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    Abstract— This paper presents a comprehensive study on the 

application of artificial intelligence and machine learning to 

enhance efficiency and precision in game-based design 

problems, with specific focus on pressure vessels, bilevel 

problems with three followers, and speed reducers. It proposes 

an AI-enhanced machine learning framework to solve 

numerically complex optimization engineering designs problems 

beyond traditional methods. This approach is demonstrated 

through three example problems, each viewed as a game with set 

players, presenting unique challenges and design requirements. 

The process begins by developing datasets from specific problem 

intervals and features, using MATLAB tools to achieve 

optimized solutions. These optimized results then serve as 

training data for a neural network, designed to predict rational 

reaction sets of players involved in the design process, thereby 

facilitating more informed and accurate decision-making. By 

integrating advanced machine learning techniques and 

formulating problems through game theory, this approach not 

only streamlines the computational process but also significantly 

improves the reliability and adaptability of engineering 

solutions. This research introduces the transformative impact of 

machine learning in game-based design, offering adaptive, 

efficient, and robust design optimizations that provides a new 

era in the field. 

Keywords— artificial intelligence, game theory, machine 

learning, design decision-making 

I. INTRODUCTION 

Optimization in engineering design[1] is crucial for 
enhancing efficiency and precision across various industries, 
including manufacturing[2], systems engineering[3], 
aerospace[4], automotive[5], and civil engineering[6]. These 
fields demand rigorous computational methods to meet high 
standards of performance and reliability. Traditional 
optimization approaches often face significant challenges due 
to their resource-intensive and time-consuming nature[7]. As 
a result, there is a continuous search for innovative methods 
that can improve the effectiveness and efficiency of the 
optimization process. Game theory, a mathematical 
framework for analyzing strategic interactions among rational 
decision-makers, where there are multiple objective functions 
in the problem, has been increasingly applied to engineering 
design problems[8], [9], [10], [11]. By modeling engineering 
challenges as games, where each component or stakeholder 
can be considered a player with specific objectives and 
constraints, game theory provides a structured approach to 
finding optimal solutions that account for the 
interdependencies and competitive nature of real-world 
systems[12], [13]. This perspective allows for more 
comprehensive and balanced optimization, ensuring that the 
interests of all parties are considered and harmonized. 

The advent of artificial intelligence (AI) has brought a 
transformative impact on numerous fields, including 
engineering design[14], [15], [16], [17]. AI offers advanced 
analytical and predictive capabilities that can handle complex 
and high-dimensional data, making it an invaluable tool for 

solving intricate design problems. By automating and 
enhancing various aspects of the design process, AI can 
significantly reduce the time and resources required to 
achieve optimal solutions while improving the overall 
accuracy and robustness of the results. 

Machine learning (ML), a subset of AI, further enhances 
the optimization process by enabling systems to learn from 
data and improve their performance over time without 
explicit programming[18]. ML techniques, such as neural 
networks, decision trees, and reinforcement learning, can 
identify patterns and relationships within large datasets, 
providing insights that are often beyond the reach of 
traditional methods. When applied to engineering design, ML 
can optimize complex systems by predicting outcomes and 
suggesting improvements based on historical data and 
simulations. 

This paper introduces a novel AI-enhanced machine 
learning framework aimed at optimizing the gamed based 
design problem. To show how this method is working, the 
approach has been applied in three specific engineering 
problems: pressure vessel optimization, bilevel problems 
with three followers[19], and speed reducer design[20]. By 
modeling these problems as games with defined players and 
utilizing MATLAB tools to generate detailed datasets, it 
derives optimized solutions used to train a neural network. 
This network predicts rational reaction sets of the players, 
enhancing decision-making accuracy and efficiency. 
Incorporating game theory and advanced machine learning 
techniques, this approach reduces computational overhead 
and improves the reliability of engineering designs, 
demonstrating significant improvements over traditional 
methods. This research highlights the transformative impact 
of AI and ML in game-based design optimization, marking a 
significant advancement in predictive optimization for 
engineering design. 

In Section II, it discusses the proposed methodology, 
detailing the innovative approach developed for addressing 
game theory problems in engineering design. Section III 
presents a series of examples and the corresponding results 
obtained through the methodology. Finally, in Section IV, it 
discusses the implications of our findings and potential 
avenues for future research. 

II. METHOD 

A. Game Theory and Rational Reaction Sets 

Game theory is a mathematical framework that analyzes 
strategic interactions among rational decision-makers, known 
as players. Each player in a game aims to maximize their 
payoff while considering the actions and reactions of other 
players. The concept of a rational reaction set (RRS) refers to 
the set of strategies that rational players would choose in 
response to the strategies of other players. In the context of 
engineering design problems, each component or stakeholder 
can be modeled as a player with specific objectives and 



constraints, and the design problem can be structured as a 
game. There are three types of games: cooperative game, non-
cooperative (Nash) game, and an extensive game. 

Nash Equilibrium: In a non-cooperative game, each 
player has a set of variables under its control and optimizes 
its objective function individually. The player does not care 
how its selection affects the payoff functions of other players. 
The players bargain with each other to obtain an equilibrium 
solution, if one exists. This solution is called Nash solution. 
the use of Nash solutions in solving design problems was 
proposed by Vincent [21]. In 1987, the concept of the Nash 
solution was expanded by Rao to encompass games involving 
multiple players, extending beyond its original scope of two-
player scenarios[22]. Further examples of employing game 
theory in mechanical design can be found in[23], [24]. 

Stackelberg equilibrium: Stackelberg games are an 
important type of extensive-form games[25]. In leader-
follower games, also known as Stackelberg games, one player 
(the leader) makes a decision first, and the other players 
(followers) make their decisions subsequently, knowing the 
leader's decision. This hierarchical decision-making process 
reflects many real-world scenarios where certain decisions 
are made sequentially rather than simultaneously. The 
leader's goal is to anticipate the followers' responses and 
optimize their own decision accordingly. The followers then 
optimize their strategies based on the leader's decision. The 
Stackelberg equilibrium is the solution to this type of game, 
where the leader and the followers reach a stable state where 
no player can improve their payoff by unilaterally changing 
their strategy, given the strategies of the other players. This 
equilibrium considers the leader's advantage of moving first 
and the followers' rational reactions. 

The interactions among the RRS are crucial for 
understanding the dynamic and interdependent nature of the 
design process. Traditional approaches to solving these 
interactions include: 

Design of experience: The design of experience approach 
for game theory involves structuring experiments to explore 
various strategies and outcomes in strategic interactions 
among decision-makers[26]. This approach focuses on 
creating controlled environments where participants engage 
in decision-making processes akin to those encountered in 
real-world scenarios. Through these experiments, researchers 
gain insights into the dynamics of strategic behavior, 
equilibrium solutions, and the impact of different factors on 
decision-making. 

Sensitivity-Based: These methods focus on understanding 
how changes in design variables impact the overall system 
performance. By analyzing the sensitivity of the system to 
various parameters, designers can identify critical variables 
and optimize them effectively[19]. However, these methods 
can be limited by the complexity and non-linearity of 
interactions among variables. 

Optimization Algorithms: Techniques such as genetic 
algorithms[27], simulated annealing[28], and gradient-based 
methods have been employed to find approximate solutions 
to game-based problems. These methods can be 
computationally expensive and may not always converge to 
the optimal solutions. 

Simulation-Based Methods: Monte Carlo simulations and 
other probabilistic methods are used to explore the strategy 
space and estimate optimal strategies[29]. These methods 
require significant computational resources and may suffer 
from scalability issues. 

B. AI-Enhanced Machine Learning Framework 

This approach leverages artificial intelligence (AI) and 
machine learning (ML) to find rational reaction sets (RRS) in 
complex engineering design problems. The proposed 
framework consists of the following steps as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed framework for engineering design optimization    
using ML. 

 

Problem Modeling and Data Generation: Each engineering 
problem is modeled as a game with defined players. 
MATLAB tools have been utilized to develop datasets that 
capture the specific problem intervals, features, and 
constraints. These datasets represent various scenarios and 
outcomes of the game. 

Design Variables: For each problem, specific design 
variables are identified. These variables are critical 
parameters that influence the performance and outcomes of 
the design. 

Optimization and Data Collection: Using MATLAB 
optimization tools, it derives optimized solutions for the 
given engineering problems. These solutions serve as the 
initial dataset, capturing the interactions and strategies of the 
players under different conditions. 

Training the Neural Network: The optimized dataset is 
used to train a neural network. The neural network learns to 
predict the rational reaction sets of the players based on the 
input features. This training process involves:  

Data Preprocessing: Normalizing and scaling the data to 
ensure efficient training. 

Model Selection: Choosing an appropriate neural network 
architecture, such as feedforward neural networks or 
recurrent neural networks, depending on the complexity of 
the problem. 

Training and Validation: Splitting the dataset into training 
and validation sets to assess the model's performance and 
prevent overfitting. 

Predicting Rational Reaction Sets: Once trained, the neural 
network predicts the rational reaction sets for new, unseen 
problem instances. This prediction helps in understanding the 
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strategic interactions among the players and informs better 
decision-making. 

Validation and Testing: The predicted RRS are validated 
against additional test cases and compared with traditional 
optimization methods to evaluate the efficiency and accuracy 
of our approach. Performance metrics such as prediction 
accuracy, computational time, and robustness are analyzed. 

III. EXAMPLES AND RESULTS 

To validate the AI-enhanced machine learning framework, 
This approach has been tested on three specific engineering 
problems: pressure vessel optimization, bilevel problems with 
three followers, and speed reducer design. Below, it starts by 
providing a detailed description of the pressure vessel 
optimization problem as an illustrative example of how our 
framework can be applied. 

A. Pressure Vessel Optimization 

The optimization of pressure vessels is a classic problem 
in multi objective engineering design problems, involving the 
determination of the optimal design parameters to minimize 
the cost while meeting safety and performance requirements. 
The design of pressure vessels typically involves variables 
such as wall thickness, internal pressure, material properties, 
and vessel dimensions[19]. In this example, it demonstrates 
how the AI-enhanced machine learning framework can be 
applied to optimize the design of a pressure vessel, considering 
it as a game with multiple players. 

Problem Formulation: Consider the problem of designing 

a thin-walled pressure vessel with three design variables: the 

radius R, the length L, and the thickness T. This problem has 

been used as a test problem in literature by several 

researchers[24], [30]. The two objective functions include 

maximizing the volume (VOL) and minimizing the weight 

(WGT) of the vessel. Player 1 (VOL) wishes to maximize the 

volume by controlling variables R and L, whereas Player 2 

(WGT) minimizes the weight with control over variable T. 

The vessel is under internal pressure P. 

Constraints: The problem constraints are given in Eq. (1) to 

Eq. (4). 

              𝜎𝐶𝐼𝑅𝐶 =
𝑃𝑅

𝑇
≤ 𝑆           (1) 

 5 − 𝑇 − 𝑅 ≤ 0                        (2) 

 𝑅 + 𝑇 − 40 ≤ 0                      (3) 

    𝐿 + 2𝑅 + 𝑇 − 150 ≤ 0                      (4) 

Objective Functions: The mathematical form of the problems 

for players VOL and WGT are given in Eq. (5) and Eq. (6): 

𝑉(𝑅, 𝐿) = 𝜋𝑅2𝐿                        (5) 

 𝑊(𝑅, 𝑇, 𝐿) = 2𝜋𝑅𝑇𝐿 + 2𝜋𝑅2𝑇      (6)                   

Optimization: To explore the dynamics of leader-follower 

interactions in the game-based design optimization process, it 

is conducted two separate analyses, each treating one of the 

objective functions (VOL and WGT) as the leader while the 

other function served as the follower. First, it is considered 

Player 1 (VOL) as the leader and Player 2 (WGT) as the 

follower. It is formulated the optimization problem with the 

objective of maximizing the volume (VOL) of the pressure 

vessel while satisfying the given constraints using MATLAB 

optimization tools. By varying the design variables R and L, 

it is derived the optimal solution for Player 1. Subsequently, 

it is reversed the roles, with Player 2 (WGT) acting as the 

leader and Player 1 (VOL) as the follower. In this scenario, 

the objective was to minimize the weight (WGT) of the 

pressure vessel by adjusting the design variable T, subject to 

the same constraints as before. Again, it is utilized MATLAB 

optimization tools to solve the optimization problem for 

Player 2. 

Data Generation: Using MATLAB optimization tools, it 

is derived optimized solutions for each leader-follower 

scenario. These solutions capture the interactions and 

strategies of the players (design variables) under different 

conditions. The optimized results serve as the initial dataset 

for training the neural network. 

Training the Neural Network: For the neural network part, 

it is adopted a feedforward approach. After generating the 

initial dataset from the optimized solutions obtained, it is 

proceeded to train the neural network. This training process 

involved preprocessing the data by normalizing and scaling it 

to ensure efficient training. Next, an appropriate neural 

network architecture has been selected, opting for a 

feedforward neural network given its suitability for the 

problem's complexity. 

Data Integration: The RRS obtained from the neural 

network represent the strategic responses of the follower to 

the leader's decisions. These RRS are integrated into the 

leader's optimization problem. With the RRS incorporated, 

the leader's optimization problem is solved again. This time, 

the leader considers the strategic responses of the follower 

when making decisions to achieve the best outcome for its 

objective function. 

The AI-enhanced method yielded optimal parameters of 

R=36.25 inches, L=69.75 inches and T=4.1inches as are 

shown in Table I. Comparatively, the AI-enhanced method 

demonstrated fewer iterations for convergence and 

showcased greater robustness to parameter variations. While 

effective, the sensitivity-based approach required more 

iterations for convergence and exhibited sensitivity to 

numerical perturbations in regression coefficients. 

TABLE I 

Sensitivity-based approach AI-Enhanced approach 

R=35.99inch R=36.25inch 

L=70inch L=69.75inch 

T=4inch T=4.1inch 

 

B. Bilevel Problem with Three Followers 

Consider a bilevel problem with one leader and three 

followers where the followers have non-cooperative game 

among themselves. The leader has control over variables 

𝑥 = (𝑥1, 𝑥2)  and aims to optimize a composite objective 

function given in Eq. (7) with the constraints given in Eq. (8) 

and Eq. (9). The first follower controls variables 𝑦1 =
(𝑦11, 𝑦12) with the objective function given in Eq. (10) its 

constraints are outlined in Eq. (11), Eq. (12) and Eq. (13). The 

second follower controls variables 𝑦2 = (𝑦21, 𝑦22) with the 

objective function given in Eq. (14) and its constraint is 



outlined in Eq. (15). The third follower controls variables 

𝑦3 = (𝑦31, 𝑦32)  with the objective function given in Eq. (16) 

its constraints are outlined in Eq. (17) and Eq. (18). 

𝑓1(𝑥, 𝑦1, 𝑦2, 𝑦3)                                                                             (7)

=
3(𝑦11 + 𝑦12)2 + 5(𝑦21 + 𝑦22)2 + 10(𝑦31 + 𝑦32)2

2𝑥1
2 + 𝑥2

2 + 3𝑥1𝑥2

 

Subject to                 𝑥1 + 2𝑥2 ≤ 10                                         (8) 

𝑥1, 𝑥2 > 0                                     (9) 

       𝑓1(𝑦1) = 𝑦11
2 + 𝑦12

2                                              (10) 

            
Subject to        𝑦11 + 𝑦21 + 𝑦31 ≥ 𝑥1                                   (11) 

𝑦12 + 𝑦22 + 𝑦32 ≥ 𝑥2                                   (12) 

𝑦11 ≥ 1,    𝑦12 ≥ 2                                    (13) 

 𝑓2(𝑦2) = 𝑦21 + 𝑦22 +
𝑦11

𝑦21
+

𝑦12

𝑦22
                                 (14) 

Subject to           𝑦11, 𝑦22 > 0                                                (15) 

𝑓3(𝑦3) =
(𝑦31−𝑦21)2

𝑦31
+

(𝑦32−𝑦22)2

𝑦32
                                 (16) 

Subject to       2𝑦31 + 3𝑦32 = 5                                             (17) 

                           𝑦31, 𝑦32 > 0                                                (18) 

Initially, each follower independently optimizes its objective 

function using MATLAB optimization tools, resulting in 

optimal solutions 𝑦1
∗, 𝑦2

∗ and 𝑦3
∗ . The optimal solutions 

obtained from the followers are utilized to generate a 

comprehensive dataset, capturing various scenarios and 

outcomes of the optimization process. A neural network is 

trained using this dataset to predict the rational reaction sets 

(RRS) of the followers in response to the leader's decisions. 

This involves preprocessing the data, selecting an appropriate 

neural network architecture, training and validation phases. 

The RRS obtained from the neural network are then 

incorporated into the leader's optimization problem. This 

allows the leader to anticipate and account for the followers' 

responses in its decision-making process. Using the proposed 

AI-enhanced approach, the following results have been 

obtained and shown in Table II. 

TABLE II 

 Sensitivity-based 

Approach 

AI-enhanced 

Approach 

𝑓1 1.510 1.501 

𝑓1 10821 12.323 

𝑓2 6.061 6.225 

𝑓3 0.483 0.834 

𝑥∗=(𝑥1
∗, 𝑥2

∗) 

 

(5.379,2.310) (5.768,2.116) 

𝑦1
∗ = (𝑦11

∗, 𝑦12
∗) 

 

(2.612,2.00) (2.885,2.116) 

𝑦2
∗ = (𝑦21

∗, 𝑦22
∗) 

 

(1.616,1.414) (1.699,1.414) 

𝑦1
∗ = (𝑦31

∗, 𝑦32
∗) 

 

(1.149,0.900) (1.183,0.789) 

The results obtained from our AI-enhanced approach closely 

align with those from the sensitivity-based approach 

presented by [19]. This suggests that the method effectively 

captures the dynamics of the bilevel optimization problem. 

C. Speed Reducer Optimization Problem 

Consider a two-objective optimization problem for a speed 
reducer system, comprising a leader and two subsystem 
followers. The leader controls variables 𝑥 =
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)  and aims to minimize the total 
volume of the speed reducer as well as the maximum stress in 
the first or second gear shaft. The leader's objective function 
is given in Eq. (19). 

𝑓1 = 0.7854𝑥1𝑥2
2(

10𝑥3
2

3
+ 14.933𝑥3 − 43.0934) −

1.508𝑥1(𝑥6
2 + 𝑥7

2) +7.477(𝑥6
3 + 𝑥7

3)+0.7854(𝑥4𝑥6
2 +

𝑥5𝑥7
2)                                                                                        (19) 

𝑓2 = max {𝑓12, 𝑓22} 

The constraints for the leader are given in Eq. (20) to Eq. (30). 

𝑔1 =
1

𝑥1𝑥2
2𝑥3

−
1

27
≤ 0                            (20) 

 𝑔2 =
1

𝑥1𝑥2
2𝑥3

2
−

1

397.5
≤ 0                            (21) 

𝑔3 =
𝑥4

3

𝑥2𝑥3𝑥6
4

−
1

1.93
≤ 0                            (22) 

𝑔4 =
𝑥5

3

𝑥2𝑥3𝑥7
4

−
1

1.93
≤ 0                            (23) 

𝑔5 = 𝑥2𝑥3 − 40 ≤ 0                                   (24) 

𝑔6 =
𝑥1

𝑥2

− 12 ≤ 0                                   (25) 

𝑔7 = 5 −
𝑥1

𝑥2

≤ 0                                   (26) 

𝑔8 = 1.9 − 𝑥4 + 1.5𝑥6 ≤ 0                                   (27) 

𝑔9 = 1.9 − 𝑥5 + 1.1𝑥7 ≤ 0                                   (28) 

𝑔10 = 𝑓12 − 1800 ≤ 0                                   (29) 

𝑔11 = 𝑓22 − 1100 ≤ 0                                   (30) 

Each subsystem follower controls specific variables and aims 
to minimize the volume and stress of the corresponding gear 
shaft. Objective functions and constraints for subsystem1 are 
given in Eq. (31) to Eq. (38). 

𝑓
1,1

= 0.7854𝑥1𝑥2
2 (

10𝑥3
2

3
+ 14.933𝑥3 − 43.0934) −

1.508𝑥1𝑥6
2 + 7.477𝑥6

3 + 𝑡2                                          (31)          

𝑓
1,2

=

√(
745𝑥4

𝑥2𝑥3
)

2

+ 1.69 × 107

0.1𝑥6
3

                                   (32) 

 



Subject to:  

𝑔1,1 = 𝑔3 =
𝑥4

3

𝑥2𝑥3𝑥6
4

−
1

1.93
≤ 0                                        (32) 

𝑔1,3 = 𝑔10 = 𝑓12 − 1800 ≤ 0                                              (33) 

‖𝑦1 −𝑡1‖ ≤ 𝜀1                                                                                                         (34) 

Where  

𝑦1 = 0.7854𝑥4𝑥6
2                                                                  (35) 

𝑋1 = [𝑥4, 𝑥6]                                                                            (36) 

7.3≤ 𝑥4 ≤ 8.3 , 2.9 ≤ 𝑥6 ≤ 3.9                                            (37) 

𝜀1 = 10−3𝑡1                                                                              (38) 

Objective functions and constraints for subsystem2 are given 
in Eq. (39) to Eq. (38). 

𝑓
2,1

= −1.508𝑥1𝑥7
2 + 7.477𝑥7

2 + 𝑡1                           (39) 

𝑓22 =
√(

745𝑥5

𝑥2𝑥3
)2 + √1.575 × 108

0.1𝑥7
3

                                   (40) 

Subject to: 

𝑔2,1 = 𝑔4 =
𝑥5

3

𝑥2𝑥3𝑥7
4

−
1

1.93
≤ 0                            (41) 

 𝑔2,2 = 𝑔9 = 1.9 − 𝑥5 + 1.1𝑥7 ≤ 0                            (42) 

𝑔2,3 = 𝑔11 = 𝑓22 − 1100 ≤ 0                            (43) 

‖𝑦2 −𝑡2‖ ≤ 𝜀2                                        (44) 

Where 

𝑦2 = 0.7854𝑥5𝑥7
2                            (45) 

𝜀2 = 10−3𝑡2                              (46) 

The optimal solutions obtained from the followers are utilized 
to generate a comprehensive dataset. A neural network is 
trained to predict rational reaction sets (RRS) of the followers 
in response to the leader's decisions. This involves 
preprocessing the data, neural network architecture, training, 
and validation phases. The RRS obtained from the neural 
network are incorporated into the leader's optimization 
problem, allowing it to anticipate and account for the 
followers' responses in its decision-making process. The 

objective function values for 𝑓
1,1

, 𝑓
1,2

, 𝑓
2,1

, 𝑓
22

 are 

2920,980,870,3021 respectively. These results are compatible 
with the reported ranges in [20]. 

IV. CONCLUSION 

In conclusion, the study presents a novel numerical 

method for solving game theory problems in engineering 

design, leveraging AI-enhanced techniques to achieve 

efficient and robust optimization solutions. By leveraging AI-

enhanced techniques, it has been demonstrated significant 

improvements in computational speed and efficiency 

compared to traditional methods. Future work will focus on 

extending the application of this method to address more 

complex engineering problems across diverse domains. This 

entails scaling up the analysis to encompass larger systems 

with a greater number of variables, objectives, and 

constraints, while also exploring the integration of advanced 

AI techniques such as deep learning and reinforcement 

learning. Additionally, investigating the impact of different 

problem formulations and optimization algorithms on 

solution quality and convergence speed will be crucial for 

advancing the understanding and applicability of this 

approach in practical settings. 
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