
module is 1024, where the PubMed [20], OGBN arxiv [21]
and Reddit [7] datasets satisfy the requirement, and the feature
vectors of the NELL [22] dataset are sparse and can be
compressed to within the required range.

The traditional FPGA-based node sampling module in the
spatial domain is first implemented and the time consumed
to perform node sampling is measured to serve as the node
sampling time baseline, which in turn demonstrates the effec-
tiveness of the streaming sampler’s improvements to the FPGA
sampler.

Then the proposed HBM and FPGA based feature acquisi-
tion and aggregation accelerator is used for comparison with
GPU baseline. The data format in both the GPU baseline and
the proposed hardware is INT8. The FPGA platform used
for validation is the AMD/Xilinx Virtex UltraScale+ HBM
VCU128 FPGA Evaluation Kit with 8GB of integrated HBM
[23]. Testing on the GPU platform was done using an NVIDIA
Tesla P100-PCIE-16GB as the device, in combination with
PyTorch and the PyG framework.

The clock frequency at which the FPGA tests were per-
formed was 100 MHz, and the sample size of the sam-
pling module was set to 32, which meets the sample size
requirements of commonly used networks. The overall power
consumption of the system is 15.05 W, most of which is
consumed by the HBM storage, which is 10.33 W. The power
consumption occupied by the proposed scheme in this work
is 4.72 W.

From the measurement results shown in Tab. II and Fig. 9, it
can be seen that the FPGA-based streaming sampler consumes
significantly less time than the traditional spatial-domain
FPGA-based sampler, thus proving the effectiveness of the



TABLE II
EVALUATION RESULT

Dataset
Node Sampling Time

(ms)
Full-Dim Acquisition Time

(ms)
128-Dim Acquisition and Aggregation

Time (ms)

Traditional Sampling Streaming Sampler Speedup GPU Ours Speedup GPU Ours Speedup

PubMed 20.54 0.99 20.7× 67.7 4.11 16.5× 79.82 0.24 332.6×
PPI 58.73 2.95 19.9× 15.3 34.13 0.4× 16.27 2.89 5.6×

NELL 68.71 3.35 20.5× 191.11 21.12 9.0× 208.05 2.89 72.0×
Flickr 92.53 4.51 20.5× 389.05 40.09 9.7× 453.22 4.18 108.4×

OGBN arxiv 175.37 8.53 20.6× 865.71 70.18 12.3× 963.22 4.17 231.0×
Reddit 239.96 118.77 2.0× 8996.83 282.42 31.9× 9284.60 148.55 62.5×
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Fig. 9. The results of the evaluation of the proposed hardware, where the vertical coordinate is the time consumption in milliseconds, plotted on a logarithmic
axis, and the horizontal coordinate is the different data sets. The dark data bars in the figure are the baseline and the light data bars are the evaluation results
of the proposed hardware.

stream sampler. Among them, the acceleration of datasets with
smaller average node degree (PubMed, NELL, OGBN arxiv)
is better, while the acceleration of the Reddit dataset is smaller,
which is due to the fact that the Reddit dataset’s average node
degree is larger, the data transmission consumes more time,
and the measured sampling time obtained is correspondingly
longer.

The computational process of GNN is divided into two
parts: combination (matrix multiplication or dimension trans-
formation) and aggregation (the commonly used aggregation
method is average aggregation). For the input feature vectors
of original dimensions, they should generally be combined
first to reduce the dimensions (dimension transformed to
the dimension of the hidden layer), and then the resulting
feature vectors can be aggregated. To address the above two
aspects, this work conducts two tests for the acceleration of
the feature vector acquisition and aggregation parts: 1. the
acquisition of feature vectors with original full-dimensions
(up to 1024 dimensions are supported). 2. the acquisition and
aggregation of feature vectors of the hidden layer with up to
128 dimensions. The results are shown in the Tab. II and 9.

According to the test results, the proposed accelerator
achieves acceleration relative to traditional samplers and GPU
baseline in the majority of scenarios, validating the effective-
ness of the proposed architecture. The proposed streaming
sampler achieves a 2× to 20× speedup relative to the baseline,
and the proposed feature acquisition and aggregation acceler-
ator achieves up to 300× speedup relative to the baseline.

VI. CONCOLUSION

This paper first describes the proportion of time that sam-
pling and feature acquisition occupy in GNN training and
inference, thus illustrating the need for acceleration of the
process.

The node degree of the graph dataset is characterized
by a power-law distribution, which brings some inspiration:
Sampling can be performed in the process of reading neigh-
bor nodes, thus shifting the time complexity of sampling to
O(degree), and speedup is achieved by power-law distribu-
tion of node degree. At the same time, the high bandwidth
advantage of the HBM enables fast feature acquisition. In
addition, a matching accelerator is required to aggregate the
unbalanced data read from the HBM. A streaming sampler
is proposed which has a large performance improvement
over traditional hardware sampling and a high-performance
feature acquisition-aggregation accelerator (min-heap pipeline
aggregator) is proposed which has a faster speed than GPU
baseline. Compared to traditional hardware sampling, the
proposed sampler also has the ability to be compatible with
both put-back and no-put-back sampling strategies.

Based on the experimental validation results, the proposed
streaming sampler achieves a 2× to 20× speedup and the pro-
posed feature acquisition and aggregation accelerator achieves
up to 300× speedup.
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