IOS: A Low Cost Defense to Mitigate Meltdown
and Spectre like Attacks

Xin Wang

Department of Electrical and Computer Engineering
Virginia Commonwealth University
Richmond, VA 23284
wangx44 @vcu.edu

Abstract—The Meltdown and Spectre attacks brings severe
security issues to a wide range of modern processors. The
Meltdown steals sensitive information in the kernel memory
space by utilizing the nature of out-of-order execution and the
Spectre exploits the speculative execution to access the secret
data. Both attacks transmit the secrets via the cache side-
channels. Although software patches have been applied to protect
the processors from the Meltdown and Spectre attacks, the
countermeasure also introduces huge performance degradation
and close the door to the benefit of out-of-order and speculative
execution. Customizing a hardware-based solution can be more
performance friendly and also conserve the bonus the out-of-
order and speculative execution. In this paper, we proposed
a hardware-based mitigation technique named Invalidation on
Squash (IOS) which is able to close the cache covert channel and
stops Meltdown and Spectre from exposing the secrets to the ad-
versary. To simplify the additional defense logic and minimize the
hardware overhead, I0S targets the squashed load instructions
and invalidates the corresponding cache lines introduced by these
squashed loads. Compared to the existing Meltdown and Spectre
Countermeasures, I0S incurs only negligible hardware overhead
by taking the advantage of the simple invalidation logic.

Index Terms—Security, Cache Covert Channel, Meltdown,
Spectre, Countermeasure

I. INTRODUCTION

Out of Order and Speculative execution have been widely
leveraged by modern processors to pursue performance en-
hancement and instruction level parallelism exploitation. How-
ever, Out of Order and Speculative execution also expose
fundamental security vulnerabilities which are uncovered by
the recent Meltdown [1] and Spectre [2]. Consequently, the ad-
versaries are able to the access kernel memory space and steal
secrets by taking advantage of the vulnerabilities offered by
the strategies that were intended to promote the performance.

Both Meltdown and Spectre follow a two-steps style to re-
trieve the secret. The first step is to utilize transient instructions
to expose the secret information. For Meltdown, a transient
instruction is the instruction executing in an OoO (Out of
Order) way. For Spectre, a transient instruction is the one
that is unexpectedly executed due to a mis-prediction. Since
a transient instruction is always unexpected, it is then able to
be executed with violations (e.g. accessing the unauthorized

Wei Zhang

Department of Computer Science and Engineering
University of Louisville
Louisville, KY 40292
wei.zhang @louisville.edu

memory). Although the control flow of the execution pipeline
can flush the intermediate states of the transient instruction,
the clean-up is only effective inside the pipeline and other state
changes outside of the pipeline can be conserved, e.g. the data
cache may still hold the secret relevant data. In the second
step, the secret information is transmitted to the adversary via
a covert channel. The cache-based covert timing channel is
the efficient and robust and broadly used by attackers. Among
different cache attack techniques, Flush+Reload [3] is the
most famous and has been used for attacks on varieties of
computation algorithms.

In this paper, we proposed a hardware-based countermea-
sure named IOS that can clean up the cache status of the
transient instructions.The transient instruction will be even-
tually squashed due to the violation (e.g. cross the memory
boundary) and the intermediate status within the execution
pipeline will be uninstalled. Additionally, IOS enables the
execution pipeline to evict also the status of the the memory
hierarchies including L1, L2 cache and etc. The IOS removes
the secret information brought up by the transient instruction
and cuts off the cache covert channel connecting to the
adversary. The previous hardware-based mitigation solutions
rely heavily on complex logic, new micro-architecture and
additional memory space to resolve the threats of Meltdown
and Spectre at a low cost of the performance penalty. These
solutions, however, increase the implementation complexity
and hardware overhead. Instead of pursuing low performance
degradation, the proposed IOS implements a lightweight strat-
egy that invalidates the cache lines installed by transient load
instructions in a very aggressive way. The experimental results
show that the performance loss (7.61%) is still low enough as
compared to one of the state-of-art Meltdown&Spectre coun-
termeasures that achieves the lowest performance degradation
(5.1% in [4]). And due to its simplicity, the IOS can be
supported by no additional micro-architecture and negligible
space and leads to only negligible hardware overhead.

II. BACKGROUND AND RELATED WORK
A. Meltdown&Spectre-like Threats

To fill the stalls from the data and control dependencies
and achieve peak performance, the modern processors execute
instructions in a speculative out-of-order way. However, the
side-effect of the speculation and out-of-order execution is
the transient instruction which has been demonstrated to be a
vulnerability of exposing critical information to the adversary.
The most famous attacks that rely on the transient instruction
to leak secrets are Meltdown [1] and Spectre [2]. Both attacks
leverage the transient instructions to access the privilege
memory space and dump the secret through the cache side-
channels. The transient instruction in the Meltdown attack is
an instruction with violations and it is not on the execution
path. This transient instruction should never be executed.
However, due to the processors’ out-of-order execution ability,
the transient instruction is executed and install secret relevant
information to the CPU’s micro-architectures (e.g. CPU’s
memory hierarchies including L1/L2 caches). Although it will
eventually be discarded as it leads to violations, the state
change in micro-architectures is preserved.

In Spectre, the mis-prediction is intentionally trained to
direct the program to execute in a wrong path toward the
transient instruction. Although the transient instruction will
be discarded after the prediction has been resolved and the
execution has been corrected to the right path, similar to that
in Meltdown, the secret relevant change of state in cache
hierarchies has survived. By using cache side-channels, the
adversary is able to probe the transient state in the cache
hierarchies including L1 data cache, L2 cache and last level
cache, recover the secret and transmit it to the outside.
Flush+Reload [3], Prime+Probe [5] and Evict+Time [5] are
cache side-channel attacks demonstrated and Flush+Reload
is the most widely used cache channel attacks owing to its
high bandwidth and robustness. The timing-based cache side
channel can also be defended with constant time operations
(61, [71.

As show in Figure 1, the Meltdown attack leverages a
transient instruction to access an entry of an array. The size
of the entry can fit to a cache line and the entry index is
computed using the secret value. As the result of executing
the transient instruction, a specific cache line indexed with
secret value is loaded to the cache and it is preserved after
the transient instruction has been squashed. The attacker reads
each cache line and reveal secret value by observing a hit to
the specific cache line previously installed by the transient
instruction.

B. Existing Mitigation

Several hardware-based countermeasures against
Meltdown&Spectre-like attacks have been proposed. In
order to prevent a transient instruction from changing the
cache state, DAWG [8] proposed to add protection domain
to cache hierarchies. Invisispec [9] proposed to involve
shadow structures to avoid the side-effects of caches from the

Core Cache

Transient Instruction
Out-of-Order
execution

Cacheline[Secret] is
loaded to Cache

Y

Transient Instruction Cacheline[Secret] is

Squashed due to : % 2
me retained in Cache
Adversary scan the « |Cacheline[Secret] is a
whole Cache 21 hit

Fig. 1. The Meltdown attack leaks secrets via Flush+Reload cache side-

channel.

speculative execution. Conditional Speculation proposed in
[10] blocks the cache requests until the branch prediction has
been resolved and the correct path has been determined. The
transient instruction then is eliminated and no secret will be
revealed by the Spectre attack. NDA—Non-speculative Data
Access, proposed in [11] proposed a technique to restrict
speculative data propagation in out-of-order (O0O) processors.
CleanupSpec [4] provides a similar strategy with the IOS to
“undo” the state changes installed by a transient instruction,
but it is composed of much more complicated logic and
needs relatively more hardware resources to accomplish
the defense against Meltdown and Spectre. CleanupSpec
undoes the changes to the cache hierarchies caused by
transient instructions and it achieves very low performance
overhead by intending to recover several kinds of changes
besides squashing the cache lines loaded by the transient
instruction. Although these hardware-based countermeasure
can effectively mitigate the Meltdown&Spectre-like attacks
and achieve much lower performance degradation than
software-based solutions, they require additional hardware
resources and non-trivial logic to support the mechanism
and consequently involves hardware overhead that increasing
the area and power consumption of the processors. As
comparison, the IOS proposed in this paper focuses on
squashing the dangerous cache lines installed by the transient
instructions and makes the cleanup as deeper as possible to
close the cache side-channel and thus prevents the processors
from the threats of Meltdown&Specre attacks. Moreover, the
IOS tailors to use arbitrary cleanup strategy which is unified
for all the cache hierarchies to achieve negligible hardware
overhead.

III. IOS: A LIGHTWEIGHT DEFENSE

The IOS intends to achieves to protect modern processors
from the threats of Meltdown&Spectre-like attacks, and also
minimize the hardware overhead and conserve the perfor-
mance profit of OoO and Speculative execution as much
as possible. The IOS proposes a lightweight strategy to
thoroughly purify the state changes of the cache subsystem.

Thanks to the arbitrariness, the IOS can build the cleanup
process with straight-forward logic and very few hardware
resource. As shown in Figure 2, the change of states in all
cache levels are erased by the 10S, therefore, the footprint of
the transient load instruction is purely cleaned up after it is
squashed in the execution pipeline.

Core

Fetch

Rename

ROB (Reorder Buffer)

Retirement/Squash

@ ®

Execution Units

L1 Data Cache

L2 Cache L ;

Cache Subsystem

® Transient load instruction brings the secret to
the register files and muliple caches

@ The state changes within the pipeline get
sguashed

® The 10S signals the caches to invalidate the
cache lines containing the secret

Fig. 2. The IOS cleans up the state changes in caches.

Target only transient load instructions. The I0S only
applies the cleanup process to the transient load instructions.
These instructions are able to bring secret related data to the
caches. Therefore the performance bonus from OoO and Spec-
ulative execution can still be guaranteed for the applications
that contains less transient load instructions.

Send invalidation signals to caches on squash. The 10S
arbitrarily sends invalidation signal to the first level cache
when a transient load instruction is being squashed and the
invalidation signal doesn’t expect a response from the cache.
Since there is not payload for the invalidation signal and it
is unnecessary for the caches to reply the sender, the 10S

has only slight impact on the bus traffic. Due to the arbitrary
invalidation strategy, there is no complex logic needed to
evaluate the invalidation condition and no additional memory
space are required to maintain any instruction or cache status.

Pass invalidation signal to all cache levels. To erase the
state changes of caches as deeply as possible, the IOS intends
to spread the invalidation signal to all the cache levels. As
shown in Figure 3, L1 data cache receives the invalidation
signal and kick out the secret. The L1 data cache then wrap
up an invalidation signal and pass it on to lower level cache
which is the L2 cache. The L2 cache removes the secret after
the invalidation signal arrives. If the LLC exists, the L2 cache
should notify LLC to do the same cleanup by handing over the
invalidation signal to the LLC. Regardless of how many cache
layers in the processor, the invalidation signal will always
reach to the bottom of the cache subsystem to perform a
thorough cleanup toward the secret.

108

L1 Data Cache ‘

L2 Cache ‘

LLC

Fig. 3. Erase State Changes in Caches.

Invalidate if hit, skip copying if miss. The invalidation
signal is similar with a load request to the cache. If the secret
has already be loaded to the cache before the transient load
instruction is squashed, the invalidation signal can hit the cache
line that contains the secret and will simply remove the secret
from the cache. On the other hand, at the point of squashing
a transient load instruction, the missing data requested by the
transient load may not be filled to the cache yet. Since the data
has not arrived, the invalidation signal cannot find a valid cache
line to evict and the ISO consider this case as a cache miss
of the invalidation signal. Instead of invalidating the secret, a
fake cache line is inserted to the cache and the status of this
cache line is set to locked. The tag of the fake cache line
is the same with the cache line where the secret is about to
be added to. When the data returns from the lower level of
the memory hierarchy, a free cache line will be picked up to
accommodate the data. Instead, the fake cache line with locked
status is returned and advices the cache to skip copying the
data. Therefore, the state of the cache is not modified by the
transient load instruction. The fake cache line is then released
as well. To summarize, the IOS 1) kicks the secret out of the
cache if the invalidation signal has a cache hit; 2) utilizes a
fake cache line to prevent the upcoming secret being copied
to the cache if the invalidation signal has a cache miss.

IV. METHODOLOGY & EXPERIMENTAL RESULTS

We used Gem5 [12] to evaluate the IOS. Gem is a cycle
accurate simulator and it is able to model the out-of-order
processor. We configure the Gem5 to System-call Emulation
(SE) mode to simulate a single-core processor. The processor
configuration including cache hierarchy and execution engine
parameters is shown in Table I. 17 benchmarks from SPEC-
CPU2006 [13] are used to evaluate our IOS. SPEC-CPU2006
is a set of benchmarks designed to evaluate the performance of
modern processors. For each benchmark, the first 500 Million
instructions are warm-up instructions and the following 100
Million instructions are observation instructions.

TABLE I
SIMULATED CPU ARCHITECTURE CONFIGURATION

Processor Single 00O core, 2GHz

L1 DCache 32KB, 8-Way, 64B cache line
L1 ICache 32KB, 8-Way, 64B cache line
L2 Cache 2MB, 16-way, 64B cache line

192 ROB Entries, 32 LSQ Entries

Execution Engine | 3510 Eiiries, 4096 BTB Entries

A. Performance Degradation

The IOS results in 8.27% performance loss which is good
enough as compared to the countermeasure proposed in [4]
that limits the execution slowdown to around 5%. We evalu-
ated 17 benchmarks from SPEC2006. The experimental results
of these benchmark show that, 1) 7 out of 17 benchmarks has
over 5% performance degradation; 2) other 10 benchmarks
only suffer from the performance loss that is below 5%. As
shown in Figure 4, serious performance side-effect can be
found in the benchmarks such as 464.h264ref, 473.astar,
471.omnetpp and 400.perlbench. For these benchmarks, the
IOS incurs around 20% execution slowdown. On the other
hand, 459.GemsFDTD, 435.gromacs, 470.lbm, 434.zeusmp
and 429.mcf are typical benchmarks that are IOS friendly and
have only negligible performance loss (less than 1%) or even
slight performance improvement.

B. Workload Profile

As mentioned in IV-A, the IOS may hurt the performance
more badly for the applications that have more load instruc-
tions that are squashed during the execution. As shown in
Figure 5, 7 of 17 benchmarks experience more than 5%
execution slowdown and 5 of them have more amount of
squashed loads than the average except 400.perlbench and
465.tonto. For the other 10 benchmarks that are less affected
by the IOS, are all having the amount of the squashed loads
below the average except 459.GemsFDTD.

Moreover, by comparing the baseline to the 10S for the
squashed loads amount, the benchmarks with significant per-
formance loss (more than 5%) shows sharply increase of the
squashed loads after the IOS is deployed and the benchmarks
with insignificant performance loss (less than 5%) shows mild
increase or even slight decrease of the squashed loads after ap-
plying the I0S. The scatter line shown in Figure 5 depicts that

the incremental rate is up to 36.8% for the benchmarks with
more than 5% performance penalty and the incremental rate
is less than 5.3% for the benchmarks with slight performance
loss. The outlier is benchmark 462.libquantum. The number
of the squashed loads increases 10.7% but the performance
degradation only is 3.9% for 462.libquantum.

V. CONCLUSION

In this paper, we proposed a hardware-based countermea-
sure called Invalidation on Squash (IOS) to protect the mod-
ern processors against the the Meltdow&Spectre-like attacks,
which are examples of microarchitectural vulnerabilities [14].
The IOS is able to stops Meltdown and Spectre from exposing
the secrets to the adversary. IOS targets all the squashed
load instructions and invalidates the corresponding cache lines
introduced by these squashed loads. Taking advantage of
the arbitrary invalidation logic, IOS incurs only negligible
hardware overhead compared to the existing Meltdown and
Spectre countermeasures. According to the experimental re-
sults, the IOS can prevent the Meltdow&Spectre-like attacks
at a cost of 8.27% overall performance degradation which is
still competitive with other hardware-based countermeasures.
In our future work, we aim to explore methods for enhancing
the IOS approach by expanding protect instructions intelli-
gently without incurring significant performance overhead or
hardware cost.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 973-990.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2019, pp. 1-19.

[3] Y. Yarom and K. Falkner, “{FLUSH+ RELOAD}: A high resolution,
low noise, 13 cache {Side-Channel} attack,” in 23rd USENIX security
symposium (USENIX security 14), 2014, pp. 719-732.

[4] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An” undo” approach
to safe speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 73-86.

[5] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ track at the RSA conference.
Springer, 2006, pp. 1-20.

[6] “Intel corporation. 2019. guidelines for mitigating timing side channels
against cryptographic implementations,” 2019.

[7]1 1. Puddu, M. Schneider, M. Haller, and S. éapkun., “Frontal attack:
Leaking control-flow in sgx via the cpu frontend,” in USENIX Security.
IEEE, 2021, pp. 663—680.

[8] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2018, pp. 974-987.

[91 M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-

rellas, “Invisispec: Making speculative execution invisible in the cache

hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). 1EEE, 2018, pp. 428-441.

P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-

ulation: An effective approach to safeguard out-of-order execution

against spectre attacks,” in 2019 IEEE international symposium on high

performance computer architecture (HPCA). 1EEE, 2019, pp. 264-276.

O. Weisse, I. Neal, K. Loughlin, T. Wenisch, and B. Kasikci, “Nda:

Preventing speculative execution attacks at their source,” in Micro.

IEEE, 2019, pp. 572-586.

[10]

(11]

Performance Degradation

Squashed Loads Per 1M Inst.

[12]

[13]

[14]

1.30

T
1
1.25 Performance Loss > 5% 1 Performance Loss < 5%
1
1.20 E
1.15 i
i
1.10 1
1
1.0 i
1.00 == i
1
0.95 1
1
0.90 -
o) £ ‘) S AC o > S e
é’se 'J}Pb é.QQ QQES‘ &c}- o“‘@ & iR & & R & Qé@ 6@" $°& :,<°Q & &
& ra s Ny v@ & © & h&’? &eo o> 0,04\ yﬂ‘ & & ° u“@ o« v:‘e,
X § g i & < 1
& o o ¥ v & o oF & @
K3 bd
Fig. 4. Execution cycles of the I0S normalized to the baseline w/o I0S Protection.
200 I Squashed Loads Per 1K Inst. w/o 10S z %
180 Performance Loss > 5% 1 Performance Loss < 5% mmm Squashed Loads Per 1K Inst. w/10s | 1.8 ®
-]
160 [: —©—Squashed Loads Penalty 4 1.6 '_:;
140 I 14 2
[%]
120 1 12 8
100 1 3
—
80 0.8 ©
]
60 0.6 E
40 0.4 £
20 02 &
g
0 0o =

Fig. 5. Number of Loads Squashed Per 1K Inst.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp- 1-7, 2011.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

J. Zhang, C. Chen, J. Cui, and K. Li, “Timing side-channel attacks
and countermeasures in cpu microarchitectures,” in ACM Computing
Surveys. ACM, 2024, pp. 1—40.

