

Performance Benchmarking of H2O AutoML and

Individual Models on Malware Detection Tasks
Minakshi Arya

Department of Computer Science

North Dakota State University

Fargo, USA

minakshi.arya@ndsu.edu

Shubhavi Arya

Luddy School of Informatics,

Computing and Engineering

Indiana University Bloomington

Bloomington, USA
aryas@iu.edu

Saatvik Arya

Information School

University of Washington

Seattle, USA

arya3@uw.edu

Abstract— This paper presents a comprehensive

comparative analysis of H2O AutoML and individual machine

learning models including Distributed Random Forest (DRF),

Gradient Boosting Machine (GBM), XGBoost, and Deep

Learning, applied to malware detection. We evaluate these

models using key performance metrics such as accuracy, AUC,

log loss, precision, recall, and F1 score across different time

frames. Our findings highlight the efficiency and effectiveness

of H2O AutoML in identifying optimal models, providing

insights into its potential advantages and limitations compared

to traditional manual model selection.

Keywords—H2O AutoML, malware, ensemble learning

I. INTRODUCTION

The rapid evolution of malware poses a
significant threat to the security and integrity of
digital systems. Malware, encompassing a wide
range of harmful programs, is designed to
infiltrate, disrupt, or steal data from computer
systems and networks. Detecting and mitigating
malware attacks is crucial for safeguarding
sensitive information and ensuring the smooth
operation of digital infrastructure.

Machine learning techniques have emerged as
powerful tools for malware detection, offering the
potential to automate the identification and
categorization of malicious software based on
patterns extracted from large datasets. In this
paper, we leverage H2O AutoML, a robust
automated machine learning framework, to
develop practical models for malware detection
using the TUNADROMD dataset.

Limited research has utilized H2O AutoML for
malware detection. This study represents one of
the pioneering efforts to apply H2O AutoML in
this domain. By experimenting with various
machine learning algorithms available in the H2O
AutoML framework, such as Gradient Boosting
Machines (GBM), Random Forest, Deep Learning,
Generalized Linear Models (GLM), and XGBoost,
we aim to evaluate the efficacy of these models in
identifying malware.

Key questions addressed in this study
include:

• How does the performance of H2O
AutoML compare to traditional machine
learning models on the TUNADROMD
dataset in terms of accuracy, precision,
recall, and F1-score?

• Can H2O AutoML efficiently handle the
scale of the TUNADROMD dataset?

• What are the computational requirements
and training/inference time for H2O
AutoML?

• How interpretably does H2O AutoML
produce the models?

The novelty of using H2O AutoML for
malware detection lies in its automated approach
to feature engineering and model selection, which
are traditionally manual processes. This approach
significantly reduces the time and expertise
required to develop effective malware detection
models, providing a more streamlined and accurate
solution. Additionally, H2O AutoML is open
source, making it a cost-effective solution for
individuals and organizations. Its ability to reduce
the time required to develop machine learning
models is crucial in cybersecurity, where rapid
response to new threats is essential.

This paper is organized into several vital
sections to provide a comprehensive overview of
our research. The Introduction outlines the
motivation and objectives of the study. The
Literature Review explores existing research in
malware detection and the use of automated
machine learning. The Dataset Description details
the TUNADROMD dataset used for training and
evaluation. The Methodology section explains the
H2O AutoML framework, and the specific
techniques applied in our approach. The
Experimental Results present the performance of
various models and insights derived from the data.
The Conclusion and Future Work summarize our
findings and discuss potential directions for further
research. Finally, the References section lists the
sources and related works cited throughout the
paper.

II. LITERATURE REVIEW

Traditional Machine Learning Models
X. Xing et al. [2] utilized traditional machine

learning techniques for malware detection,
achieving high accuracy and F-score. This work
provides a baseline for comparing traditional and
deep learning-based methods.

M Arya et al. [12] conducted a comparative
study on real-time malware detection in IoT
devices, focusing on botnets such as Mirai, Okiru,
and Torii. They evaluated various machine
learning algorithms using RapidMiner, providing
insights into effective detection techniques for
enhancing cybersecurity in IoT environments.

Deep Learning Models
H. J. Zhu et al. [1] introduced MSAE and

SHLMD frameworks, integrating unsupervised
and deep learning techniques to enhance malware
detection accuracy.

H. Rodriguez-Bazan et al. [5] used
convolutional neural networks (CNN) to transform
APK files into grayscale images for malware
classification, achieving high accuracy.

X. Jin et al. [10] applied autoencoders to
malware detection, focusing on reconstruction
error for classification.

A. A. Mustafa Majid et al. [7] reviewed various
deep learning methods, including CNN, RNN,
LSTM, and autoencoders, highlighting their
effectiveness in malware detection.

Federated Learning
N. Subramanian et al. [3] compared federated

learning with traditional deep learning,
emphasizing its accuracy, scalability, and privacy
advantages.

Automated Machine Learning (AutoML)
R. Purwanto et al. [6] compared AutoML

frameworks to manually crafted models,
demonstrating AutoML's superiority in handling
complex classification tasks.

Di. F. Isinngizwe et al. [11] conducted
encrypted malware traffic classification using
AutoML, showing the benefits of automated
hyperparameter tuning and model assembling.

Hybrid Approaches
S. Mahdavifar et al. [8] utilized a semi-

supervised learning technique (PLSAE) combining
dynamic and static analysis for feature extraction,
achieving high accuracy on recent malware
samples.

Ensemble Methods
M. Sokolov et al. [4] proposed an ensemble

method using Light Gradient Boosted Machines to
improve malware detection accuracy.

M. A. Khan et al. [9] developed OE-IDS, an
ensemble intrusion detection system validated on
multiple datasets, showing high detection rates.

III. DATASET DESCRIPTION

The TUNADROMD dataset, a renowned
dataset used in Android malware classification, is
significant due to its comprehensive and diverse
nature. It contains a wide variety of malware
instances and attributes, making it a robust
benchmark for evaluating the performance of
machine-learning models in malware detection.

The TUNADROMD dataset [18] is a
preprocessed TUANDROMD version containing
4465 instances and 241 attributes. Each instance
represents a sample of potentially malicious
software, and the attributes capture various
features and characteristics of the samples. The
target attribute for classification indicates whether
an instance is categorized as malware or
goodware, making this a binary classification task.

IV. METHODOLOGY

We split the data into training and testing sets
and applied the following models:

H2O AutoML: Automated machine learning
process that runs multiple algorithms and selects
the best-performing model.

H2O Distributed Random Forest (DRF): An
ensemble learning method that builds multiple
decision trees and merges them to get a more
accurate and stable prediction.

H2O Gradient Boosting Machine (GBM): An
iterative optimization algorithm that minimizes a
loss function by adding weak learners.

H2O XGBoost: An optimized distributed
gradient boosting library designed to be highly
efficient, flexible, and portable.

H2O Deep Learning: A neural network-based
approach for learning from data with multiple
layers of abstraction.

We evaluated these models using the following
metrics:

Accuracy: The ratio of correctly predicted
instances to the total instances.

AUC (Area Under the Curve): Measures the
ability of the model to distinguish between classes.

Log Loss: Measures the performance of a
classification model where the prediction is a
probability value.

Precision: The ratio of true positive predictions
to the total predicted positives.

Recall: The ratio of true positive predictions to
the total actual positives.

F1 Score: The harmonic mean of precision and
recall.

The models were evaluated at different time
intervals: 3 seconds, 100 seconds, 300 seconds,
600 seconds, 1000 seconds, and 3600 seconds.

V. EXPERIMENTAL RESULTS

We experimented with various machine
learning algorithms including H2O AutoML,
Distributed Random Forest, Gradient Boosting
Machines (GBM), Deep Learning, and XGBoost.
The performance of the trained models was
evaluated using several metrics.

A. Model Accuracy Comparison

The figure below illustrates the accuracy
comparison of H2O AutoML and individual
models over different execution times.

Fig. 1. The different performance metrics for different models

The accuracy generally increases with longer
execution times for H2O AutoML and individual
models. H2O AutoML consistently identifies high-

accuracy models, with the best accuracy observed
at the 600-second mark (0.996681).

Fig. 2. Accuracy Comparison over time

H2O AutoML and H2ODRF consistently show
high accuracy across all time intervals, with H2O
AutoML slightly outperforming H2ODRF at
higher intervals.

H2OGBM and H2OXGBoost also perform
well, but their accuracy is generally slightly lower
than H2O AutoML and H2ODRF.

Deep Learning has lower accuracy compared to
other models, especially at lower time intervals,
but improves significantly with more time.

B. AUC (Area Under the Curve)

A higher AUC represents better model
performance. AUC values also show a general
increase with longer execution times. H2O
AutoML achieves the highest AUC at 600 seconds
(0.999757), demonstrating its effectiveness in
identifying models with superior discrimination
ability.

Fig. 3. AUC Comparison Over Time

H2O AutoML and H2ODRF achieve very high
AUC scores across all intervals, indicating
excellent discriminative ability.

H2OGBM and H2OXGBoost also have high
AUC values, closely following H2O AutoML and
H2ODRF.

Deep Learning shows lower AUC values
compared to the other models, particularly at
shorter time intervals, but it improves with more
time.

C. Log Loss

 A lower log loss indicates better model
confidence. Log loss decreases with longer
execution times, indicating improved model
confidence. H2O AutoML consistently
outperforms individual models in minimizing log
loss, with the lowest log loss at 600 seconds
(0.01466).

Fig. 4. Log Loss Comparison Over Time

H2O AutoML and H2ODRF consistently
achieve low log loss values, indicating better
model calibration.

H2OGBM and H2OXGBoost have slightly
higher log loss values but still perform well.

DeepLearning shows significantly higher log
loss values, particularly at lower time intervals,
indicating poorer model calibration.

D. Precision

Fig. 5. Precision Comparison Over Time

H2O AutoML and H2ODRF exhibit high
precision across all intervals.

H2OGBM and H2OXGBoost have slightly
lower precision but are still competitive.

DeepLearning shows relatively lower precision,
especially at shorter intervals, but improves with
more time.

E. Recall

Fig. 6. Recall Comparison Over Time

H2O AutoML and H2ODRF maintain high
recall values, indicating their ability to identify
most positive cases.

H2OGBM and H2OXGBoost also have high
recall values, though slightly lower than H2O
AutoML and H2ODRF.

DeepLearning shows lower recall at shorter
intervals, improving with longer training times.

F. F1 Score

Fig. 7. F1 Score Over Time

H2O AutoML and H2ODRF achieve high F1
scores, reflecting a good balance between
precision and recall.

H2OGBM and H2OXGBoost also perform
well, with F1 scores close to H2O AutoML and
H2ODRF.

Deep Learning has lower F1 scores at shorter
intervals but shows improvement with longer
training times.

G. Time Taken (Time (s))

DeepLearning models take significantly more
time to train compared to other models.

H2O AutoML has a higher number of models
run, leading to longer total times at higher
intervals.

H2ODRF, H2OGBM, and H2OXGBoost are
relatively quicker to train, maintaining lower time
values

H. Learning Curve Plot for the Best H2O AutoML

model

This learning curve plot for the "GBM grid
model" shows the model's performance as the
number of trees increases.

Fig. 8. Learning Curve Plot for the Best H2O AutoML model

Training (blue line) represents the log loss on
the training data, showing a sharp decrease
initially and then plateauing, indicating effective
learning up to a certain point.

Training (CV) Models (yellow band)
represent the cross-validation log loss with a
confidence interval, closely following the training
line initially, then plateauing, and the confidence
interval narrowing, indicating stable performance
across cross-validation folds.

Cross-validation (orange line) represents the
cross-validation log loss, closely following the
training log loss, demonstrating good
generalization to unseen data.

No of trees (green line) represents the out-of-
fold log loss. Beyond the green line, the models
overfits.

I. Variable Importance for the Best H2O AutoML

model

This variable importance plot visualizes the
relative importance of various variables in a
model.

Most Influential Factor: "Receiving Boot
Completed Broadcast".

Moderately Important Factors: "Open
Connection," "Get running tasks," "Keep the
device awake," and "Get Last Known Location"

Less Critical Factors: "Receive SMS
messages," "Load Library," and "Terminate
Background Processes"

Fig. 9. Variable importance for the Best H2O AutoML model

J. Shap Summary Plot for the Best H2O AutoML

model

The SHAP summary plot provides insights into
feature impact on the model's predictions. It orders
features by importance, with the most important
feature at the top. Positive SHAP values push the
prediction higher, while negative values push it
lower. The color gradient from blue to red shows
the value of the feature.

Most Impactful Features: "Open Connection"
and "Receive Boot Completed Broadcast"

Fig. 10. Shap Summary Plots for the Best H2O AutoML model

Notable Impacts: Permissions like "Get
Running Tasks," "Keep the Device Awake," and
"Get Last Known Location"

Lesser Impacts: Features like "Rebooting the
Device" and "Control Device Vibration".

K. H2O AutoML Model Prediction Metrics

The performance metrics chart depicts the
performance metrics of various models, identified
by their IDs on the x-axis.

Logarithmic Loss (blue line): Measures
classification performance with probability outputs
between 0 and 1. The decreasing trend indicates
improved model performance.

Root Mean Square Error (green line):
Measures error in predicting quantitative data. The
slight decreasing trend suggests a small
improvement in prediction accuracy.

Fig. 11. H2O AutoML Models Performance metrics

Mean Absolute Error (orange line):
Measures average error magnitude in predictions.
The steady trend with minor fluctuations indicates
consistent performance.

Mean Squared Error (red line): Similar to
RMSE but without square-rooting. The mostly flat
line with slight decreases suggests minor
improvements in prediction accuracy.

R-squared (purple line): Indicates the
proportion of variance in the dependent variable
explained by the independent variables. The flat
line indicates consistent variance explanation
across models.

Number of Estimators (yellow line with
points): Shows the count of estimators (or trees)
used, with fluctuations indicating variations across
models.

VI. CONCLUSION AND FUTURE WORK

This study presents a thorough evaluation of
H2O AutoML compared to traditional machine
learning models in the domain of malware
detection. Our results demonstrate that H2O
AutoML outperforms individual models in terms
of accuracy, AUC, and log loss, particularly when
given longer execution times.

H2O AutoML and H2ODRF are the top-
performing models across most metrics,
demonstrating high accuracy, AUC, precision,

recall, and F1 scores while maintaining low log
loss values.

H2OGBM and H2OXGBoost are strong
performers, trailing slightly behind H2O AutoML
and H2ODRF in most metrics.

Deep Learning models show potential but
require more training time to reach competitive
performance levels. They improve significantly
with longer training times but generally lag behind
other models in shorter intervals.

The automated feature engineering and model
selection capabilities of H2O AutoML
significantly streamline the model development
process, making it a valuable tool for
cybersecurity applications where rapid and
accurate detection is critical.

Key Findings:
Superior Performance: H2O AutoML

consistently identifies high-accuracy models with
better overall performance metrics compared to
traditional models.

Efficiency: The ability of H2O AutoML to
handle large and complex datasets efficiently
makes it suitable for real-world applications in
cybersecurity.

Interpretability: H2O AutoML provides
valuable insights into model predictions through
variable importance and SHAP summary plots,
enhancing the interpretability of the results.

Scalability: The framework demonstrates
robustness in scaling to larger datasets,
maintaining performance while reducing manual
effort in model selection and hyperparameter
tuning.

Future Work: Future research will focus on
extending this study by evaluating H2O AutoML
and individual models on larger and more complex
datasets to further validate the findings.
Additionally, exploring the integration of H2O
AutoML with other cybersecurity tools such as
intrusion detection and network security could
provide a comprehensive solution for real-time
threat detection and mitigation.

In conclusion, H2O AutoML offers a robust,

scalable, and interpretable solution for developing
high-performance malware detection models. Its
automated approach addresses the challenges of
manual model selection and feature engineering,
providing a cost-effective and efficient tool for
enhancing cybersecurity. The insights gained from
this study can inform both academic research and
practical implementations, contributing to the
development of more secure digital infrastructures.

References
[1] H. J. Zhu, L. M. Wang, S. Zhong, Y. Li, and V. S. Sheng, “A

Hybrid Deep Network Framework for Android Malware
Detection,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 12, pp.
5558–5570, 2022, doi: 10.1109/TKDE.2021.3067658.

[2] X. Xing, X. Jin, H. Elahi, H. Jiang, and G. Wang, “A Malware
Detection Approach Using Autoencoder in Deep Learning,”
IEEE Access, vol. 10, pp. 25696–25706, 2022, doi
10.1109/ACCESS.2022.3155695.

[3] N. Subramanian et al., “Securing Mobile Devices from
Malware: A Faceoff Between Federated Learning and Deep
Learning Models for Android Malware Classification,” J.
Comput. Sci., vol. 20, no. 3, pp. 254–264, 2024, doi:
10.3844/jcsp.2024.254.264.

[4] M. Sokolov and N. Herndon, “Predicting Malware Attacks
using Machine Learning and AutoAI,” Int. Conf. Pattern
Recognit. Appl. Methods, vol. 1, no. Icpram, pp. 295–301,
2021, doi: 10.5220/0010264902950301.

[5] H. Rodriguez-Bazan, G. Sidorov, and P. J. Escamilla-
Ambrosio, “Android Malware Classification Based on Fuzzy
Hashing Visualization,” Mach. Learn. Knowl. Extr., vol. 5, no.
4, pp. 1826–1847, 2023, doi: 10.3390/make5040088.

[6] R. Purwanto, A. Pal, A. Blair, and S. Jha, “Man versus
Machine: AutoML and Human Experts’ Role in Phishing
Detection,” pp. 1–28, 2021, [Online]. Available:
http://arxiv.org/abs/2108.12193

[7] A. A. Mustafa Majid, A. J. Alshaibi, E. Kostyuchenko, and A.
Shelupanov, “A review of artificial intelligence based malware
detection using deep learning,” Mater. Today Proc., vol. 80,
pp. 2678–2683, 2023, doi: 10.1016/j.matpr.2021.07.012.

[8] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, “Effective
and Efficient Hybrid Android Malware Classification Using
Pseudo-Label Stacked Auto-Encoder,” J. Netw. Syst. Manag.,
vol. 30, no. 1, p. 10922, 2022, doi: 10.1007/s10922-021-
09634-4.

[9] M. A. Khan, N. Iqbal, Imran, H. Jamil, and D. H. Kim, “An
optimised ensemble prediction model using AutoML based on
soft voting classifier for network intrusion detection,” J. Netw.
Comput. Appl., vol. 212, no. December 2022, p. 103560,
2023, doi: 10.1016/j.jnca.2022.103560.

[10] X. Jin, X. Xing, H. Elahi, G. Wang, and H. Jiang, “A malware
detection approach using malware images and autoencoders,”
Proc. - 2020 IEEE 17th Int. Conf. Mob. Ad Hoc Smart Syst.
MASS 2020, pp. 631–639, 2020, doi:
10.1109/MASS50613.2020.00009.

[11] Di. F. Isingizwe, M. Wang, W. Liu, D. Wang, T. Wu, and J.
Li, “Analyzing Learning-based Encrypted Malware Traffic
Classification with AutoML,” Int. Conf. Commun. Technol.
Proceedings, ICCT, vol. 2021-Octob, pp. 313–322, 2021, doi:
10.1109/ICCT52962.2021.9658106.

[12] M. Arya, S. Arya and S. Arya, "An Evaluation of Real-time
Malware Detection in IoT Devices: Comparison of Machine
Learning Algorithms with RapidMiner," 2023 IEEE
International Conference on Electro Information Technology
(eIT), Romeoville, IL, USA, 2023, pp. 077-082, doi:
10.1109/eIT57321.2023.10187265.

[13] D. Escudero García and N. DeCastro-García, “Optimal feature
configuration for dynamic malware detection,” Comput.
Secur., vol. 105, 2021, doi: 10.1016/j.cose.2021.102250.

[14] L. Dhanya and R. Chitra, “A novel autoencoder based feature
independent GA optimised XGBoost classifier for IoMT
malware detection,” Expert Syst. Appl., vol. 237, no. PC, p.
121618, 2024, doi: 10.1016/j.eswa.2023.121618.

[15] A. B. De Neira, A. M. Araujo, and M. Nogueira, “Early botnet
detection for the internet and the internet of things by
autonomous machine learning,” Proc. - 2020 16th Int. Conf.
Mobility, Sens. Networking, MSN 2020, pp. 516–523, 2020,
doi: 10.1109/MSN50589.2020.00087.

[16] G. D’Angelo, M. Ficco, and F. Palmieri, “Malware detection
in mobile environments based on Autoencoders and API-
images,” J. Parallel Distrib. Comput., vol. 137, pp. 26–33,
2020, doi: 10.1016/j.jpdc.2019.11.001.

[17] A. Chaudhuri, A. Nandi, and B. Pradhan, “A Dynamic
Weighted Federated Learning for Android Malware
Classification,” Lecture Notes in Networks and Systems, vol.
627 LNNS. pp. 147–159, 2023. doi: 10.1007/978-981-19-
9858-4_13.

[18] P. Borah, “TUANDROMD (Tezpur University Android
Malware Dataset,” 2023, doi:
https://doi.org/10.24432/C5560H.

[19] A. Brown, M. Gupta, and M. Abdelsalam, “Automated
machine learning for deep learning based malware detection,”
Comput. Secur., vol. 137, no. October 2023, p. 103582, 2024,
doi: 10.1016/j.cose.2023.103582.

[20] Y. D. Bromberg and L. Gitzinger, “DroidAutoML: A
Microservice Architecture to Automate the Evaluation of
Android Machine Learning Detection Systems,” in Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
2020. doi: 10.1007/978-3-030-50323-9_10.

[21] E. C. Bayazit, O. K. Sahingoz, and B. Dogan, “Malware
Detection in Android Systems with Traditional Machine
Learning Models: A Survey,” HORA 2020 - 2nd Int. Congr.
Human-Computer Interact. Optim. Robot. Appl. Proc., 2020,
doi: 10.1109/HORA49412.2020.9152840.

[22] H. Bakır and R. Bakır, “DroidEncoder: Malware detection
using auto-encoder based feature extractor and machine
learning algorithms,” Comput. Electr. Eng., vol. 110, no. June,
p. 108804, 2023, doi: 10.1016/j.compeleceng.2023.108804.

[23] O. Aslan and R. Samet, “A Comprehensive Review on
Malware Detection Approaches,” IEEE Access, vol. 8, pp.
6249–6271, 2020, doi: 10.1109/ACCESS.2019.2963724.

[24] N. Aslam et al., “Explainable Classification Model for
Android Malware Analysis Using API and Permission-Based
Features,” Comput. Mater. Contin., vol. 76, no. 3, pp. 3167–
3188, 2023, doi: 10.32604/cmc.2023.039721.

[25] A. M. Araujo, A. Bergamini de Neira, and M. Nogueira,
“Autonomous machine learning for early bot detection in the
internet of things,” Digit. Commun. Networks, vol. 9, no. 6,
pp. 1301–1309, 2023, doi: 10.1016/j.dcan.2022.05.011.

[26] Z. A. Abbood, I. Khaleel, and K. Aggarwal, “Challenges and
Future Directions for Intrusion Detection Systems Based on
AutoML,” Mesopotamian J. CyberSecurity, vol. 2021, pp. 16–
21, 2021, doi: 10.58496/MJCS/2021/004.

