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Abstract— This paper presents a comprehensive 

comparative analysis of H2O AutoML and individual machine 

learning models including Distributed Random Forest (DRF), 

Gradient Boosting Machine (GBM), XGBoost, and Deep 

Learning, applied to malware detection. We evaluate these 

models using key performance metrics such as accuracy, AUC, 

log loss, precision, recall, and F1 score across different time 

frames. Our findings highlight the efficiency and effectiveness 

of H2O AutoML in identifying optimal models, providing 

insights into its potential advantages and limitations compared 

to traditional manual model selection. 
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I. INTRODUCTION  

The rapid evolution of malware poses a 
significant threat to the security and integrity of 
digital systems. Malware, encompassing a wide 
range of harmful programs, is designed to 
infiltrate, disrupt, or steal data from computer 
systems and networks. Detecting and mitigating 
malware attacks is crucial for safeguarding 
sensitive information and ensuring the smooth 
operation of digital infrastructure. 

Machine learning techniques have emerged as 
powerful tools for malware detection, offering the 
potential to automate the identification and 
categorization of malicious software based on 
patterns extracted from large datasets. In this 
paper, we leverage H2O AutoML, a robust 
automated machine learning framework, to 
develop practical models for malware detection 
using the TUNADROMD dataset. 

Limited research has utilized H2O AutoML for 
malware detection. This study represents one of 
the pioneering efforts to apply H2O AutoML in 
this domain. By experimenting with various 
machine learning algorithms available in the H2O 
AutoML framework, such as Gradient Boosting 
Machines (GBM), Random Forest, Deep Learning, 
Generalized Linear Models (GLM), and XGBoost, 
we aim to evaluate the efficacy of these models in 
identifying malware. 

Key questions addressed in this study 
include: 

• How does the performance of H2O 
AutoML compare to traditional machine 
learning models on the TUNADROMD 
dataset in terms of accuracy, precision, 
recall, and F1-score? 

• Can H2O AutoML efficiently handle the 
scale of the TUNADROMD dataset? 

• What are the computational requirements 
and training/inference time for H2O 
AutoML? 

• How interpretably does H2O AutoML 
produce the models? 

The novelty of using H2O AutoML for 
malware detection lies in its automated approach 
to feature engineering and model selection, which 
are traditionally manual processes. This approach 
significantly reduces the time and expertise 
required to develop effective malware detection 
models, providing a more streamlined and accurate 
solution. Additionally, H2O AutoML is open 
source, making it a cost-effective solution for 
individuals and organizations. Its ability to reduce 
the time required to develop machine learning 
models is crucial in cybersecurity, where rapid 
response to new threats is essential.  

This paper is organized into several vital 
sections to provide a comprehensive overview of 
our research. The Introduction outlines the 
motivation and objectives of the study. The 
Literature Review explores existing research in 
malware detection and the use of automated 
machine learning. The Dataset Description details 
the TUNADROMD dataset used for training and 
evaluation. The Methodology section explains the 
H2O AutoML framework, and the specific 
techniques applied in our approach. The 
Experimental Results present the performance of 
various models and insights derived from the data. 
The Conclusion and Future Work summarize our 
findings and discuss potential directions for further 
research. Finally, the References section lists the 
sources and related works cited throughout the 
paper. 



II. LITERATURE REVIEW 

Traditional Machine Learning Models 
X. Xing et al. [2] utilized traditional machine 

learning techniques for malware detection, 
achieving high accuracy and F-score. This work 
provides a baseline for comparing traditional and 
deep learning-based methods. 

M Arya et al. [12] conducted a comparative 
study on real-time malware detection in IoT 
devices, focusing on botnets such as Mirai, Okiru, 
and Torii. They evaluated various machine 
learning algorithms using RapidMiner, providing 
insights into effective detection techniques for 
enhancing cybersecurity in IoT environments. 

Deep Learning Models 
H. J. Zhu et al. [1] introduced MSAE and 

SHLMD frameworks, integrating unsupervised 
and deep learning techniques to enhance malware 
detection accuracy. 

H. Rodriguez-Bazan et al. [5] used 
convolutional neural networks (CNN) to transform 
APK files into grayscale images for malware 
classification, achieving high accuracy. 

X. Jin et al. [10] applied autoencoders to 
malware detection, focusing on reconstruction 
error for classification. 

A. A. Mustafa Majid et al. [7] reviewed various 
deep learning methods, including CNN, RNN, 
LSTM, and autoencoders, highlighting their 
effectiveness in malware detection. 

Federated Learning 
N. Subramanian et al. [3] compared federated 

learning with traditional deep learning, 
emphasizing its accuracy, scalability, and privacy 
advantages. 

Automated Machine Learning (AutoML) 
R. Purwanto et al. [6] compared AutoML 

frameworks to manually crafted models, 
demonstrating AutoML's superiority in handling 
complex classification tasks. 

Di. F. Isinngizwe et al. [11] conducted 
encrypted malware traffic classification using 
AutoML, showing the benefits of automated 
hyperparameter tuning and model assembling. 

Hybrid Approaches 
S. Mahdavifar et al. [8] utilized a semi-

supervised learning technique (PLSAE) combining 
dynamic and static analysis for feature extraction, 
achieving high accuracy on recent malware 
samples. 

Ensemble Methods 
M. Sokolov et al. [4] proposed an ensemble 

method using Light Gradient Boosted Machines to 
improve malware detection accuracy. 

M. A. Khan et al. [9] developed OE-IDS, an 
ensemble intrusion detection system validated on 
multiple datasets, showing high detection rates. 

III. DATASET DESCRIPTION 

The TUNADROMD dataset, a renowned 
dataset used in Android malware classification, is 
significant due to its comprehensive and diverse 
nature. It contains a wide variety of malware 
instances and attributes, making it a robust 
benchmark for evaluating the performance of 
machine-learning models in malware detection. 

The TUNADROMD dataset [18] is a 
preprocessed TUANDROMD version containing 
4465 instances and 241 attributes. Each instance 
represents a sample of potentially malicious 
software, and the attributes capture various 
features and characteristics of the samples. The 
target attribute for classification indicates whether 
an instance is categorized as malware or 
goodware, making this a binary classification task. 

IV. METHODOLOGY 

We split the data into training and testing sets 
and applied the following models: 

H2O AutoML: Automated machine learning 
process that runs multiple algorithms and selects 
the best-performing model. 

H2O Distributed Random Forest (DRF): An 
ensemble learning method that builds multiple 
decision trees and merges them to get a more 
accurate and stable prediction. 

H2O Gradient Boosting Machine (GBM): An 
iterative optimization algorithm that minimizes a 
loss function by adding weak learners. 

H2O XGBoost: An optimized distributed 
gradient boosting library designed to be highly 
efficient, flexible, and portable. 

H2O Deep Learning: A neural network-based 
approach for learning from data with multiple 
layers of abstraction. 

We evaluated these models using the following 
metrics: 

Accuracy: The ratio of correctly predicted 
instances to the total instances. 

AUC (Area Under the Curve): Measures the 
ability of the model to distinguish between classes. 

Log Loss: Measures the performance of a 
classification model where the prediction is a 
probability value. 

Precision: The ratio of true positive predictions 
to the total predicted positives. 



Recall: The ratio of true positive predictions to 
the total actual positives. 

F1 Score: The harmonic mean of precision and 
recall. 

The models were evaluated at different time 
intervals: 3 seconds, 100 seconds, 300 seconds, 
600 seconds, 1000 seconds, and 3600 seconds. 

V. EXPERIMENTAL RESULTS 

We experimented with various machine 
learning algorithms including H2O AutoML, 
Distributed Random Forest,  Gradient Boosting 
Machines (GBM), Deep Learning, and XGBoost. 
The performance of the trained models was 
evaluated using several metrics. 

A. Model Accuracy Comparison 

The figure below illustrates the accuracy 
comparison of H2O AutoML and individual 
models over different execution times. 

 

Fig. 1. The different performance metrics for different models 

The accuracy generally increases with longer 
execution times for H2O AutoML and individual 
models. H2O AutoML consistently identifies high-

accuracy models, with the best accuracy observed 
at the 600-second mark (0.996681). 

 

Fig. 2. Accuracy Comparison over time 

H2O AutoML and H2ODRF consistently show 
high accuracy across all time intervals, with H2O 
AutoML slightly outperforming H2ODRF at 
higher intervals. 

H2OGBM and H2OXGBoost also perform 
well, but their accuracy is generally slightly lower 
than H2O AutoML and H2ODRF. 

Deep Learning has lower accuracy compared to 
other models, especially at lower time intervals, 
but improves significantly with more time. 

B. AUC (Area Under the Curve) 

A higher AUC represents better model 
performance. AUC values also show a general 
increase with longer execution times. H2O 
AutoML achieves the highest AUC at 600 seconds 
(0.999757), demonstrating its effectiveness in 
identifying models with superior discrimination 
ability. 

 

 

Fig. 3. AUC Comparison Over Time 

H2O AutoML and H2ODRF achieve very high 
AUC scores across all intervals, indicating 
excellent discriminative ability. 



H2OGBM and H2OXGBoost also have high 
AUC values, closely following H2O AutoML and 
H2ODRF. 

Deep Learning shows lower AUC values 
compared to the other models, particularly at 
shorter time intervals, but it improves with more 
time. 

C. Log Loss 

 A lower log loss indicates better model 
confidence. Log loss decreases with longer 
execution times, indicating improved model 
confidence. H2O AutoML consistently 
outperforms individual models in minimizing log 
loss, with the lowest log loss at 600 seconds 
(0.01466). 

 

Fig. 4. Log Loss Comparison Over Time 

H2O AutoML and H2ODRF consistently 
achieve low log loss values, indicating better 
model calibration. 

H2OGBM and H2OXGBoost have slightly 
higher log loss values but still perform well. 

DeepLearning shows significantly higher log 
loss values, particularly at lower time intervals, 
indicating poorer model calibration. 

D. Precision 

 

Fig. 5. Precision Comparison Over Time 

H2O AutoML and H2ODRF exhibit high 
precision across all intervals. 

H2OGBM and H2OXGBoost have slightly 
lower precision but are still competitive. 

DeepLearning shows relatively lower precision, 
especially at shorter intervals, but improves with 
more time. 

E. Recall 

 

Fig. 6. Recall Comparison Over Time 

H2O AutoML and H2ODRF maintain high 
recall values, indicating their ability to identify 
most positive cases. 

H2OGBM and H2OXGBoost also have high 
recall values, though slightly lower than H2O 
AutoML and H2ODRF. 

DeepLearning shows lower recall at shorter 
intervals, improving with longer training times. 

F. F1 Score 

 

Fig. 7. F1 Score Over Time 

H2O AutoML and H2ODRF achieve high F1 
scores, reflecting a good balance between 
precision and recall. 

H2OGBM and H2OXGBoost also perform 
well, with F1 scores close to H2O AutoML and 
H2ODRF. 



Deep Learning has lower F1 scores at shorter 
intervals but shows improvement with longer 
training times. 

G. Time Taken (Time (s)) 

DeepLearning models take significantly more 
time to train compared to other models. 

H2O AutoML has a higher number of models 
run, leading to longer total times at higher 
intervals. 

H2ODRF, H2OGBM, and H2OXGBoost are 
relatively quicker to train, maintaining lower time 
values 

H. Learning Curve Plot for the Best H2O AutoML 

model 

This learning curve plot for the "GBM grid 
model" shows the model's performance as the 
number of trees increases.  

 
Fig. 8. Learning Curve Plot for the Best H2O AutoML model 

Training (blue line) represents the log loss on 
the training data, showing a sharp decrease 
initially and then plateauing, indicating effective 
learning up to a certain point. 

Training (CV) Models (yellow band) 
represent the cross-validation log loss with a 
confidence interval, closely following the training 
line initially, then plateauing, and the confidence 
interval narrowing, indicating stable performance 
across cross-validation folds. 

Cross-validation (orange line) represents the 
cross-validation log loss, closely following the 
training log loss, demonstrating good 
generalization to unseen data. 

No of trees (green line) represents the out-of-
fold log loss. Beyond the green line, the models 
overfits. 

I. Variable Importance for the Best H2O AutoML 

model 

This variable importance plot visualizes the 
relative importance of various variables in a 
model. 

Most Influential Factor: "Receiving Boot 
Completed Broadcast".  

Moderately Important Factors: "Open 
Connection," "Get running tasks," "Keep the 
device awake," and "Get Last Known Location" 

Less Critical Factors: "Receive SMS 
messages," "Load Library," and "Terminate 
Background Processes" 

 

Fig. 9. Variable importance for the Best H2O AutoML model 

J. Shap Summary Plot for the Best H2O AutoML 

model 

The SHAP summary plot provides insights into 
feature impact on the model's predictions. It orders 
features by importance, with the most important 
feature at the top. Positive SHAP values push the 
prediction higher, while negative values push it 
lower. The color gradient from blue to red shows 
the value of the feature. 

Most Impactful Features: "Open Connection" 
and "Receive Boot Completed Broadcast" 

 

 

Fig. 10. Shap Summary Plots for the Best H2O AutoML model 

Notable Impacts: Permissions like "Get 
Running Tasks," "Keep the Device Awake," and 
"Get Last Known Location" 

Lesser Impacts: Features like "Rebooting the 
Device" and "Control Device Vibration". 



K. H2O AutoML Model Prediction Metrics 

The performance metrics chart depicts the 
performance metrics of various models, identified 
by their IDs on the x-axis.  

Logarithmic Loss (blue line): Measures 
classification performance with probability outputs 
between 0 and 1. The decreasing trend indicates 
improved model performance. 

Root Mean Square Error (green line): 
Measures error in predicting quantitative data. The 
slight decreasing trend suggests a small 
improvement in prediction accuracy. 

 
Fig. 11. H2O AutoML Models Performance metrics 

Mean Absolute Error (orange line): 
Measures average error magnitude in predictions. 
The steady trend with minor fluctuations indicates 
consistent performance. 

Mean Squared Error (red line): Similar to 
RMSE but without square-rooting. The mostly flat 
line with slight decreases suggests minor 
improvements in prediction accuracy. 

R-squared (purple line): Indicates the 
proportion of variance in the dependent variable 
explained by the independent variables. The flat 
line indicates consistent variance explanation 
across models. 

Number of Estimators (yellow line with 
points): Shows the count of estimators (or trees) 
used, with fluctuations indicating variations across 
models. 

VI. CONCLUSION AND FUTURE WORK 

This study presents a thorough evaluation of 
H2O AutoML compared to traditional machine 
learning models in the domain of malware 
detection. Our results demonstrate that H2O 
AutoML outperforms individual models in terms 
of accuracy, AUC, and log loss, particularly when 
given longer execution times.  

H2O AutoML and H2ODRF are the top-
performing models across most metrics, 
demonstrating high accuracy, AUC, precision, 

recall, and F1 scores while maintaining low log 
loss values. 

H2OGBM and H2OXGBoost are strong 
performers, trailing slightly behind H2O AutoML 
and H2ODRF in most metrics. 

Deep Learning models show potential but 
require more training time to reach competitive 
performance levels. They improve significantly 
with longer training times but generally lag behind 
other models in shorter intervals. 

The automated feature engineering and model 
selection capabilities of H2O AutoML 
significantly streamline the model development 
process, making it a valuable tool for 
cybersecurity applications where rapid and 
accurate detection is critical. 

Key Findings: 
Superior Performance: H2O AutoML 

consistently identifies high-accuracy models with 
better overall performance metrics compared to 
traditional models. 

Efficiency: The ability of H2O AutoML to 
handle large and complex datasets efficiently 
makes it suitable for real-world applications in 
cybersecurity. 

Interpretability: H2O AutoML provides 
valuable insights into model predictions through 
variable importance and SHAP summary plots, 
enhancing the interpretability of the results. 

Scalability: The framework demonstrates 
robustness in scaling to larger datasets, 
maintaining performance while reducing manual 
effort in model selection and hyperparameter 
tuning. 

Future Work: Future research will focus on 
extending this study by evaluating H2O AutoML 
and individual models on larger and more complex 
datasets to further validate the findings. 
Additionally, exploring the integration of H2O 
AutoML with other cybersecurity tools such as 
intrusion detection and network security could 
provide a comprehensive solution for real-time 
threat detection and mitigation.  

 
In conclusion, H2O AutoML offers a robust, 

scalable, and interpretable solution for developing 
high-performance malware detection models. Its 
automated approach addresses the challenges of 
manual model selection and feature engineering, 
providing a cost-effective and efficient tool for 
enhancing cybersecurity. The insights gained from 
this study can inform both academic research and 
practical implementations, contributing to the 
development of more secure digital infrastructures. 
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